Get Our Extension

Sonar

From Wikipedia, in a visual modern way
French F70 type frigates (here, La Motte-Picquet) are fitted with VDS (Variable Depth Sonar) type DUBV43 or DUBV43C towed sonars.
French F70 type frigates (here, La Motte-Picquet) are fitted with VDS (Variable Depth Sonar) type DUBV43 or DUBV43C towed sonars.
Sonar image of the Soviet Navy minesweeper T-297, formerly the Latvian Virsaitis, which was shipwrecked on 3 December 1941 in the Gulf of Finland[1]
Sonar image of the Soviet Navy minesweeper T-297, formerly the Latvian Virsaitis, which was shipwrecked on 3 December 1941 in the Gulf of Finland[1]

Sonar (sound navigation and ranging or sonic navigation and ranging)[2] is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances (ranging), communicate with or detect objects on or under the surface of the water, such as other vessels.[3]

"Sonar" can refer to one of two types of technology: passive sonar means listening for the sound made by vessels; active sonar means emitting pulses of sounds and listening for echoes. Sonar may be used as a means of acoustic location and of measurement of the echo characteristics of "targets" in the water. Acoustic location in air was used before the introduction of radar. Sonar may also be used for robot navigation,[4] and SODAR (an upward-looking in-air sonar) is used for atmospheric investigations. The term sonar is also used for the equipment used to generate and receive the sound. The acoustic frequencies used in sonar systems vary from very low (infrasonic) to extremely high (ultrasonic). The study of underwater sound is known as underwater acoustics or hydroacoustics.

The first recorded use of the technique was in 1490 by Leonardo da Vinci, who used a tube inserted into the water to detect vessels by ear.[5] It was developed during World War I to counter the growing threat of submarine warfare, with an operational passive sonar system in use by 1918.[3] Modern active sonar systems use an acoustic transducer to generate a sound wave which is reflected from target objects.[3]

Discover more about Sonar related topics

Sound

Sound

In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.

Submarine navigation

Submarine navigation

Submarine navigation underwater requires special skills and technologies not needed by surface ships. The challenges of underwater navigation have become more important as submarines spend more time underwater, travelling greater distances and at higher speed. Military submarines travel underwater in an environment of total darkness with neither windows nor lights. Operating in stealth mode, they cannot use their active sonar systems to ping ahead for underwater hazards such as undersea mountains, drilling rigs or other submarines. Surfacing to obtain navigational fixes is precluded by pervasive anti-submarine warfare detection systems such as radar and satellite surveillance. Antenna masts and antenna-equipped periscopes can be raised to obtain navigational signals but in areas of heavy surveillance, only for a few seconds or minutes; current radar technology can detect even a slender periscope while submarine shadows may be plainly visible from the air.

Navigation

Navigation

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation.

Acoustic location

Acoustic location

Acoustic location is the use of sound to determine the distance and direction of its source or reflector. Location can be done actively or passively, and can take place in gases, liquids, and in solids.Active acoustic location involves the creation of sound in order to produce an echo, which is then analyzed to determine the location of the object in question. Passive acoustic location involves the detection of sound or vibration created by the object being detected, which is then analyzed to determine the location of the object in question.

Radar

Radar

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

Ultrasound

Ultrasound

Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.

Underwater acoustics

Underwater acoustics

Underwater acoustics or hydroacoustics is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries. The water may be in the ocean, a lake, a river or a tank. Typical frequencies associated with underwater acoustics are between 10 Hz and 1 MHz. The propagation of sound in the ocean at frequencies lower than 10 Hz is usually not possible without penetrating deep into the seabed, whereas frequencies above 1 MHz are rarely used because they are absorbed very quickly.

Hydroacoustics

Hydroacoustics

Hydroacoustics is the study and application of sound in water. Hydroacoustics, using sonar technology, is most commonly used for monitoring of underwater physical and biological characteristics.

Leonardo da Vinci

Leonardo da Vinci

Leonardo di ser Piero da Vinci was an Italian Renaissance polymath who was active as a painter, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially rested on his achievements as a painter, he also became known for his notebooks, in which he made drawings and notes on a variety of subjects, including anatomy, astronomy, botany, cartography, painting, and paleontology. Leonardo is widely regarded to have been a genius who epitomized the Renaissance humanist ideal, and his collective works comprise a contribution to later generations of artists matched only by that of his younger contemporary, Michelangelo.

Submarine warfare

Submarine warfare

Submarine warfare is one of the four divisions of underwater warfare, the others being anti-submarine warfare, mine warfare and mine countermeasures.

Transducer

Transducer

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

History

Although some animals (dolphins, bats, some shrews, and others) have used sound for communication and object detection for millions of years, use by humans in the water is initially recorded by Leonardo da Vinci in 1490: a tube inserted into the water was said to be used to detect vessels by placing an ear to the tube.[5]

In the late 19th century an underwater bell was used as an ancillary to lighthouses or lightships to provide warning of hazards.[6]

The use of sound to "echo-locate" underwater in the same way as bats use sound for aerial navigation seems to have been prompted by the Titanic disaster of 1912.[7] The world's first patent for an underwater echo-ranging device was filed at the British Patent Office by English meteorologist Lewis Fry Richardson a month after the sinking of Titanic,[8] and a German physicist Alexander Behm obtained a patent for an echo sounder in 1913.[9]

The Canadian engineer Reginald Fessenden, while working for the Submarine Signal Company in Boston, Massachusetts, built an experimental system beginning in 1912, a system later tested in Boston Harbor, and finally in 1914 from the U.S. Revenue Cutter Miami on the Grand Banks off Newfoundland.[8][10] In that test, Fessenden demonstrated depth sounding, underwater communications (Morse code) and echo ranging (detecting an iceberg at a 2-mile (3.2 km) range).[11][12] The "Fessenden oscillator", operated at about 500 Hz frequency, was unable to determine the bearing of the iceberg due to the 3-metre wavelength and the small dimension of the transducer's radiating face (less than 13 wavelength in diameter). The ten Montreal-built British H-class submarines launched in 1915 were equipped with Fessenden oscillators.[13]

During World War I the need to detect submarines prompted more research into the use of sound. The British made early use of underwater listening devices called hydrophones, while the French physicist Paul Langevin, working with a Russian immigrant electrical engineer Constantin Chilowsky, worked on the development of active sound devices for detecting submarines in 1915. Although piezoelectric and magnetostrictive transducers later superseded the electrostatic transducers they used, this work influenced future designs. Lightweight sound-sensitive plastic film and fibre optics have been used for hydrophones, while Terfenol-D and lead magnesium niobate (PMN) have been developed for projectors.

ASDIC

ASDIC display unit from around 1944
ASDIC display unit from around 1944

In 1916, under the British Board of Invention and Research, Canadian physicist Robert William Boyle took on the active sound detection project with A. B. Wood, producing a prototype for testing in mid-1917. This work for the Anti-Submarine Division of the British Naval Staff was undertaken in utmost secrecy, and used quartz piezoelectric crystals to produce the world's first practical underwater active sound detection apparatus. To maintain secrecy, no mention of sound experimentation or quartz was made – the word used to describe the early work ("supersonics") was changed to "ASD"ics, and the quartz material to "ASD"ivite: "ASD" for "Anti-Submarine Division", hence the British acronym ASDIC. In 1939, in response to a question from the Oxford English Dictionary, the Admiralty made up the story that it stood for "Allied Submarine Detection Investigation Committee", and this is still widely believed,[14] though no committee bearing this name has been found in the Admiralty archives.[15]

By 1918, Britain and France had built prototype active systems. The British tested their ASDIC on HMS Antrim in 1920 and started production in 1922. The 6th Destroyer Flotilla had ASDIC-equipped vessels in 1923. An anti-submarine school HMS Osprey and a training flotilla of four vessels were established on Portland in 1924.

By the outbreak of World War II, the Royal Navy had five sets for different surface ship classes, and others for submarines, incorporated into a complete anti-submarine system. The effectiveness of early ASDIC was hampered by the use of the depth charge as an anti-submarine weapon. This required an attacking vessel to pass over a submerged contact before dropping charges over the stern, resulting in a loss of ASDIC contact in the moments leading up to attack. The hunter was effectively firing blind, during which time a submarine commander could take evasive action. This situation was remedied with new tactics and new weapons.

The tactical improvements developed by Frederic John Walker included the creeping attack. Two anti-submarine ships were needed for this (usually sloops or corvettes). The "directing ship" tracked the target submarine on ASDIC from a position about 1500 to 2000 yards behind the submarine. The second ship, with her ASDIC turned off and running at 5 knots, started an attack from a position between the directing ship and the target. This attack was controlled by radio telephone from the directing ship, based on their ASDIC and the range (by rangefinder) and bearing of the attacking ship. As soon as the depth charges had been released, the attacking ship left the immediate area at full speed. The directing ship then entered the target area and also released a pattern of depth charges. The low speed of the approach meant the submarine could not predict when depth charges were going to be released. Any evasive action was detected by the directing ship and steering orders to the attacking ship given accordingly. The low speed of the attack had the advantage that the German acoustic torpedo was not effective against a warship travelling so slowly. A variation of the creeping attack was the "plaster" attack, in which three attacking ships working in a close line abreast were directed over the target by the directing ship.[16]

The new weapons to deal with the ASDIC blind spot were "ahead-throwing weapons", such as Hedgehogs and later Squids, which projected warheads at a target ahead of the attacker and still in ASDIC contact. These allowed a single escort to make better aimed attacks on submarines. Developments during the war resulted in British ASDIC sets that used several different shapes of beam, continuously covering blind spots. Later, acoustic torpedoes were used.

Early in World War II (September 1940), British ASDIC technology was transferred for free to the United States. Research on ASDIC and underwater sound was expanded in the UK and in the US. Many new types of military sound detection were developed. These included sonobuoys, first developed by the British in 1944 under the codename High Tea, dipping/dunking sonar and mine-detection sonar. This work formed the basis for post-war developments related to countering the nuclear submarine.

SONAR

During the 1930s American engineers developed their own underwater sound-detection technology, and important discoveries were made, such as the existence of thermoclines and their effects on sound waves.[17] Americans began to use the term SONAR for their systems, coined by Frederick Hunt to be the equivalent of RADAR.[18]

US Navy Underwater Sound Laboratory

In 1917, the US Navy acquired J. Warren Horton's services for the first time. On leave from Bell Labs, he served the government as a technical expert, first at the experimental station at Nahant, Massachusetts, and later at US Naval Headquarters, in London, England. At Nahant he applied the newly developed vacuum tube, then associated with the formative stages of the field of applied science now known as electronics, to the detection of underwater signals. As a result, the carbon button microphone, which had been used in earlier detection equipment, was replaced by the precursor of the modern hydrophone. Also during this period, he experimented with methods for towing detection. This was due to the increased sensitivity of his device. The principles are still used in modern towed sonar systems.

To meet the defense needs of Great Britain, he was sent to England to install in the Irish Sea bottom-mounted hydrophones connected to a shore listening post by submarine cable. While this equipment was being loaded on the cable-laying vessel, World War I ended and Horton returned home.

