Get Our Extension

Yarrow boiler

From Wikipedia, in a visual modern way
Yarrow boiler, with the flue and outer casing removed
Yarrow boiler, with the flue and outer casing removed

Yarrow boilers are an important class of high-pressure water-tube boilers. They were developed by Yarrow & Co. (London), Shipbuilders and Engineers and were widely used on ships, particularly warships.

The Yarrow boiler design is characteristic of the three-drum boiler: two banks of straight water-tubes are arranged in a triangular row with a single furnace between them. A single steam drum is mounted at the top between them, with smaller water drums at the base of each bank. Circulation, both upwards and downwards, occurs within this same tube bank. The Yarrow's distinctive features were the use of straight tubes and also circulation in both directions taking place within the tube bank, rather than using external downcomers.[1][2][3]

Discover more about Yarrow boiler related topics

Water-tube boiler

Water-tube boiler

A high pressure watertube boiler is a type of boiler in which water circulates in tubes heated externally by the fire. Fuel is burned inside the furnace, creating hot gas which boils water in the steam-generating tubes. In smaller boilers, additional generating tubes are separate in the furnace, while larger utility boilers rely on the water-filled tubes that make up the walls of the furnace to generate steam.

Yarrow Shipbuilders

Yarrow Shipbuilders

Yarrow Shipbuilders Limited (YSL), often styled as simply Yarrows, was a major shipbuilding firm based in the Scotstoun district of Glasgow on the River Clyde. It is now part of BAE Systems Surface Ships, owned by BAE Systems, which has also operated the nearby Govan shipyard since 1999.

Warship

Warship

A warship or combatant ship is a naval ship that is built and primarily intended for naval warfare. Usually they belong to the armed forces of a state. As well as being armed, warships are designed to withstand damage and are typically faster and more maneuverable than merchant ships. Unlike a merchant ship, which carries cargo, a warship typically carries only weapons, ammunition and supplies for its crew. Warships usually belong to a navy, though they have also been operated by individuals, cooperatives and corporations.

Three-drum boiler

Three-drum boiler

Three-drum boilers are a class of water-tube boiler used to generate steam, typically to power ships. They are compact and of high evaporative power, factors that encourage this use. Other boiler designs may be more efficient, although bulkier, and so the three-drum pattern was rare as a land-based stationary boiler.

Early watertube boilers

Early use of the water-tube boiler within the Royal Navy was controversial at times, giving rise to the 'Battle of the Boilers' around 1900.[4] These first boilers, such as the Belleville and Niclausse, were large-tube designs, with simple straight tubes of around 4" diameter, at a shallow angle to the horizontal.[5] These tubes were jointed into cast iron headers and gave much trouble with leakage at these joints. At the time, an assumption was that thermal expansion in these straight tubes was straining the joints. These boilers were also large, and although fitted to many pre-dreadnought battleships, could not be fitted to the small torpedo boats and the early destroyers then under very active development.

To provide a lighter boiler for smaller vessels, the 'Express' types were developed. These used smaller water-tubes of around 2" diameter, giving a greater ratio of heating area to volume (and weight). Most of these were of the three-drum pattern, particularly of the Du Temple and Normand designs.[5] This gave a more vertical arrangement of the water-tubes, thus encouraging thermosyphon circulation in these narrow tubes. The previous problems of tube expansion were still a theoretical concern and so the tubes were either curved, or even convoluted into hairpins and S shapes, so as to increase heating area. In practice these shapes gave rise to two more practical problems: difficulty in cleaning the tubes and also difficulty in forming a reliable joint into the water drums, particularly where tubes entered the drum at a variety of angles.

Discover more about Early watertube boilers related topics

Water-tube boiler

Water-tube boiler

A high pressure watertube boiler is a type of boiler in which water circulates in tubes heated externally by the fire. Fuel is burned inside the furnace, creating hot gas which boils water in the steam-generating tubes. In smaller boilers, additional generating tubes are separate in the furnace, while larger utility boilers rely on the water-filled tubes that make up the walls of the furnace to generate steam.

Royal Navy

Royal Navy

The Royal Navy (RN) is the United Kingdom's naval warfare force. Although warships were used by English and Scottish kings from the early medieval period, the first major maritime engagements were fought in the Hundred Years' War against France. The modern Royal Navy traces its origins to the early 16th century; the oldest of the UK's armed services, it is consequently known as the Senior Service.

Thermal expansion

Thermal expansion

Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions.