During World War II, he continued to develop sonar systems that could detect submarines, mines, and torpedoes. He published Fundamentals of Sonar in 1957 as chief research consultant at the US Navy Underwater Sound Laboratory. He held this position until 1959 when he became technical director, a position he held until mandatory retirement in 1963.[19][20]

Materials and designs in the US and Japan

There was little progress in US sonar from 1915 to 1940. In 1940, US sonars typically consisted of a magnetostrictive transducer and an array of nickel tubes connected to a 1-foot-diameter steel plate attached back-to-back to a Rochelle salt crystal in a spherical housing. This assembly penetrated the ship hull and was manually rotated to the desired angle. The piezoelectric Rochelle salt crystal had better parameters, but the magnetostrictive unit was much more reliable. High losses to US merchant supply shipping early in World War II led to large scale high priority US research in the field, pursuing both improvements in magnetostrictive transducer parameters and Rochelle salt reliability. Ammonium dihydrogen phosphate (ADP), a superior alternative, was found as a replacement for Rochelle salt; the first application was a replacement of the 24 kHz Rochelle-salt transducers. Within nine months, Rochelle salt was obsolete. The ADP manufacturing facility grew from few dozen personnel in early 1940 to several thousands in 1942.

One of the earliest application of ADP crystals were hydrophones for acoustic mines; the crystals were specified for low-frequency cutoff at 5 Hz, withstanding mechanical shock for deployment from aircraft from 3,000 m (10,000 ft), and ability to survive neighbouring mine explosions. One of key features of ADP reliability is its zero aging characteristics; the crystal keeps its parameters even over prolonged storage.

Another application was for acoustic homing torpedoes. Two pairs of directional hydrophones were mounted on the torpedo nose, in the horizontal and vertical plane; the difference signals from the pairs were used to steer the torpedo left-right and up-down. A countermeasure was developed: the targeted submarine discharged an effervescent chemical, and the torpedo went after the noisier fizzy decoy. The counter-countermeasure was a torpedo with active sonar – a transducer was added to the torpedo nose, and the microphones were listening for its reflected periodic tone bursts. The transducers comprised identical rectangular crystal plates arranged to diamond-shaped areas in staggered rows.

Passive sonar arrays for submarines were developed from ADP crystals. Several crystal assemblies were arranged in a steel tube, vacuum-filled with castor oil, and sealed. The tubes then were mounted in parallel arrays.

The standard US Navy scanning sonar at the end of World War II operated at 18 kHz, using an array of ADP crystals. Desired longer range, however, required use of lower frequencies. The required dimensions were too big for ADP crystals, so in the early 1950s magnetostrictive and barium titanate piezoelectric systems were developed, but these had problems achieving uniform impedance characteristics, and the beam pattern suffered. Barium titanate was then replaced with more stable lead zirconate titanate (PZT), and the frequency was lowered to 5 kHz. The US fleet used this material in the AN/SQS-23 sonar for several decades. The SQS-23 sonar first used magnetostrictive nickel transducers, but these weighed several tons, and nickel was expensive and considered a critical material; piezoelectric transducers were therefore substituted. The sonar was a large array of 432 individual transducers. At first, the transducers were unreliable, showing mechanical and electrical failures and deteriorating soon after installation; they were also produced by several vendors, had different designs, and their characteristics were different enough to impair the array's performance. The policy to allow repair of individual transducers was then sacrificed, and "expendable modular design", sealed non-repairable modules, was chosen instead, eliminating the problem with seals and other extraneous mechanical parts.[21]

The Imperial Japanese Navy at the onset of World War II used projectors based on quartz. These were big and heavy, especially if designed for lower frequencies; the one for Type 91 set, operating at 9 kHz, had a diameter of 30 inches (760 mm) and was driven by an oscillator with 5 kW power and 7 kV of output amplitude. The Type 93 projectors consisted of solid sandwiches of quartz, assembled into spherical cast iron bodies. The Type 93 sonars were later replaced with Type 3, which followed German design and used magnetostrictive projectors; the projectors consisted of two rectangular identical independent units in a cast iron rectangular body about 16 by 9 inches (410 mm × 230 mm). The exposed area was half the wavelength wide and three wavelengths high. The magnetostrictive cores were made from 4 mm stampings of nickel, and later of an iron-aluminium alloy with aluminium content between 12.7% and 12.9%. The power was provided from a 2 kW at 3.8 kV, with polarization from a 20 V, 8 A DC source.

The passive hydrophones of the Imperial Japanese Navy were based on moving-coil design, Rochelle salt piezo transducers, and carbon microphones.[22]

Later developments in transducers

Magnetostrictive transducers were pursued after World War II as an alternative to piezoelectric ones. Nickel scroll-wound ring transducers were used for high-power low-frequency operations, with size up to 13 feet (4.0 m) in diameter, probably the largest individual sonar transducers ever. The advantage of metals is their high tensile strength and low input electrical impedance, but they have electrical losses and lower coupling coefficient than PZT, whose tensile strength can be increased by prestressing. Other materials were also tried; nonmetallic ferrites were promising for their low electrical conductivity resulting in low eddy current losses, Metglas offered high coupling coefficient, but they were inferior to PZT overall. In the 1970s, compounds of rare earths and iron were discovered with superior magnetomechanic properties, namely the Terfenol-D alloy. This made possible new designs, e.g. a hybrid magnetostrictive-piezoelectric transducer. The most recent of these improved magnetostrictive materials is Galfenol.

Other types of transducers include variable-reluctance (or moving-armature, or electromagnetic) transducers, where magnetic force acts on the surfaces of gaps, and moving coil (or electrodynamic) transducers, similar to conventional speakers; the latter are used in underwater sound calibration, due to their very low resonance frequencies and flat broadband characteristics above them.[23]

Discover more about History related topics

Dolphin

Dolphin

A dolphin is an aquatic mammal within the infraorder Cetacea. Dolphin species belong to the families Delphinidae, Platanistidae, Iniidae, Pontoporiidae, and the extinct Lipotidae. There are 40 extant species named as dolphins.

Bat

Bat

Bats are mammals of the order Chiroptera. With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their very long spread-out digits covered with a thin membrane or patagium. The smallest bat, and arguably the smallest extant mammal, is Kitti's hog-nosed bat, which is 29–34 millimetres in length, 150 mm (6 in) across the wings and 2–2.6 g in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox, reaching a weight of 1.6 kg and having a wingspan of 1.7 m.

Leonardo da Vinci

Leonardo da Vinci

Leonardo di ser Piero da Vinci was an Italian Renaissance polymath who was active as a painter, draughtsman, engineer, scientist, theorist, sculptor, and architect. While his fame initially rested on his achievements as a painter, he also became known for his notebooks, in which he made drawings and notes on a variety of subjects, including anatomy, astronomy, botany, cartography, painting, and paleontology. Leonardo is widely regarded to have been a genius who epitomized the Renaissance humanist ideal, and his collective works comprise a contribution to later generations of artists matched only by that of his younger contemporary, Michelangelo.

Lighthouse

Lighthouse

A lighthouse is a tower, building, or other type of physical structure designed to emit light from a system of lamps and lenses and to serve as a beacon for navigational aid, for maritime pilots at sea or on inland waterways.

Lightvessel

Lightvessel

A lightvessel, or lightship, is a ship that acts as a lighthouse. They are used in waters that are too deep or otherwise unsuitable for lighthouse construction. Although some records exist of fire beacons being placed on ships in Roman times, the first modern lightvessel was off the Nore sandbank at the mouth of the River Thames in England, placed there by its inventor Robert Hamblin in 1734. The type has become largely obsolete; lighthouses replaced some stations as the construction techniques for lighthouses advanced, while large, automated buoys replaced others.

Lewis Fry Richardson

Lewis Fry Richardson

Lewis Fry Richardson, FRS was an English mathematician, physicist, meteorologist, psychologist, and pacifist who pioneered modern mathematical techniques of weather forecasting, and the application of similar techniques to studying the causes of wars and how to prevent them. He is also noted for his pioneering work concerning fractals and a method for solving a system of linear equations known as modified Richardson iteration.

Alexander Behm

Alexander Behm

Alexander Behm was a German physicist who developed working ocean echo sounder in Germany at the same time Reginald Fessenden was doing so in North America.

Boston

Boston

Boston, officially the City of Boston, is the capital and largest city of the Commonwealth of Massachusetts and the cultural and financial center of the New England region of the Northeastern United States. The city boundaries encompass an area of about 48.4 sq mi (125 km2) and a population of 675,647 as of 2020. The city is the economic and cultural anchor of a substantially larger metropolitan area known as Greater Boston, a metropolitan statistical area (MSA) home to a census-estimated 4.8 million people in 2016 and ranking as the tenth-largest MSA in the country. A broader combined statistical area (CSA), generally corresponding to the commuting area and including Worcester, Massachusetts and Providence, Rhode Island, is home to approximately 8.2 million people, making it the sixth most populous in the United States.

Morse code

Morse code

Morse code is a method used in telecommunication to encode text characters as standardized sequences of two different signal durations, called dots and dashes, or dits and dahs. Morse code is named after Samuel Morse, one of the inventors of the telegraph.

Fessenden oscillator

Fessenden oscillator

A Fessenden oscillator is an electro-acoustic transducer invented by Reginald Fessenden, with development starting in 1912 at the Submarine Signal Company of Boston. It was the first successful acoustical echo ranging device. Similar in operating principle to a dynamic voice coil loudspeaker, it was an early kind of transducer, capable of creating underwater sounds and of picking up their echoes.

Montreal

Montreal

Montreal is the second most populous city in Canada and the most populous city in the province of Quebec. Founded in 1642 as Ville-Marie, or "City of Mary", it is named after Mount Royal, the triple-peaked hill around which the early city of Ville-Marie is built. The city is centred on the Island of Montreal, which obtained its name from the same origin as the city, and a few much smaller peripheral islands, the largest of which is Île Bizard. The city is 196 km (122 mi) east of the national capital Ottawa, and 258 km (160 mi) southwest of the provincial capital, Quebec City.

British H-class submarine

British H-class submarine

The British H-class submarines were Holland 602 type submarines used by the Royal Navy. The submarines constructed for the British Royal Navy between 1915 and 1919 were designed and built in response to German boats which mined British waters and sank coastal shipping with ease owing to their small size. The H class was created to perform similar operations in German waters, and to attack German submarines operating in British waters.

Active sonar

Principle of an active sonar
Principle of an active sonar

Active sonar uses a sound transmitter (or projector) and a receiver. When the two are in the same place it is monostatic operation. When the transmitter and receiver are separated it is bistatic operation.[24] When more transmitters (or more receivers) are used, again spatially separated, it is multistatic operation. Most sonars are used monostatically with the same array often being used for transmission and reception.[25] Active sonobuoy fields may be operated multistatically.

Active sonar creates a pulse of sound, often called a "ping", and then listens for reflections (echo) of the pulse. This pulse of sound is generally created electronically using a sonar projector consisting of a signal generator, power amplifier and electro-acoustic transducer/array.[26] A transducer is a device that can transmit and receive acoustic signals ("pings"). A beamformer is usually employed to concentrate the acoustic power into a beam, which may be swept to cover the required search angles. Generally, the electro-acoustic transducers are of the Tonpilz type and their design may be optimised to achieve maximum efficiency over the widest bandwidth, in order to optimise performance of the overall system. Occasionally, the acoustic pulse may be created by other means, e.g. chemically using explosives, airguns or plasma sound sources.

To measure the distance to an object, the time from transmission of a pulse to reception is measured and converted into a range using the known speed of sound.[27] To measure the bearing, several hydrophones are used, and the set measures the relative arrival time to each, or with an array of hydrophones, by measuring the relative amplitude in beams formed through a process called beamforming. Use of an array reduces the spatial response so that to provide wide cover multibeam systems are used. The target signal (if present) together with noise is then passed through various forms of signal processing,[28] which for simple sonars may be just energy measurement. It is then presented to some form of decision device that calls the output either the required signal or noise. This decision device may be an operator with headphones or a display, or in more sophisticated sonars this function may be carried out by software. Further processes may be carried out to classify the target and localise it, as well as measuring its velocity.

The pulse may be at constant frequency or a chirp of changing frequency (to allow pulse compression on reception). Simple sonars generally use the former with a filter wide enough to cover possible Doppler changes due to target movement, while more complex ones generally include the latter technique. Since digital processing became available pulse compression has usually been implemented using digital correlation techniques. Military sonars often have multiple beams to provide all-round cover while simple ones only cover a narrow arc, although the beam may be rotated, relatively slowly, by mechanical scanning.

Particularly when single frequency transmissions are used, the Doppler effect can be used to measure the radial speed of a target. The difference in frequency between the transmitted and received signal is measured and converted into a velocity. Since Doppler shifts can be introduced by either receiver or target motion, allowance has to be made for the radial speed of the searching platform.

One useful small sonar is similar in appearance to a waterproof flashlight. The head is pointed into the water, a button is pressed, and the device displays the distance to the target. Another variant is a "fishfinder" that shows a small display with shoals of fish. Some civilian sonars (which are not designed for stealth) approach active military sonars in capability, with three-dimensional displays of the area near the boat.

When active sonar is used to measure the distance from the transducer to the bottom, it is known as echo sounding. Similar methods may be used looking upward for wave measurement.

Active sonar is also used to measure distance through water between two sonar transducers or a combination of a hydrophone (underwater acoustic microphone) and projector (underwater acoustic speaker). When a hydrophone/transducer receives a specific interrogation signal it responds by transmitting a specific reply signal. To measure distance, one transducer/projector transmits an interrogation signal and measures the time between this transmission and the receipt of the other transducer/hydrophone reply. The time difference, scaled by the speed of sound through water and divided by two, is the distance between the two platforms. This technique, when used with multiple transducers/hydrophones/projectors, can calculate the relative positions of static and moving objects in water.

In combat situations, an active pulse can be detected by an enemy and will reveal a submarine's position at twice the maximum distance that the submarine can itself detect a contact and give clues as to the submarine's identity based on the characteristics of the outgoing ping. For these reasons, active sonar is not frequently used by military submarines.

A very directional, but low-efficiency, type of sonar (used by fisheries, military, and for port security) makes use of a complex nonlinear feature of water known as non-linear sonar, the virtual transducer being known as a parametric array.

Project Artemis

Project Artemis was an experimental research and development project in the late 1950s to mid 1960s to examine acoustic propagation and signal processing for a low-frequency active sonar system that might be used for ocean surveillance. A secondary objective was examination of engineering problems of fixed active bottom systems.[29] The receiving array was located on the slope of Plantagnet Bank off Bermuda. The active source array was deployed from the converted World War II tanker USNS Mission Capistrano.[30] Elements of Artemis were used experimentally after the main experiment was terminated.

Transponder

This is an active sonar device that receives a specific stimulus and immediately (or with a delay) retransmits the received signal or a predetermined one. Transponders can be used to remotely activate or recover subsea equipment.[31]

Performance prediction

A sonar target is small relative to the sphere, centred around the emitter, on which it is located. Therefore, the power of the reflected signal is very low, several orders of magnitude less than the original signal. Even if the reflected signal was of the same power, the following example (using hypothetical values) shows the problem: Suppose a sonar system is capable of emitting a 10,000 W/m2 signal at 1 m, and detecting a 0.001 W/m2 signal. At 100 m the signal will be 1 W/m2 (due to the inverse-square law). If the entire signal is reflected from a 10 m2 target, it will be at 0.001 W/m2 when it reaches the emitter, i.e. just detectable. However, the original signal will remain above 0.001 W/m2 until 3000 m. Any 10 m2 target between 100 and 3000 m using a similar or better system would be able to detect the pulse, but would not be detected by the emitter. The detectors must be very sensitive to pick up the echoes. Since the original signal is much more powerful, it can be detected many times further than twice the range of the sonar (as in the example).

Active sonar have two performance limitations: due to noise and reverberation. In general, one or other of these will dominate, so that the two effects can be initially considered separately.

In noise-limited conditions at initial detection:[32]

SL − 2PL + TS − (NL − AG) = DT,

where SL is the source level, PL is the propagation loss (sometimes referred to as transmission loss), TS is the target strength, NL is the noise level, AG is the array gain of the receiving array (sometimes approximated by its directivity index) and DT is the detection threshold.

In reverberation-limited conditions at initial detection (neglecting array gain):

SL − 2PL + TS = RL + DT,

where RL is the reverberation level, and the other factors are as before.

Hand-held sonar for use by a diver

  • The LIMIS (limpet mine imaging sonar) is a hand-held or ROV-mounted imaging sonar for use by a diver. Its name is because it was designed for patrol divers (combat frogmen or clearance divers) to look for limpet mines in low visibility water.
  • The LUIS (lensing underwater imaging system) is another imaging sonar for use by a diver.
  • There is or was a small flashlight-shaped handheld sonar for divers, that merely displays range.
  • For the INSS (integrated navigation sonar system)

Upward looking sonar

An upward looking sonar (ULS) is a sonar device pointed upwards looking towards the surface of the sea. It is used for similar purposes as downward looking sonar, but has some unique applications such as measuring sea ice thickness, roughness and concentration,[33][34] or measuring air entrainment from bubble plumes during rough seas. Often it is moored on the bottom of the ocean or floats on a taut line mooring at a constant depth of perhaps 100 m. They may also be used by submarines, AUVs, and floats such as the Argo float.[35]

Discover more about Active sonar related topics

Bistatic sonar

Bistatic sonar

Most sonar systems are monostatic, in that the transmitter and receiver are in the same place. Bistatic sonar describes when the transmitter and receiver(s) are separated by a distance large enough to be comparable to the distance to the target.

Multistatic radar

Multistatic radar

A multistatic radar system contains multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage. An important distinction of systems based on these individual radar geometries is the added requirement for some level of data fusion to take place between component parts. The spatial diversity afforded by multistatic systems allows different aspects of a target to be viewed simultaneously. The potential for information gain can give rise to a number of advantages over conventional systems.

Pulse (signal processing)

Pulse (signal processing)

A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value.

Hydrophone

Hydrophone

A hydrophone is a microphone designed to be used underwater for recording or listening to underwater sound. Most hydrophones are based on a piezoelectric transducer that generates an electric potential when subjected to a pressure change, such as a sound wave.

Beamforming

Beamforming

Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array.

Multibeam echosounder

Multibeam echosounder

A multibeam echosounder (MBES) is a type of sonar that is used to map the seabed. It emits acoustic waves in a fan shape beneath its transceiver. The time it takes for the sound waves to reflect off the seabed and return to the receiver is used to calculate the water depth. Unlike other sonars and echo sounders, MBES uses beamforming to extract directional information from the returning soundwaves, producing a swath of depth soundings from a single ping.

Frequency

Frequency

Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as temporal frequency for clarity, and is distinct from angular frequency. Frequency is measured in hertz (Hz) which is equal to one event per second. The period is the interval of time between events, so the period is the reciprocal of the frequency.

Chirp

Chirp

A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal. It is commonly applied to sonar, radar, and laser systems, and to other applications, such as in spread-spectrum communications. This signal type is biologically inspired and occurs as a phenomenon due to dispersion. It is usually compensated for by using a matched filter, which can be part of the propagation channel. Depending on the specific performance measure, however, there are better techniques both for radar and communication. Since it was used in radar and space, it has been adopted also for communication standards. For automotive radar applications, it is usually called linear frequency modulated waveform (LFMW).

Pulse compression

Pulse compression

Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth of the transmitted signal are constrained. This is achieved by modulating the transmitted pulse and then correlating the received signal with the transmitted pulse.

Doppler effect

Doppler effect

The Doppler effect or Doppler shift is the apparent change in frequency of a wave in relation to an observer moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.

Fishfinder

Fishfinder

A fishfinder or sounder (Australia) is an instrument used to locate fish underwater by detecting reflected pulses of sound energy, as in sonar. A modern fishfinder displays measurements of reflected sound on a graphical display, allowing an operator to interpret information to locate schools of fish, underwater debris, and the bottom of body of water. Fishfinder instruments are used both by sport and commercial fishermen. Modern electronics allows a high degree of integration between the fishfinder system, marine radar, compass and GPS navigation systems.

Echo sounding

Echo sounding

Echo sounding or depth sounding is the use of sonar for ranging, normally to determine the depth of water (bathymetry). It involves transmitting acoustic waves into water and recording the time interval between emission and return of a pulse; the resulting time of flight, along with knowledge of the speed of sound in water, allows determining the distance between sonar and target. This information is then typically used for navigation purposes or in order to obtain depths for charting purposes.

Passive sonar

Passive sonar listens without transmitting. It is often employed in military settings, although it is also used in science applications, e.g., detecting fish for presence/absence studies in various aquatic environments – see also passive acoustics and passive radar. In the very broadest usage, this term can encompass virtually any analytical technique involving remotely generated sound, though it is usually restricted to techniques applied in an aquatic environment.

Identifying sound sources

Passive sonar has a wide variety of techniques for identifying the source of a detected sound. For example, U.S. vessels usually operate 60 Hz alternating current power systems. If transformers or generators are mounted without proper vibration insulation from the hull or become flooded, the 60 Hz sound from the windings can be emitted from the submarine or ship. This can help to identify its nationality, as all European submarines and nearly every other nation's submarine have 50 Hz power systems. Intermittent sound sources (such as a wrench being dropped), called "transients," may also be detectable to passive sonar. Until fairly recently, an experienced, trained operator identified signals, but now computers may do this.

Passive sonar systems may have large sonic databases, but the sonar operator usually finally classifies the signals manually. A computer system frequently uses these databases to identify classes of ships, actions (i.e. the speed of a ship, or the type of weapon released and the most effective countermeasures to employ), and even particular ships.

Noise limitations

Passive sonar on vehicles is usually severely limited because of noise generated by the vehicle. For this reason, many submarines operate nuclear reactors that can be cooled without pumps, using silent convection, or fuel cells or batteries, which can also run silently. Vehicles' propellers are also designed and precisely machined to emit minimal noise. High-speed propellers often create tiny bubbles in the water, and this cavitation has a distinct sound.

The sonar hydrophones may be towed behind the ship or submarine in order to reduce the effect of noise generated by the watercraft itself. Towed units also combat the thermocline, as the unit may be towed above or below the thermocline.

The display of most passive sonars used to be a two-dimensional waterfall display. The horizontal direction of the display is bearing. The vertical is frequency, or sometimes time. Another display technique is to color-code frequency-time information for bearing. More recent displays are generated by the computers, and mimic radar-type plan position indicator displays.