Pre-dreadnought battleship

Pre-dreadnought battleship

Pre-dreadnought battleships were sea-going battleships built between the mid- to late- 1880s and 1905, before the launch of HMS Dreadnought in 1906. The pre-dreadnought ships replaced the ironclad battleships of the 1870s and 1880s. Built from steel, protected by case-hardened steel armour, and powered by coal-fired triple-expansion steam engines, pre-dreadnought battleships carried a main battery of very heavy guns in fully enclosed rotating turrets supported by one or more secondary batteries of lighter weapons.

Torpedo boat

Torpedo boat

A torpedo boat is a relatively small and fast naval ship designed to carry torpedoes into battle. The first designs were steam-powered craft dedicated to ramming enemy ships with explosive spar torpedoes. Later evolutions launched variants of self-propelled Whitehead torpedoes.

Destroyer

Destroyer

In naval terminology, a destroyer is a fast, manoeuvrable, long-endurance warship intended to escort larger vessels in a fleet, convoy, or battle group and defend them against powerful short-range attackers. They were originally developed in 1885 by Fernando Villaamil for the Spanish Navy as a defense against torpedo boats, and by the time of the Russo-Japanese War in 1904, these "torpedo boat destroyers" (TBDs) were "large, swift, and powerfully armed torpedo boats designed to destroy other torpedo boats". Although the term "destroyer" had been used interchangeably with "TBD" and "torpedo boat destroyer" by navies since 1892, the term "torpedo boat destroyer" had been generally shortened to simply "destroyer" by nearly all navies by the First World War.

Yarrow's water-tube boiler

Alfred Yarrow developed his boiler as a response to others that had already developed water-tube boilers. This was a long process based on theoretical experiment rather than evolution of practical boilers. Work began in 1877 and the first commercial boiler was not supplied until 10 years later, a torpedo boat of 1887.[6]

Despite this long gestation, the boiler's origins appear to have been most direct. Yarrow's initial conversation with William Crush, head of the boiler department, is recorded to have included a rather direct approach and Yarrow's statements, "We must wake-up about water-tube boilers", "Why not a boiler like this?" (placing his fingers together as if praying), and "Straight tubes?" already expressed two of the boiler's three basic design principles.[6]

Straight tubes

Early water-tube designers had been concerned with the expansion of the boiler's tubes when heated. Efforts were made to permit them to expand freely, particularly so that those closest to the furnace might expand relatively more than those further away. Typically this was done by arranging the tubes in large looping curves, as for the Thornycroft boiler. These had difficulties in manufacturing and required support in use.

Yarrow recognised that the temperature of a water-filled tube was held relatively low and was consistent amongst them, provided that they remained full of water and boiling was not allowed to occur within the tubes themselves. High temperatures and variations only arose when tubes became steam filled, which also disrupted circulation.

His conclusion was thus that straight water-tubes were acceptable, and had obvious advantages for manufacture and cleaning in service.[6]

Obtaining tubes capable of withstanding the increasing boiler pressures was difficult and most makers had already experienced problems with the welds in the tubes. A less obvious benefit of straight tubes was that they could make use of the newly developed seamless-drawn tubes now being produced for bicycle manufacture.[6]

Yarrow's circulation experiments

Yarrow's U-tube circulation experiment
Yarrow's U-tube circulation experiment
Cleaning a Yarrow boiler
Cleaning a Yarrow boiler

It was already recognised that a water-tube boiler relied on a continuous flow through the water-tubes, and that this must be by a thermosyphon effect rather than impractically requiring a pump.

The heated water-tubes were a large number of small diameter tubes mounted between large drums: the water drums below and steam drums above. Fairbairn's studies had already showed the importance of tube diameter and how small diameter tubes could easily withstand far higher pressures than large diameters. The drums could withstand the pressure by virtue of their robust construction. Manholes fitted to them allowed regular internal inspection.

The assumption was that flow through the water-tubes would be upwards, owing to their heating by the furnace, and that the counterbalancing downward flow would require external unheated downcomers. In most water-tube designs these were a few large-diameter external pipes from the steam drum to the water drum. These large-diameter pipes were thus a problem for reliability owing to their rigidity and the forces upon them.

Alfred Yarrow conducted a famous experiment where he disproved this assumption.[7][8] Sources are unclear as to whether he discovered this during the experiment, or conducted the experiment merely to demonstrate a theory that he already held.