Performance prediction

Unlike active sonar, only one-way propagation is involved. Because of the different signal processing used, the minimal detectable signal-to-noise ratio will be different. The equation for determining the performance of a passive sonar is[36][32]

SL − PL = NL − AG + DT,

where SL is the source level, PL is the propagation loss, NL is the noise level, AG is the array gain and DT is the detection threshold. The figure of merit of a passive sonar is

FOM = SL + AG − (NL + DT).

Discover more about Passive sonar related topics

Passive acoustics

Passive acoustics

Passive acoustics is the action of listening for sounds, often at specific frequencies or for purposes of specific analyses.

Passive radar

Passive radar

Passive radar is a class of radar systems that detect and track objects by processing reflections from non-cooperative sources of illumination in the environment, such as commercial broadcast and communications signals. It is a specific case of bistatic radar – passive bistatic radar (PBR) – which is a broad type also including the exploitation of cooperative and non-cooperative radar transmitters.

Hertz

Hertz

The hertz is the unit of frequency in the International System of Units (SI), equivalent to one event per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one hertz is the reciprocal of one second. It is named after Heinrich Rudolf Hertz (1857–1894), the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz).

Alternating current

Alternating current

Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. A common source of DC power is a battery cell in a flashlight. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.

Hull (watercraft)

Hull (watercraft)

A hull is the watertight body of a ship, boat, or flying boat. The hull may open at the top, or it may be fully or partially covered with a deck. Atop the deck may be a deckhouse and other superstructures, such as a funnel, derrick, or mast. The line where the hull meets the water surface is called the waterline.

Submarine

Submarine

A submarine is a watercraft capable of independent operation underwater. It differs from a submersible, which has more limited underwater capability. The term is also sometimes used historically or colloquially to refer to remotely operated vehicles and robots, as well as medium-sized or smaller vessels, such as the midget submarine and the wet sub. Submarines are referred to as boats rather than ships irrespective of their size.

Nuclear reactor

Nuclear reactor

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

Convection

Convection

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

Fuel cell

Fuel cell

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel and an oxidizing agent into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requiring a continuous source of fuel and oxygen to sustain the chemical reaction, whereas in a battery the chemical energy usually comes from substances that are already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

Propeller

Propeller

A propeller is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon a working fluid such as water or air. Propellers are used to pump fluid through a pipe or duct, or to create thrust to propel a boat through water or an aircraft through air. The blades are shaped so that their rotational motion through the fluid causes a pressure difference between the two surfaces of the blade by Bernoulli's principle which exerts force on the fluid. Most marine propellers are screw propellers with helical blades rotating on a propeller shaft with an approximately horizontal axis.

Cavitation

Cavitation

Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion. Cavitation is a significant cause of wear in some engineering contexts. Collapsing voids that implode near to a metal surface cause cyclic stress through repeated implosion. This results in surface fatigue of the metal, causing a type of wear also called "cavitation". The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs. Cavitation is usually divided into two classes of behavior: inertial cavitation and non-inertial cavitation.

Hydrophone

Hydrophone

A hydrophone is a microphone designed to be used underwater for recording or listening to underwater sound. Most hydrophones are based on a piezoelectric transducer that generates an electric potential when subjected to a pressure change, such as a sound wave.

Performance factors

The detection, classification and localisation performance of a sonar depends on the environment and the receiving equipment, as well as the transmitting equipment in an active sonar or the target radiated noise in a passive sonar.

Sound propagation

Sonar operation is affected by variations in sound speed, particularly in the vertical plane. Sound travels more slowly in fresh water than in sea water, though the difference is small. The speed is determined by the water's bulk modulus and mass density. The bulk modulus is affected by temperature, dissolved impurities (usually salinity), and pressure. The density effect is small. The speed of sound (in feet per second) is approximately:

4388 + (11.25 × temperature (in °F)) + (0.0182 × depth (in feet)) + salinity (in parts-per-thousand ).

This empirically derived approximation equation is reasonably accurate for normal temperatures, concentrations of salinity and the range of most ocean depths. Ocean temperature varies with depth, but at between 30 and 100 meters there is often a marked change, called the thermocline, dividing the warmer surface water from the cold, still waters that make up the rest of the ocean. This can frustrate sonar, because a sound originating on one side of the thermocline tends to be bent, or refracted, through the thermocline. The thermocline may be present in shallower coastal waters. However, wave action will often mix the water column and eliminate the thermocline. Water pressure also affects sound propagation: higher pressure increases the sound speed, which causes the sound waves to refract away from the area of higher sound speed. The mathematical model of refraction is called Snell's law.

If the sound source is deep and the conditions are right, propagation may occur in the 'deep sound channel'. This provides extremely low propagation loss to a receiver in the channel. This is because of sound trapping in the channel with no losses at the boundaries. Similar propagation can occur in the 'surface duct' under suitable conditions. However, in this case there are reflection losses at the surface.

In shallow water propagation is generally by repeated reflection at the surface and bottom, where considerable losses can occur.

Sound propagation is affected by absorption in the water itself as well as at the surface and bottom. This absorption depends upon frequency, with several different mechanisms in sea water. Long-range sonar uses low frequencies to minimise absorption effects.

The sea contains many sources of noise that interfere with the desired target echo or signature. The main noise sources are waves and shipping. The motion of the receiver through the water can also cause speed-dependent low frequency noise.

Scattering

When active sonar is used, scattering occurs from small objects in the sea as well as from the bottom and surface. This can be a major source of interference. This acoustic scattering is analogous to the scattering of the light from a car's headlights in fog: a high-intensity pencil beam will penetrate the fog to some extent, but broader-beam headlights emit much light in unwanted directions, much of which is scattered back to the observer, overwhelming that reflected from the target ("white-out"). For analogous reasons active sonar needs to transmit in a narrow beam to minimize scattering.

Bubble clouds shown under the sea. From ref.[37]
Bubble clouds shown under the sea. From ref.[37]

The scattering of sonar from objects (mines, pipelines, zooplankton, geological features, fish etc.) is how active sonar detects them, but this ability can be masked by strong scattering from false targets, or 'clutter'. Where they occur (under breaking waves;[38] in ship wakes; in gas emitted from seabed seeps and leaks[39] etc.), gas bubbles are powerful sources of clutter, and can readily hide targets. TWIPS (Twin Inverted Pulse Sonar)[40][41][42] is currently the only sonar that can overcome this clutter problem.

Comparison of Standard Sonar and TWIPS in finding a target in bubbly water. Adapted from ref.[40]
Comparison of Standard Sonar and TWIPS in finding a target in bubbly water. Adapted from ref.[40]

This is important as many recent conflicts have occurred in coastal waters, and the inability to detect whether mines are present or not present hazards and delays to military vessels, and also to aid convoys and merchant shipping trying to support the region long after the conflict has ceased.[40]

Target characteristics

The sound reflection characteristics of the target of an active sonar, such as a submarine, are known as its target strength. A complication is that echoes are also obtained from other objects in the sea such as whales, wakes, schools of fish and rocks.

Passive sonar detects the target's radiated noise characteristics. The radiated spectrum comprises a continuous spectrum of noise with peaks at certain frequencies which can be used for classification.

Countermeasures

Active (powered) countermeasures may be launched by a vessel under attack to raise the noise level, provide a large false target, and obscure the signature of the vessel itself.

Passive (i.e., non-powered) countermeasures include:

  • Mounting noise-generating devices on isolating devices.
  • Sound-absorbent coatings on the hulls of submarines, for example anechoic tiles.

Discover more about Performance factors related topics

Fresh water

Fresh water

Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. Although the term specifically excludes seawater and brackish water, it does include non-salty mineral-rich waters such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes. Fresh water is the water resource that is of the most and immediate use to humans.

Bulk modulus

Bulk modulus

The bulk modulus of a substance is a measure of the resistance of a substance to compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume.

Mass

Mass

Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.

Density

Density

Density is the substance's mass per unit of volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:

Salinity

Salinity

Salinity is the saltiness or amount of salt dissolved in a body of water, called saline water. It is usually measured in g/L or g/kg.

Pressure

Pressure

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

Refraction

Refraction

In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.

Snell's law

Snell's law

Snell's law is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air. In optics, the law is used in ray tracing to compute the angles of incidence or refraction, and in experimental optics to find the refractive index of a material. The law is also satisfied in meta-materials, which allow light to be bent "backward" at a negative angle of refraction with a negative refractive index.

SOFAR channel

SOFAR channel

The SOFAR channel, or deep sound channel (DSC), is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating. An example was reception of coded signals generated by the Navy chartered ocean surveillance vessel Cory Chouest off Heard Island, located in the southern Indian Ocean, by hydrophones in portions of all five major ocean basins and as distant as the North Atlantic and North Pacific.

Absorption (acoustics)

Absorption (acoustics)

Acoustic absorption refers to the process by which a material, structure, or object takes in sound energy when sound waves are encountered, as opposed to reflecting the energy. Part of the absorbed energy is transformed into heat and part is transmitted through the absorbing body. The energy transformed into heat is said to have been 'lost'.

Deep scattering layer

Deep scattering layer

The deep scattering layer, sometimes referred to as the sound scattering layer, is a layer in the ocean consisting of a variety of marine animals. It was discovered through the use of sonar, as ships found a layer that scattered the sound and was thus sometimes mistaken for the seabed. For this reason it is sometimes called the false bottom or phantom bottom. It can be seen to rise and fall each day in keeping with diel vertical migration.

Scattering

Scattering

Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering. As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays and X-rays was observed and discussed. With the discovery of subatomic particles and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.

Military applications

Modern naval warfare makes extensive use of both passive and active sonar from water-borne vessels, aircraft and fixed installations. Although active sonar was used by surface craft in World War II, submarines avoided the use of active sonar due to the potential for revealing their presence and position to enemy forces. However, the advent of modern signal-processing enabled the use of passive sonar as a primary means for search and detection operations. In 1987 a division of Japanese company Toshiba reportedly[43] sold machinery to the Soviet Union that allowed their submarine propeller blades to be milled so that they became radically quieter, making the newer generation of submarines more difficult to detect.

The use of active sonar by a submarine to determine bearing is extremely rare and will not necessarily give high quality bearing or range information to the submarines fire control team. However, use of active sonar on surface ships is very common and is used by submarines when the tactical situation dictates that it is more important to determine the position of a hostile submarine than conceal their own position. With surface ships, it might be assumed that the threat is already tracking the ship with satellite data as any vessel around the emitting sonar will detect the emission. Having heard the signal, it is easy to identify the sonar equipment used (usually with its frequency) and its position (with the sound wave's energy). Active sonar is similar to radar in that, while it allows detection of targets at a certain range, it also enables the emitter to be detected at a far greater range, which is undesirable.

Since active sonar reveals the presence and position of the operator, and does not allow exact classification of targets, it is used by fast (planes, helicopters) and by noisy platforms (most surface ships) but rarely by submarines. When active sonar is used by surface ships or submarines, it is typically activated very briefly at intermittent periods to minimize the risk of detection. Consequently, active sonar is normally considered a backup to passive sonar. In aircraft, active sonar is used in the form of disposable sonobuoys that are dropped in the aircraft's patrol area or in the vicinity of possible enemy sonar contacts.

Passive sonar has several advantages, most importantly that it is silent. If the target radiated noise level is high enough, it can have a greater range than active sonar, and allows the target to be identified. Since any motorized object makes some noise, it may in principle be detected, depending on the level of noise emitted and the ambient noise level in the area, as well as the technology used. To simplify, passive sonar "sees" around the ship using it. On a submarine, nose-mounted passive sonar detects in directions of about 270°, centered on the ship's alignment, the hull-mounted array of about 160° on each side, and the towed array of a full 360°. The invisible areas are due to the ship's own interference. Once a signal is detected in a certain direction (which means that something makes sound in that direction, this is called broadband detection) it is possible to zoom in and analyze the signal received (narrowband analysis). This is generally done using a Fourier transform to show the different frequencies making up the sound. Since every engine makes a specific sound, it is straightforward to identify the object. Databases of unique engine sounds are part of what is known as acoustic intelligence or ACINT.

Another use of passive sonar is to determine the target's trajectory. This process is called target motion analysis (TMA), and the resultant "solution" is the target's range, course, and speed. TMA is done by marking from which direction the sound comes at different times, and comparing the motion with that of the operator's own ship. Changes in relative motion are analyzed using standard geometrical techniques along with some assumptions about limiting cases.

Passive sonar is stealthy and very useful. However, it requires high-tech electronic components and is costly. It is generally deployed on expensive ships in the form of arrays to enhance detection. Surface ships use it to good effect; it is even better used by submarines, and it is also used by airplanes and helicopters, mostly to a "surprise effect", since submarines can hide under thermal layers. If a submarine's commander believes he is alone, he may bring his boat closer to the surface and be easier to detect, or go deeper and faster, and thus make more sound.

Examples of sonar applications in military use are given below. Many of the civil uses given in the following section may also be applicable to naval use.

Anti-submarine warfare

Variable depth sonar and its winch
Variable depth sonar and its winch

Until recently, ship sonars were usually made with hull mounted arrays, either amidships or at the bow. It was soon found after their initial use that a means of reducing flow noise was required. The first were made of canvas on a framework, then steel ones were used. Now domes are usually made of reinforced plastic or pressurized rubber. Such sonars are primarily active in operation. An example of a conventional hull mounted sonar is the SQS-56.

Because of the problems of ship noise, towed sonars are also used. These have the advantage of being able to be placed deeper in the water, but have limitations on their use in shallow water. These are called towed arrays (linear) or variable depth sonars (VDS) with 2/3D arrays. A problem is that the winches required to deploy/recover them are large and expensive. VDS sets are primarily active in operation, while towed arrays are passive.

An example of a modern active-passive ship towed sonar is Sonar 2087 made by Thales Underwater Systems.

Torpedoes

Modern torpedoes are generally fitted with an active/passive sonar. This may be used to home directly on the target, but wake homing torpedoes are also used. An early example of an acoustic homer was the Mark 37 torpedo.

Torpedo countermeasures can be towed or free. An early example was the German Sieglinde device while the Bold was a chemical device. A widely used US device was the towed AN/SLQ-25 Nixie while the mobile submarine simulator (MOSS) was a free device. A modern alternative to the Nixie system is the UK Royal Navy S2170 Surface Ship Torpedo Defence system.

Mines

Mines may be fitted with a sonar to detect, localize and recognize the required target. An example is the CAPTOR mine.

Mine countermeasures

Mine countermeasure (MCM) sonar, sometimes called "mine and obstacle avoidance sonar (MOAS)", is a specialized type of sonar used for detecting small objects. Most MCM sonars are hull mounted but a few types are VDS design. An example of a hull mounted MCM sonar is the Type 2193 while the SQQ-32 mine-hunting sonar and Type 2093 systems are VDS designs.

Submarine navigation

Submarines rely on sonar to a greater extent than surface ships as they cannot use radar in water. The sonar arrays may be hull mounted or towed. Information fitted on typical fits is given in Oyashio-class submarine and Swiftsure-class submarine.

Aircraft

AN/AQS-13 dipping sonar deployed from an H-3 Sea King
AN/AQS-13 dipping sonar deployed from an H-3 Sea King

Helicopters can be used for antisubmarine warfare by deploying fields of active-passive sonobuoys or can operate dipping sonar, such as the AQS-13. Fixed wing aircraft can also deploy sonobuoys and have greater endurance and capacity to deploy them. Processing from the sonobuoys or dipping sonar can be on the aircraft or on ship. Dipping sonar has the advantage of being deployable to depths appropriate to daily conditions. Helicopters have also been used for mine countermeasure missions using towed sonars such as the AQS-20A.

Underwater communications

Dedicated sonars can be fitted to ships and submarines for underwater communication.

Ocean surveillance

The United States began a system of passive, fixed ocean surveillance systems in 1950 with the classified name Sound Surveillance System (SOSUS) with American Telephone and Telegraph Company (AT&T), with its Bell Laboratories research and Western Electric manufacturing entities being contracted for development and installation. The systems exploited the SOFAR channel, also known as the deep sound channel, where a sound speed minimum creates a waveguide in which low frequency sound travels thousands of miles. Analysis was based on an AT&T sound spectrograph, which converted sound into a visual spectrogram representing a time–frequency analysis of sound that was developed for speech analysis and modified to analyze low-frequency underwater sounds. That process was Low Frequency Analysis and Recording and the equipment was termed the Low Frequency Analyzer and Recorder, both with the acronym LOFAR. LOFAR research was termed Jezebel and led to usage in air and surface systems, particularly sonobuoys using the process and sometimes using "Jezebel" in their name.[44][45][46][47] The proposed system offered such promise of long-range submarine detection that the Navy ordered immediate moves for implementation.[45][48]

Lofargram writers, one for each array beam, on a NAVFAC watch floor
Lofargram writers, one for each array beam, on a NAVFAC watch floor

Between installation of a test array followed by a full scale, forty element, prototype operational array in 1951 and 1958 systems were installed in the Atlantic and then the Pacific under the unclassified name Project Caesar. The original systems were terminated at classified shore stations designated Naval Facility (NAVFAC) explained as engaging in "ocean research" to cover their classified mission. The system was upgraded multiple times with more advanced cable allowing the arrays to be installed in ocean basins and upgraded processing. The shore stations were eliminated in a process of consolidation and rerouting the arrays to central processing centers into the 1990s. In 1985, with new mobile arrays and other systems becoming operational the collective system name was changed to Integrated Undersea Surveillance System (IUSS). In 1991 the mission of the system was declassified. The year before IUSS insignia were authorized for wear. Access was granted to some systems for scientific research.[44][45]

A similar system is believed to have been operated by the Soviet Union.

Underwater security

Sonar can be used to detect frogmen and other scuba divers. This can be applicable around ships or at entrances to ports. Active sonar can also be used as a deterrent and/or disablement mechanism. One such device is the Cerberus system.

AN/PQS-2A handheld sonar, shown with detachable flotation collar and magnetic compass
AN/PQS-2A handheld sonar, shown with detachable flotation collar and magnetic compass

Hand-held sonar

Limpet mine imaging sonar (LIMIS) is a hand-held or ROV-mounted imaging sonar designed for patrol divers (combat frogmen or clearance divers) to look for limpet mines in low visibility water.

The LUIS is another imaging sonar for use by a diver.

Integrated navigation sonar system (INSS) is a small flashlight-shaped handheld sonar for divers that displays range.[49][50]

Intercept sonar

This is a sonar designed to detect and locate the transmissions from hostile active sonars. An example of this is the Type 2082 fitted on the British Vanguard-class submarines.

Discover more about Military applications related topics

Naval warfare

Naval warfare

Naval warfare is combat in and on the sea, the ocean, or any other battlespace involving a major body of water such as a large lake or wide river. Battles have been fought on water for more than 3,000 years.

Soviet Union

Soviet Union

The Soviet Union, officially the Union of Soviet Socialist Republics (USSR), was a transcontinental country spanning most of northern Eurasia that existed from 30 December 1922 to 26 December 1991. A flagship communist state, it was nominally a federal union of fifteen national republics; in practice, both its government and its economy were highly centralized until its final years. It was a one-party state governed by the Communist Party of the Soviet Union, with the city of Moscow serving as its capital as well as that of its largest and most populous republic: the Russian SFSR. Other major cities included Leningrad, Kiev, Minsk, Tashkent, Alma-Ata, and Novosibirsk. It was the largest country in the world, covering over 22,402,200 square kilometres (8,649,500 sq mi) and spanning eleven time zones.

Sonobuoy

Sonobuoy

A sonobuoy is a relatively small buoy – typically 13 cm (5 in) diameter and 91 cm (3 ft) long – expendable sonar system that is dropped/ejected from aircraft or ships conducting anti-submarine warfare or underwater acoustic research.

Ambient noise level

Ambient noise level

In atmospheric sounding and noise pollution, ambient noise level is the background sound pressure level at a given location, normally specified as a reference level to study a new intrusive sound source.

Fourier transform

Fourier transform

In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into terms of the intensity of its constituent pitches.

Sonar 2087

Sonar 2087

Sonar 2087 is a towed array sonar designed and manufactured by Thales Underwater Systems at sites in the UK and in France (Brest). Sonar 2087 replaces the older Sonar 2031 in the Royal Navy and equips eight Type 23 frigates. The system is also expected to equip the Royal Navy's future Type 26 Global Combat Ship starting around 2020.

Mark 37 torpedo

Mark 37 torpedo

The Mark 37 torpedo is a torpedo with electrical propulsion, developed for the US Navy after World War II. It entered service with the US Navy in the early 1950s, with over 3,300 produced. It was phased out of service key with the US Navy during the 1970s, and the stockpiles were sold to foreign navies.

Bold (decoy)

Bold (decoy)

Bold was a German sonar decoy, used by U-boats during the Second World War from 1942 onwards. It consisted of a metal canister about 10 cm (3.9 in) in diameter filled with calcium hydride. It was launched by an ejector system colloquially referred to as Pillenwerfer.

AN/SLQ-25 Nixie

AN/SLQ-25 Nixie

The AN/SLQ-25 Nixie and its variants are towed torpedo decoys used on US and allied warships. It consists of a towed decoy device (TB-14A) and a shipboard signal generator. The decoy emits signals to draw a torpedo away from its intended target.

Mobile submarine simulator

Mobile submarine simulator

The mobile submarine simulator (MOSS) MK70 is a sonar decoy used by submarines of the United States Navy. It was a 10-inch vehicle, without an explosive warhead, but able to generate both an active sonar echo and a passive sound signature recorded to be extremely similar to that of the launching submarine. The purpose of MOSS was to create multiple targets all with the same acoustic signature.

SSTD

SSTD

The United Kingdom Surface Ship Torpedo Defence (SSTD) system entered into service with the Royal Navy in 2004. The system is produced by Ultra Electronics and is known as S2170 by the Royal Navy and as Sea Sentor in the export market.