A vertical U-shaped tube was arranged so that it could be heated by a series of Bunsen burners on each side. A simple flow meter indicated the direction and approximate strength of any flow through the tank at the top linking the two arms of the U.

When only one side of the U was heated, there was the expected upward flow of heated water in that arm of the tube.

When heat was also applied to the unheated arm, conventional theory predicted that the circulatory flow would slow or stop completely. In practice, the flow actually increased. Provided that there was some asymmetry to the heating, Yarrow's experiment showed that circulation could continue and heating of the cooler downcomer could even increase this flow.

Yarrow then repeated the experiment, first with the U-tube at a shallow angle to the horizontal, finally with the entire system under pressure.[7] The results were the same and circulation was maintained.

The Yarrow boiler could thus dispense with separate external downcomers. Flow was entirely within the heated watertubes, upwards within those closest to the furnace and downwards through those in the outer rows of the bank.

Discover more about Yarrow's circulation experiments related topics

Description

End half-section of a boiler, showing the enclosing furnace and flue
End half-section of a boiler, showing the enclosing furnace and flue

Yarrow's production boiler had a simple and distinctive design that remained broadly unchanged afterwards. Three drums were arranged in a triangular formation: a single large steam drum at the top and two smaller water drums below. They were linked by straight watertubes in a multi-row bank to each water drum.

The furnace was placed in the space between the tube banks. Early boilers were manually coal fired, later oil fired. The boiler was enclosed in a sealed casing of steel, lined with firebricks. Brick-lined end walls to this casing housed the firedoors or oil burner quarls, but had no heating surface. The uptake flue from the boiler was in the centre top of the casing, the exhaust gases passing around the steam drum. To reduce corrosion from flue gases over the drum, it was sometimes wrapped in a simple deflector shroud. Usually the lower part of the water drums were exposed outside the casing, but only the ends of the steam drum emerged. The water level was at around one-third of the steam drum diameter, enough to cover the ends of the submerged water-tubes.

The weight of the boiler rested on the water drums, and thus on supports from the firing flat's deck. The steam drum was only supported by the watertubes and was allowed to move freely, with thermal expansion. If superheated, the superheater elements were hung from this drum. Compared to the earlier Scotch and locomotive boilers, water-tube boilers with their reduced water volumes were considered lightweight and didn't require extensive supports.

Later evolution in design

Water drums

Early Yarrow boiler, showing the D-shaped water troughs
Early Yarrow boiler, showing the D-shaped water troughs

The first Yarrow water drums or "troughs" were D-shaped with a flat tubeplate, so as to provide an easy mounting for the tubes. The tubeplate was bolted to the trough and could be dismantled for maintenance and tube cleaning.

This D shape is not ideal for a pressure drum though, as pressure will tend to distort it into a more circular section. Experience of boiler explosions had shown that sharp internal corners inside boilers were also prone to erosion by grooving.

Later boilers used a more rounded section, despite the difficulty of inserting and sealing the tube ends when they were no longer perpendicular. These later drums had a manhole in the ends for access.

Downcomers

The circulation in a Yarrow boiler depended on a temperature difference between the inner and outer tube rows of a bank, and particularly upon the rates of boiling. Whilst this is easy to maintain at low powers, a higher pressure Yarrow boiler will tend to have less temperature difference and thus will have less effective circulation.[2] This effect can be counteracted by providing external downcomers, outside the heated flue area.

Although most Yarrow boilers did not require downcomers, some were fitted with them.[9]

Double-ended boilers

The first double-ended boiler was built in 1905 for the Spanish government. The design was already well-suited to being fired from both ends and it was discovered that double-ended boilers were slightly more efficient in use.

Yarrow's shipyard was always restricted in the size of ships that it could build. Many of their boilers were intended for larger warships and Yarrow supplied these as components to the building yards with larger slipways.

Superheaters

Asymmetric 'double-flow' Yarrow boiler, with superheater
Asymmetric 'double-flow' Yarrow boiler, with superheater

Early Yarrow boilers were not superheated, but with the introduction of steam turbines, there was a demand for increasingly higher steam temperatures.

Asymmetric boilers

The Yarrow superheater consisted of hairpin tubes, parallel to the existing steam generator tubes. One bank of the generator tubes was separated in two, with individual lower water drums for them. The superheater was placed in the gap formed between these, with both ends of its tubes connected to a single superheater header drum, and an internal baffle to separate wet and dry steam.[10]

A secondary effect of the superheater was to increase the temperature differential between inner and outer tubes of the bank, thus encouraging circulation. The two water drums were often linked by unheated downcomers, to allow this flow between the drums. This effect was later encouraged in the Admiralty boiler, where the tubes of a bank were curved apart to leave space for a superheater, whilst retaining the single water drum.

Controlled flow

Only a single superheater was ever installed, on just one side of the boiler. The simplest, and smallest, boilers moved their exhaust flue to this side, passing all of the exhaust through the bank with the superheater. The now-asymmetric boiler could pass all of its exhaust gas through the superheated side as the single flow type.[10] The other bank remained in use for purely radiative heating, often with fewer rows of tubes.

Alternatively the 'double flow' boiler retained full gas flow through both sides, although only one of these contained a superheater. A controllable baffle on the non-superheated side could be closed to increase flow through the superheater.[10] These boilers usually incorporated additional feedwater heaters in the updraught above these baffles.[10]

Admiralty three-drum boiler

A later development from the Yarrow was the Admiralty three-drum boiler, developed for the Royal Navy between the wars.[11][12]

This was broadly similar to later, high-pressure and oil-fired, versions of the Yarrow. The waterdrums were cylindrical and downcomers were sometimes, but not always, used. The only major difference was in the tube banks. Rather than straight tubes, each tube was mostly straight, but cranked towards their ends. These were installed in two groups within the bank, so that they formed a gap between them within the bank. Superheaters were placed inside this gap. The advantage of placing the superheaters here was that they increased the temperature differential between the inner and outer tubes of the bank, thus encouraging circulation.

Discover more about Description related topics

Scotch marine boiler

Scotch marine boiler

A "Scotch" marine boiler is a design of steam boiler best known for its use on ships.

Boiler explosion

Boiler explosion

A boiler explosion is a catastrophic failure of a boiler. There are two types of boiler explosions. One type is a failure of the pressure parts of the steam and water sides. There can be many different causes, such as failure of the safety valve, corrosion of critical parts of the boiler, or low water level. Corrosion along the edges of lap joints was a common cause of early boiler explosions.

Steam turbine

Steam turbine

A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbine involves advanced metalwork to form high-grade steel alloys into precision parts using technologies that first became available in the 20th century; continued advances in durability and efficiency of steam turbines remains central to the energy economics of the 21st century.

Feedwater heater

Feedwater heater

A feedwater heater is a power plant component used to pre-heat water delivered to a steam generating boiler. Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system. This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feedwater is introduced back into the steam cycle.

Royal Navy

Royal Navy

The Royal Navy (RN) is the United Kingdom's naval warfare force. Although warships were used by English and Scottish kings from the early medieval period, the first major maritime engagements were fought in the Hundred Years' War against France. The modern Royal Navy traces its origins to the early 16th century; the oldest of the UK's armed services, it is consequently known as the Senior Service.

Marine use

Triple group of boilers for a Chilean battleship
Triple group of boilers for a Chilean battleship

HMS Hornet (1893), a Havock class destroyer. HMS Havock (1893), the lead ship of the class, was built with the then current form of locomotive boiler, Hornet with a Yarrow boiler for comparison.[13]

The first Yarrow boilers were intended for small destroyers and filled the entire width of the hull. In the early classes, three boilers were used arranged in tandem, each with a separate funnel. The later sets supplied for capital ships used multiple boilers and these were often grouped into sets of three, sharing an uptake.

Discover more about Marine use related topics

Land-based boilers

In 1922, Harold Yarrow decided to exploit the increasing boom for electricity generation as a market for Yarrows to build land-based boilers. [14] The first boilers, at Dunston Power Station and Brighton, were of the same marine pattern. As for their naval success, they were recognised for having a large radiant heating area and being quick to raise steam.

Large land-based turbines required high efficiency and increased superheat, so the marine pattern was revised to the distinctive land-based Yarrow boiler. This became asymmetrical. One wing was enlarged and received most of the gas flow. The inner tube banks remained and received radiant heat from the furnace, but the gases then flowed through one of them, over a superheater bank, then through an additional third bank to increase the heat extracted.

Working pressures also increased. From a working pressure of 575 psi in 1927, by 1929 an experimental boiler was operated at 1,200 psi.[14]

Engine 10000

Only one "Yarrow" boiler was used in a railway locomotive, Nigel Gresley's experimental Engine 10000 of 1924 for the LNER company.[15] Having observed the benefits of higher pressures and compound engines in marine practice, Gresley was keen to experiment with this approach in a railway locomotive. As with the land-based boilers, Harold Yarrow was keen to expand the market for Yarrow's boiler.