Submarine navigation

Submarine navigation

Submarine navigation underwater requires special skills and technologies not needed by surface ships. The challenges of underwater navigation have become more important as submarines spend more time underwater, travelling greater distances and at higher speed. Military submarines travel underwater in an environment of total darkness with neither windows nor lights. Operating in stealth mode, they cannot use their active sonar systems to ping ahead for underwater hazards such as undersea mountains, drilling rigs or other submarines. Surfacing to obtain navigational fixes is precluded by pervasive anti-submarine warfare detection systems such as radar and satellite surveillance. Antenna masts and antenna-equipped periscopes can be raised to obtain navigational signals but in areas of heavy surveillance, only for a few seconds or minutes; current radar technology can detect even a slender periscope while submarine shadows may be plainly visible from the air.

Civilian applications

Fisheries

Fishing is an important industry that is seeing growing demand, but world catch tonnage is falling as a result of serious resource problems. The industry faces a future of continuing worldwide consolidation until a point of sustainability can be reached. However, the consolidation of the fishing fleets are driving increased demands for sophisticated fish finding electronics such as sensors, sounders and sonars. Historically, fishermen have used many different techniques to find and harvest fish. However, acoustic technology has been one of the most important driving forces behind the development of the modern commercial fisheries.

Sound waves travel differently through fish than through water because a fish's air-filled swim bladder has a different density than seawater. This density difference allows the detection of schools of fish by using reflected sound. Acoustic technology is especially well suited for underwater applications since sound travels farther and faster underwater than in air. Today, commercial fishing vessels rely almost completely on acoustic sonar and sounders to detect fish. Fishermen also use active sonar and echo sounder technology to determine water depth, bottom contour, and bottom composition.

Cabin display of a fish finder sonar
Cabin display of a fish finder sonar

Companies such as eSonar, Raymarine, Marport Canada, Wesmar, Furuno, Krupp, and Simrad make a variety of sonar and acoustic instruments for the deep sea commercial fishing industry. For example, net sensors take various underwater measurements and transmit the information back to a receiver on board a vessel. Each sensor is equipped with one or more acoustic transducers depending on its specific function. Data is transmitted from the sensors using wireless acoustic telemetry and is received by a hull mounted hydrophone. The analog signals are decoded and converted by a digital acoustic receiver into data which is transmitted to a bridge computer for graphical display on a high resolution monitor.

Echo sounding

Echo sounding is a process used to determine the depth of water beneath ships and boats. A type of active sonar, echo sounding is the transmission of an acoustic pulse directly downwards to the seabed, measuring the time between transmission and echo return, after having hit the bottom and bouncing back to its ship of origin. The acoustic pulse is emitted by a transducer which receives the return echo as well. The depth measurement is calculated by multiplying the speed of sound in water (averaging 1,500 meters per second) by the time between emission and echo return.[51]

The value of underwater acoustics to the fishing industry has led to the development of other acoustic instruments that operate in a similar fashion to echo-sounders but, because their function is slightly different from the initial model of the echo-sounder, have been given different terms.

Net location

The net sounder is an echo sounder with a transducer mounted on the headline of the net rather than on the bottom of the vessel. Nevertheless, to accommodate the distance from the transducer to the display unit, which is much greater than in a normal echo-sounder, several refinements have to be made. Two main types are available. The first is the cable type in which the signals are sent along a cable. In this case, there has to be the provision of a cable drum on which to haul, shoot and stow the cable during the different phases of the operation. The second type is the cable-less net-sounder – such as Marport's Trawl Explorer – in which the signals are sent acoustically between the net and hull mounted receiver-hydrophone on the vessel. In this case, no cable drum is required but sophisticated electronics are needed at the transducer and receiver.

The display on a net sounder shows the distance of the net from the bottom (or the surface), rather than the depth of water as with the echo-sounder's hull-mounted transducer. Fixed to the headline of the net, the footrope can usually be seen which gives an indication of the net performance. Any fish passing into the net can also be seen, allowing fine adjustments to be made to catch the most fish possible. In other fisheries, where the amount of fish in the net is important, catch sensor transducers are mounted at various positions on the cod-end of the net. As the cod-end fills up these catch sensor transducers are triggered one by one and this information is transmitted acoustically to display monitors on the bridge of the vessel. The skipper can then decide when to haul the net.

Modern versions of the net sounder, using multiple element transducers, function more like a sonar than an echo sounder and show slices of the area in front of the net and not merely the vertical view that the initial net sounders used.

The sonar is an echo-sounder with a directional capability that can show fish or other objects around the vessel.

ROV and UUV

Small sonars have been fitted to remotely operated vehicles (ROVs) and unmanned underwater vehicles (UUVs) to allow their operation in murky conditions. These sonars are used for looking ahead of the vehicle. The Long-Term Mine Reconnaissance System is a UUV for MCM purposes.

Vehicle location

Sonars which act as beacons are fitted to aircraft to allow their location in the event of a crash in the sea. Short and long baseline sonars may be used for caring out the location, such as LBL.

Prosthesis for the visually impaired

In 2013 an inventor in the United States unveiled a "spider-sense" bodysuit, equipped with ultrasonic sensors and haptic feedback systems, which alerts the wearer of incoming threats; allowing them to respond to attackers even when blindfolded.[52]

Discover more about Civilian applications related topics

Fishing

Fishing

Fishing is the activity of trying to catch fish. Fish are often caught as wildlife from the natural environment, but may also be caught from stocked bodies of water such as ponds, canals, park wetlands and reservoirs. Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping, as well as more destructive and often illegal techniques such as electrocution, blasting and poisoning.

Sustainability

Sustainability

Sustainability is a societal goal that relates to the ability of people to safely co-exist on Earth over a long time. Specific definitions of this term are difficult to agree on and have varied with literature, context, and time. Sustainability is commonly described as having three dimensions : environmental, economic, and social. Many publications state that the environmental dimension is the most important. For this reason, in everyday use, sustainability is often focused on countering major environmental problems, such as climate change, loss of biodiversity, loss of ecosystem services, land degradation, and air and water pollution. The concept of sustainability can be used to guide decisions at the global, national, and individual levels.

Swim bladder

Swim bladder

The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ that contributes to the ability of many bony fish to control their buoyancy, and thus to stay at their current water depth without having to expend energy in swimming. Also, the dorsal position of the swim bladder means the center of mass is below the center of volume, allowing it to act as a stabilizing agent. Additionally, the swim bladder functions as a resonating chamber, to produce or receive sound.

Deep sea

Deep sea

The deep sea is broadly defined as the ocean depth where light begins to fade, at an approximate depth of 200 metres or the point of transition from continental shelves to continental slopes. Conditions within the deep sea are a combination of low temperatures, darkness and high pressure. The deep sea is considered the least explored Earth biome, with the extreme conditions making the environment difficult to access and explore.

Analog signal

Analog signal

An analog signal is any continuous signal representing some other quantity, i.e., analogous to another quantity. For example, in an analog audio signal, the instantaneous signal voltage varies continuously with the pressure of the sound waves.

Echo sounding

Echo sounding

Echo sounding or depth sounding is the use of sonar for ranging, normally to determine the depth of water (bathymetry). It involves transmitting acoustic waves into water and recording the time interval between emission and return of a pulse; the resulting time of flight, along with knowledge of the speed of sound in water, allows determining the distance between sonar and target. This information is then typically used for navigation purposes or in order to obtain depths for charting purposes.

Transducer

Transducer

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

Long-Term Mine Reconnaissance System

Long-Term Mine Reconnaissance System

The AN/BLQ-11 autonomous unmanned undersea vehicle is a torpedo tube-launched and tube-recovered underwater search and survey unmanned undersea vehicle (UUV) capable of performing autonomous minefield reconnaissance as much as 200 kilometers (120 mi) in advance of a host Los Angeles-, Seawolf-, or Virginia-class submarine.

Haptic technology

Haptic technology

Haptic technology is technology that can create an experience of touch by applying forces, vibrations, or motions to the user. These technologies can be used to create virtual objects in a computer simulation, to control virtual objects, and to enhance remote control of machines and devices (telerobotics). Haptic devices may incorporate tactile sensors that measure forces exerted by the user on the interface. The word haptic, from the Greek: ἁπτικός (haptikos), means "tactile, pertaining to the sense of touch". Simple haptic devices are common in the form of game controllers, joysticks, and steering wheels.

Scientific applications

Biomass estimation

Detection of fish, and other marine and aquatic life, and estimation their individual sizes or total biomass using active sonar techniques. As the sound pulse travels through water it encounters objects that are of different density or acoustic characteristics than the surrounding medium, such as fish, that reflect sound back toward the sound source. These echoes provide information on fish size, location, abundance and behavior. Data is usually processed and analysed using a variety of software such as Echoview.

Wave measurement

An upward looking echo sounder mounted on the bottom or on a platform may be used to make measurements of wave height and period. From this statistics of the surface conditions at a location can be derived.

Water velocity measurement

Special short range sonars have been developed to allow measurements of water velocity.

Bottom type assessment

Sonars have been developed that can be used to characterise the sea bottom into, for example, mud, sand, and gravel. Relatively simple sonars such as echo sounders can be promoted to seafloor classification systems via add-on modules, converting echo parameters into sediment type. Different algorithms exist, but they are all based on changes in the energy or shape of the reflected sounder pings. Advanced substrate classification analysis can be achieved using calibrated (scientific) echosounders and parametric or fuzzy-logic analysis of the acoustic data.

Bathymetric mapping

Graphic depicting hydrographic survey ship conducting multibeam and side-scan sonar operations
Graphic depicting hydrographic survey ship conducting multibeam and side-scan sonar operations

Side-scan sonars can be used to derive maps of seafloor topography (bathymetry) by moving the sonar across it just above the bottom. Low frequency sonars such as GLORIA have been used for continental shelf wide surveys while high frequency sonars are used for more detailed surveys of smaller areas.

Sub-bottom profiling

Powerful low frequency echo-sounders have been developed for providing profiles of the upper layers of the ocean bottom. One of the most recent devices is Innomar's SES-2000 quattro multi-transducer parametric SBP, used for example in the Puck Bay for underwater archaeological purposes[53]

Gas leak detection from the seabed

Gas bubbles can leak from the seabed, or close to it, from multiple sources. These can be detected by both passive[54] and active sonar[39] (shown in schematic figure[54] by yellow and red systems respectively).

Active (red) and passive (yellow) sonar detection of bubbles from seabed (natural seeps and CCSF leaks) and gas pipelines, taken from ref.[54]
Active (red) and passive (yellow) sonar detection of bubbles from seabed (natural seeps and CCSF leaks) and gas pipelines, taken from ref.[54]

Natural seeps of methane and carbon dioxide occur.[39] Gas pipelines can leak, and it is important to be able to detect whether leakage occurs from Carbon Capture and Storage Facilities (CCSFs; e.g. depleted oil wells into which extracted atmospheric carbon is stored).[55][56][57][58] Quantification of the amount of gas leaking is difficult, and although estimates can be made use active and passive sonar, it is important to question their accuracy because of the assumptions inherent in making such estimations from sonar data.[54][59]

Synthetic aperture sonar

Various synthetic aperture sonars have been built in the laboratory and some have entered use in mine-hunting and search systems. An explanation of their operation is given in synthetic aperture sonar.