The boiler was not the usual Yarrow design. In operation, particularly its circulation paths, the boiler had more in common with other three-drum designs such as the Woolnough. It has also been described as an evolution of the Brotan-Deffner water-tube firebox, with the firebox extended to become the entire boiler.

Discover more about Engine 10000 related topics

Nigel Gresley

Nigel Gresley

Sir Herbert Nigel Gresley was a British railway engineer. He was one of Britain's most famous steam locomotive engineers, who rose to become Chief Mechanical Engineer (CME) of the London and North Eastern Railway (LNER). He was the designer of some of the most famous steam locomotives in Britain, including the LNER Class A1 and LNER Class A4 4-6-2 Pacific engines. An A1 Pacific, Flying Scotsman, was the first steam locomotive officially recorded over 100 mph in passenger service, and an A4, number 4468 Mallard, still holds the record for being the fastest steam locomotive in the world (126 mph).

London and North Eastern Railway

London and North Eastern Railway

The London and North Eastern Railway (LNER) was the second largest of the "Big Four" railway companies created by the Railways Act 1921 in Britain. It operated from 1 January 1923 until nationalisation on 1 January 1948. At that time, it was divided into the new British Railways' Eastern Region, North Eastern Region, and partially the Scottish Region.

Compound steam engine

Compound steam engine

A compound steam engine unit is a type of steam engine where steam is expanded in two or more stages. A typical arrangement for a compound engine is that the steam is first expanded in a high-pressure (HP) cylinder, then having given up heat and losing pressure, it exhausts directly into one or more larger-volume low-pressure (LP) cylinders. Multiple-expansion engines employ additional cylinders, of progressively lower pressure, to extract further energy from the steam.

Marine steam engine

Marine steam engine

A marine steam engine is a steam engine that is used to power a ship or boat. This article deals mainly with marine steam engines of the reciprocating type, which were in use from the inception of the steamboat in the early 19th century to their last years of large-scale manufacture during World War II. Reciprocating steam engines were progressively replaced in marine applications during the 20th century by steam turbines and marine diesel engines.

Steam locomotive

Steam locomotive

A steam locomotive is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam. It is fuelled by burning combustible material to heat water in the locomotive's boiler to the point where it becomes gaseous and its volume increases 1,700 times. Functionally, it is a steam engine on wheels.

Source: "Yarrow boiler", Wikipedia, Wikimedia Foundation, (2022, January 21st), https://en.wikipedia.org/wiki/Yarrow_boiler.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

References
  1. ^ Kennedy, Rankin (1912). The Book of Modern Engines and Power Generators. Vol. VI. London: Caxton.
  2. ^ a b Milton, J. H. (1961) [1953]. Marine Steam Boilers (2nd ed.). Newnes.
  3. ^ Borthwick, Alastair (1965). Yarrows: the first hundred years. Yarrows.
  4. ^ Rippon, Cmdr. PM (1988). The evolution of engineering in the Royal Navy. Vol. 1: 1827-1939. Spellmount. pp. 50, 76–77. ISBN 0-946771-55-3.
  5. ^ a b Brassey, Thomas Allnutt (1896). The Naval Annual. Brassey. pp. 118–119. ISBN 1-4212-4178-1.
  6. ^ a b c d Yarrows, The First Hundred Years, pp. 36-37
  7. ^ a b Kennedy, Modern Engines, Vol VI, pp. ????
  8. ^ Yarrows, First Hundred Years, pp. 
  9. ^ Stokers Manual (1912 ed.). Admiralty, via HMSO, via Eyre & Spottiswoode. 1901.
  10. ^ a b c d Milton, Marine Steam Boilers, pp. 109-111
  11. ^ BR 77 Machinery Handbook. later replacement for the Stokers Manual. Admiralty, via HMSO. 1941. pp. 12–13.
  12. ^ Naval Marine Engineering Practice. later replacement for the Stokers Manual. Vol. 1. Royal Navy, via HMSO. 1971 [1959]. p. 4. ISBN 011-770223-4.
  13. ^ Lyon, David (1996). The First Destroyers. ISBN 1-84067-364-8.
  14. ^ a b Yarrows, First Hundred Years, pp. 58-65
  15. ^ Nock, O.S. (1966). "9: Unconventional Locomotives 1929-1935". The British Steam Railway Locomotive. Vol. II, from 1925 to 1965. Ian Allan. pp. 106–109.

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.