Parametric sonar

Parametric sources use the non-linearity of water to generate the difference frequency between two high frequencies. A virtual end-fire array is formed. Such a projector has advantages of broad bandwidth, narrow beamwidth, and when fully developed and carefully measured it has no obvious sidelobes: see Parametric array. Its major disadvantage is very low efficiency of only a few percent.[60] P.J. Westervelt summarizes the trends involved.[61]

Sonar in extraterrestrial contexts

The use of both active and passive sonar has been proposed for various extraterrestrial environments.[62] One example is Titan, where active sonar could be used to determine the depth of its hydrocarbon seas,[63] and passive sonar could be used to detect methanefalls.[64]

Proposals that do not take proper account of the difference between terrestrial and extraterrestrial environments could lead to erroneous measurements.[65][66][67][68][69][70]

Discover more about Scientific applications related topics

Bioacoustics

Bioacoustics

Bioacoustics is a cross-disciplinary science that combines biology and acoustics. Usually it refers to the investigation of sound production, dispersion and reception in animals. This involves neurophysiological and anatomical basis of sound production and detection, and relation of acoustic signals to the medium they disperse through. The findings provide clues about the evolution of acoustic mechanisms, and from that, the evolution of animals that employ them.

Hydrographic survey

Hydrographic survey

Hydrographic survey is the science of measurement and description of features which affect maritime navigation, marine construction, dredging, offshore oil exploration and drilling and related activities. Strong emphasis is placed on soundings, shorelines, tides, currents, seabed and submerged obstructions that relate to the previously mentioned activities. The term hydrography is used synonymously to describe maritime cartography, which in the final stages of the hydrographic process uses the raw data collected through hydrographic survey into information usable by the end user.

Side-scan sonar

Side-scan sonar

Side-scan sonar is a category of sonar system that is used to efficiently create an image of large areas of the sea floor.

Bathymetry

Bathymetry

Bathymetry is the study of underwater depth of ocean floors, lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water depth measurements are from Ancient Egypt over 3000 years ago. Bathymetric charts, are typically produced to support safety of surface or sub-surface navigation, and usually show seafloor relief or terrain as contour lines and selected depths (soundings), and typically also provide surface navigational information. Bathymetric maps may also use a Digital Terrain Model and artificial illumination techniques to illustrate the depths being portrayed. The global bathymetry is sometimes combined with topography data to yield a global relief model. Paleobathymetry is the study of past underwater depths.

Synthetic aperture sonar

Synthetic aperture sonar

Synthetic aperture sonar (SAS) is a form of sonar in which sophisticated post-processing of sonar data is used in ways closely analogous to synthetic aperture radar. Synthetic aperture sonars combine a number of acoustic pings to form an image with much higher along-track resolution than conventional sonars. The along-track resolution can approach half the length of one sonar element, though is downward limited by 1/4 wavelength. The principle of synthetic aperture sonar is to move the sonar while illuminating the same spot on the sea floor with several pings. When moving along a straight line, those pings that have the image position within the beamwidth constitute the synthetic array. By coherent reorganization of the data from all the pings, a synthetic aperture image is produced with improved along-track resolution. In contrast to conventional side-scan sonar, SAS processing provides range-independent along-track resolution. At maximum range the resolution can be magnitudes better than that of side-scan sonars.

Parametric array

Parametric array

A parametric array, in the field of acoustics, is a nonlinear transduction mechanism that generates narrow, nearly side lobe-free beams of low frequency sound, through the mixing and interaction of high frequency sound waves, effectively overcoming the diffraction limit associated with linear acoustics. The main side lobe-free beam of low frequency sound is created as a result of nonlinear mixing of two high frequency sound beams at their difference frequency. Parametric arrays can be formed in water, air, and earth materials/rock.

Titan (moon)

Titan (moon)

Titan is the largest moon of Saturn and the second-largest natural satellite in the Solar System. It is the only moon known to have a dense atmosphere, and is the only known object in space other than Earth on which clear evidence of stable bodies of surface liquid has been found.

Lakes of Titan

Lakes of Titan

Lakes of ethane and methane on Titan, Saturn's largest moon, have been detected by the Cassini–Huygens space probe, and had been suspected long before. The large ones are known as maria (seas) and the small ones as lacūs (lakes).

Climate of Titan

Climate of Titan

The climate of Titan, the largest moon of Saturn, is similar in many respects to that of Earth, despite having a far lower surface temperature. Its thick atmosphere, methane rain, and possible cryovolcanism create an analogue, though with different materials, to the climatic changes undergone by Earth during its far shorter year.

Ecological impact

Effect on marine mammals

Research has shown that use of active sonar can lead to mass strandings of marine mammals.[71] Beaked whales, the most common casualty of the strandings, have been shown to be highly sensitive to mid-frequency active sonar.[72] Other marine mammals such as the blue whale also flee from the source of the sonar,[73] while naval activity was suggested to be the most probable cause of a mass stranding of dolphins.[74] The US Navy, which part-funded some of the studies, said that the findings only showed behavioural responses to sonar, not actual harm, but they "will evaluate the effectiveness of [their] marine mammal protective measures in light of new research findings".[71] A 2008 US Supreme Court ruling on the use of sonar by the US Navy noted that there had been no cases where sonar had been conclusively shown to have harmed or killed a marine mammal.[75]

Some marine animals, such as whales and dolphins, use echolocation systems, sometimes called biosonar to locate predators and prey. Research on the effects of sonar on blue whales in the Southern California Bight shows that mid-frequency sonar use disrupts the whales' feeding behavior. This indicates that sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.[76]

A review of evidence on the mass strandings of beaked whale linked to naval exercises where sonar was used was published in 2019. It concluded that the effects of mid-frequency active sonar are strongest on Cuvier's beaked whales but vary among individuals or populations. The review suggested the strength of response of individual animals may depend on whether they had prior exposure to sonar, and that symptoms of decompression sickness have been found in stranded whales that may be a result of such response to sonar. It noted that in the Canary Islands where multiple strandings had been previously reported, no more mass strandings had occurred once naval exercises during which sonar was used were banned in the area, and recommended that the ban be extended to other areas where mass strandings continue to occur.[77][78]

Effect on fish

High-intensity sonar sounds can create a small temporary shift in the hearing threshold of some fish.[79][80][a]

Discover more about Ecological impact related topics

Marine mammals and sonar

Marine mammals and sonar

The interactions between marine mammals and sonar have been a subject of debate since the invention of the technology.

Humpback whale

Humpback whale

The humpback whale is a species of baleen whale. It is a rorqual and is the only species in the genus Megaptera. Adults range in length from 14–17 m (46–56 ft) and weigh up to 40 metric tons. The humpback has a distinctive body shape, with long pectoral fins and tubercles on its head. It is known for breaching and other distinctive surface behaviors, making it popular with whale watchers. Males produce a complex song typically lasting 4 to 33 minutes.

Blue whale

Blue whale

The blue whale is a marine mammal and a baleen whale. Reaching a maximum confirmed length of 29.9 meters (98 ft) and weighing up to 199 tonnes, it is the largest animal known ever to have existed. The blue whale's long and slender body can be of various shades of greyish-blue dorsally and somewhat lighter underneath. Four subspecies are recognized: B. m. musculus in the North Atlantic and North Pacific, B. m. intermedia in the Southern Ocean, B. m. brevicauda in the Indian Ocean and South Pacific Ocean, B. m. indica in the Northern Indian Ocean. There is also a population in the waters off Chile that may constitute a fifth subspecies.

Whale

Whale

Whales are a widely distributed and diverse group of fully aquatic placental marine mammals. As an informal and colloquial grouping, they correspond to large members of the infraorder Cetacea, i.e. all cetaceans apart from dolphins and porpoises. Dolphins and porpoises may be considered whales from a formal, cladistic perspective. Whales, dolphins and porpoises belong to the order Cetartiodactyla, which consists of even-toed ungulates. Their closest non-cetacean living relatives are the hippopotamuses, from which they and other cetaceans diverged about 54 million years ago. The two parvorders of whales, baleen whales (Mysticeti) and toothed whales (Odontoceti), are thought to have had their last common ancestor around 34 million years ago. Mysticetes include four extant (living) families: Balaenopteridae, Balaenidae, Cetotheriidae, and Eschrichtiidae. Odontocetes include the Monodontidae, Physeteridae, Kogiidae, and Ziphiidae, as well as the six families of dolphins and porpoises which are not considered whales in the informal sense.

Dolphin

Dolphin

A dolphin is an aquatic mammal within the infraorder Cetacea. Dolphin species belong to the families Delphinidae, Platanistidae, Iniidae, Pontoporiidae, and the extinct Lipotidae. There are 40 extant species named as dolphins.

Animal echolocation

Animal echolocation

Echolocation, also called bio sonar, is a biological sonar used by several animal species. Echolocating animals emit calls out to the environment and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for navigation, foraging, and hunting in various environments.

Southern California Bight

Southern California Bight

The Southern California Bight is a 692-kilometer-long stretch of curved coastline that runs along the west coast of the United States and Mexico, from Point Conception in California to Punta Colonet in Baja California, plus the area of the Pacific Ocean defined by that curve. This includes the Channel Islands of California and the Coronado Islands and Islas de Todo Santos of Baja California.

Baleen whale

Baleen whale

Baleen whales, also known as whalebone whales, are a parvorder of carnivorous marine mammals of the infraorder Cetacea which use keratinaceous baleen plates in their mouths to sieve planktonic creatures from the water. Mysticeti comprises the families Balaenidae, Balaenopteridae, and Cetotheriidae. There are currently 16 species of baleen whales. While cetaceans were historically thought to have descended from mesonychids, molecular evidence instead supports them as a clade of even-toed ungulates (Artiodactyla). Baleen whales split from toothed whales (Odontoceti) around 34 million years ago.

Fitness (biology)

Fitness (biology)

Fitness is the quantitative representation of individual reproductive success. It is also equal to the average contribution to the gene pool of the next generation, made by the same individuals of the specified genotype or phenotype. Fitness can be defined either with respect to a genotype or to a phenotype in a given environment or time. The fitness of a genotype is manifested through its phenotype, which is also affected by the developmental environment. The fitness of a given phenotype can also be different in different selective environments.

Decompression sickness

Decompression sickness

Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.

Frequencies and resolutions

The frequencies of sonars range from infrasonic to above a megahertz. Generally, the lower frequencies have longer range, while the higher frequencies offer better resolution, and smaller size for a given directionality.

To achieve reasonable directionality, frequencies below 1 kHz generally require large size, usually achieved as towed arrays.[81]

Low frequency sonars are loosely defined as 1–5 kHz, albeit some navies regard 5–7 kHz also as low frequency. Medium frequency is defined as 5–15 kHz. Another style of division considers low frequency to be under 1 kHz, and medium frequency at between 1–10 kHz.[81]

American World War II era sonars operated at a relatively high frequency of 20–30 kHz, to achieve directionality with reasonably small transducers, with typical maximum operational range of 2500 yd. Postwar sonars used lower frequencies to achieve longer range; e.g. SQS-4 operated at 10 kHz with range up to 5000 yd. SQS-26 and SQS-53 operated at 3 kHz with range up to 20,000 yd; their domes had size of approx. a 60-ft personnel boat, an upper size limit for conventional hull sonars. Achieving larger sizes by conformal sonar array spread over the hull has not been effective so far, for lower frequencies linear or towed arrays are therefore used.[81]

Japanese WW2 sonars operated at a range of frequencies. The Type 91, with 30 inch quartz projector, worked at 9 kHz. The Type 93, with smaller quartz projectors, operated at 17.5 kHz (model 5 at 16 or 19 kHz magnetostrictive) at powers between 1.7 and 2.5 kilowatts, with range of up to 6 km. The later Type 3, with German-design magnetostrictive transducers, operated at 13, 14.5, 16, or 20 kHz (by model), using twin transducers (except model 1 which had three single ones), at 0.2 to 2.5 kilowatts. The simple type used 14.5 kHz magnetostrictive transducers at 0.25 kW, driven by capacitive discharge instead of oscillators, with range up to 2.5 km.[22]

The sonar's resolution is angular; objects further apart are imaged with lower resolutions than nearby ones.

Another source lists ranges and resolutions vs frequencies for sidescan sonars. 30 kHz provides low resolution with range of 1000–6000 m, 100 kHz gives medium resolution at 500–1000 m, 300 kHz gives high resolution at 150–500 m, and 600 kHz gives high resolution at 75–150 m. Longer range sonars are more adversely affected by nonhomogenities of water. Some environments, typically shallow waters near the coasts, have complicated terrain with many features; higher frequencies become necessary there.[82]

Source: "Sonar", Wikipedia, Wikimedia Foundation, (2023, March 21st), https://en.wikipedia.org/wiki/Sonar.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
Explanatory notes
  1. ^ Halvorsen et al. (2013) conclude that observed effects were "typically small even though the fish were near the sonar and remained there for the full duration of three test signals".
Citations
  1. ^ Jürgen Rohwer; Mikhail Monakov; Mikhail S. Monakov (2001). Stalin's Ocean-going Fleet: Soviet Naval Strategy and Shipbuilding Programmes, 1935–1953. Psychology Press. p. 264. ISBN 9780714648958.
  2. ^ Administrative Practices Glossary of Standardized Terms. Air Force AFM. U.S. Government Printing Office. 1961. p. 129. Retrieved 2022-11-02.
  3. ^ a b c "Sonar". Encyclopaedia Britannica. Retrieved 18 January 2019.
  4. ^ David Ribas; Pere Ridao; José Neira (26 July 2010). Underwater SLAM for Structured Environments Using an Imaging Sonar. Springer Science & Business Media. ISBN 978-3-642-14039-6.
  5. ^ a b Fahy, Frank (1998). Fundamentals of noise and vibration. John Gerard Walker. Taylor & Francis. p. 375. ISBN 978-0-419-24180-5.
  6. ^ Thomas Neighbors, David Bradley (ed.), Applied Underwater Acoustics: Leif Bjørnø, Elsevier, 2017, ISBN 0128112476, page 8
  7. ^ M. A. Ainslie (2010), Principles of Sonar Performance Modeling, Springer, p. 10
  8. ^ a b Hill, M. N. (1962). Physical Oceanography. Allan R. Robinson. Harvard University Press. p. 498.
  9. ^ W. Hackmann (1984), Seek and Strike, pn
  10. ^ Seitz, Frederick (1999). The cosmic inventor: Reginald Aubrey Fessenden (1866–1932). Vol. 89. American Philosophical Society. pp. 41–46. ISBN 978-0-87169-896-4.
  11. ^ Hendrick, Burton J. (August 1914). "Wireless under the water: a remarkable device that enables a ship's captain to determine the exact location of another ship even en the densest fog". The World's Work: A History of Our Time. XLIV (2): 431–434. Retrieved 2009-08-04.
  12. ^ "Report of Captain J. H. Quinan of the U.S.R.C. Miami on the echo fringe method of detecting icebergs and taking continuous soundings". Hydrographic Office Bulletin. 1914-05-13. (quoted in a NOAA transcript by Central Library staff April, 2002 Archived 2010-05-10 at the Wayback Machine.
  13. ^ "The rotary bowcap". Archived from the original on 2007-06-26.
  14. ^ "World War II Naval Dictionary". USS Abbot (DD-629). Retrieved 12 November 2019.
  15. ^ W. Hackmann, Seek & Strike: Sonar, anti-submarine warfare and the Royal Navy 1914–54 (HMSO, London, 1984).
  16. ^ Burn, Alan (1993). "Appendix 6". The Fighting Captain: Frederic John Walker RN and the Battle of the Atlantic (2006, Kindle ed.). Barnsley: Pen and Sword. ISBN 978-1-84415-439-5.
  17. ^ Howeth: Chapter XXXIX. Washington. 1963.
  18. ^ "AIP Oral History: Frederick Vinton Hunt, Part II". 23 February 2015.
  19. ^ from Dr. Horton's autobiographical sketch and US Department of the Navy Undersea Warfare Center
  20. ^ Horton, J. Warren (1957). Fundamentals of Sonar. U. S. Naval Institute, Annapolis, MD. p. 387.
  21. ^ Frank Massa. Sonar Transducers: A History Archived 2015-04-18 at the Wayback Machine
  22. ^ a b "Japanese Sonar and Asdic" (PDF). Archived from the original (PDF) on 2015-09-24. Retrieved 2015-05-08.
  23. ^ Sherman, Charles H; Butler, John L; Brown, David A (2008). Transducers and Arrays for Underwater Sound. The Journal of the Acoustical Society of America. Vol. 124. p. 1385. Bibcode:2008ASAJ..124.1385S. doi:10.1121/1.2956476. ISBN 9780387331393. Archived from the original on 2018-04-26.
  24. ^ "Basic Sonar System (Active)". fas.org. Archived from the original on 2020-06-22. Retrieved 2020-06-22.
  25. ^ Bjørnø, Leif (2017). "Sonar Systems". Applied Underwater Acoustics. Elsevier. ISBN 978-0-12-811240-3.
  26. ^ Tucker, D.G.; Gazey, B.K. (1966). Applied underwater acoustics. Pergamon Press.
  27. ^ US Department of Commerce, National Oceanic and Atmospheric Administration. "NOAA Ocean Explorer: Technology: Observation Tools: SONAR". oceanexplorer.noaa.gov. Archived from the original on 2020-06-22. Retrieved 2020-06-22.
  28. ^ Abraham, D.A. (2017). "Signal Processing". Applied Underwater Acoustics. Elsevier. ISBN 978-0-12-811240-3.
  29. ^ McClinton, A. T. (September 7, 1967). Project Artemnis Acoustic Source Summary Report (PDF) (Report). Washington, D.C.: U.S. Naval Research Laboratory. p. iv. Archived (PDF) from the original on June 11, 2020. Retrieved 19 April 2020.
  30. ^ Erskine, Fred T. III (August 2013). A History of the Acoustics Division of the Naval Research Laboratory The First Eight Decades 1923—2008 (PDF) (Report). Washington, D.C.: Naval Research Laboratory. pp. 59–63. Archived (PDF) from the original on June 10, 2020. Retrieved 19 April 2020.
  31. ^ "Lightweight Actuation Transponder (LAT)". Sonardyne. Archived from the original on 2020-06-23. Retrieved 2020-06-23.
  32. ^ a b ISO 18405:2017 Underwater acoustics - terminology. Sonar equation, entry 3.6.2.3
  33. ^ Connolley, William (29 May 2005). "Stoat: Sea ice: What I do in my spare time :-)". Stoat. Retrieved 19 October 2017.
  34. ^ Fissel, D. B.; Marko, J. R.; Melling, H. (2008-01-01). "Advances in upward looking sonar technology for studying the processes of change in Arctic Ocean ice climate". Journal of Operational Oceanography. 1 (1): 9–18. doi:10.1080/1755876X.2008.11081884. ISSN 1755-876X. S2CID 125961523.
  35. ^ "Blue-sea thinking". The Economist: Technology Quarterly. 10 March 2018. Archived from the original on 2020-11-09. Retrieved 2020-11-16.
  36. ^ M. A. Ainslie (2010), Principles of Sonar Performance Modeling, Springer, p68
  37. ^ Leighton, T.G.; Coles, D.C.H.; Srokosz, M.; White, P.R.; Woolf, D.K. (2018). "Asymmetric transfer of CO2 across a broken sea surface". Scientific Reports. 8 (1): 8301. Bibcode:2018NatSR...8.8301L. doi:10.1038/s41598-018-25818-6. PMC 5974314. PMID 29844316.
  38. ^ Woolf, D.K.; Thorpe, S.A. (1991). "Escape of methane gas from the seabed along the West Spitsbergen continental margin". J. Mar. Res. 49 (3): 435–466. doi:10.1357/002224091784995765.
  39. ^ a b c Westbrook, G.K.; Thatcher, K.E.; Rohling, E.J.; Piotrowski, A.M.; Pälike, H.; Osborne, A.H.; Nisbet, E.G.; Minshull, T.A.; Lanoisellé, M.; James, R.H.; Hühnerbach, V.; Green, D.; Fisher, R.E.; Crocker, A.J.; Chabert, A.; Bolton, C.; Beszczynska-Möller, A.; Berndt, C.; Aquilina, A. (2009). "Escape of methane gas from the seabed along the West Spitsbergen continental margin" (PDF). J. Mar. Res. 36 (15): L15608. Bibcode:2009GeoRL..3615608W. doi:10.1029/2009GL039191.
  40. ^ a b c Leighton, T. G.; Finfer, D. C.; White, P. R.; Chua, G. – H.; Dix, J. K. (2010). "Clutter suppression and classification using twin inverted pulse sonar (TWIPS)" (PDF). Proceedings of the Royal Society A. 466 (2124): 3453–3478. Bibcode:2010RSPSA.466.3453L. doi:10.1098/rspa.2010.0154. S2CID 111066936.
  41. ^ Leighton, T. G.; Chua, G. H.; White, P. R. (2012). "Do dolphins benefit from nonlinear mathematics when processing their sonar returns?" (PDF). Proceedings of the Royal Society A. 468 (2147): 3517–3532. Bibcode:2012RSPSA.468.3517L. doi:10.1098/rspa.2012.0247. S2CID 109255100.
  42. ^ Leighton, T. G.; Finfer, D. C.; Chua, G. H.; White, P. R.; Dix, J. K. (2011). "Clutter suppression and classification using twin inverted pulse sonar in ship wakes" (PDF). The Journal of the Acoustical Society of America. 130 (5): 3431–7. Bibcode:2011ASAJ..130.3431L. doi:10.1121/1.3626131. PMID 22088017.
  43. ^ "How The Soviet Akula Changed Submarine Warfare". Foxtrot Alpha. 13 October 2017. Retrieved 2020-01-15.
  44. ^ a b Whitman, Edward C. (Winter 2005). "SOSUS The "Secret Weapon" of Undersea Surveillance". Undersea Warfare. Vol. 7, no. 2. Archived from the original on 24 March 2020. Retrieved 5 January 2020.
  45. ^ a b c "Integrated Undersea Surveillance System (IUSS) History 1950 - 2010". IUSS/CAESAR Alumni Association. Retrieved 22 May 2020.
  46. ^ Munk, Walter H.; Spindel, Robert C.; Baggeroer, Arthur; Birdsall, Theodore G. (20 May 1994). "The Heard Island Feasibility Test" (PDF). Journal of the Acoustical Society of America. Acoustical Society of America. 96 (4): 2330–2342. Bibcode:1994ASAJ...96.2330M. doi:10.1121/1.410105. Retrieved 26 September 2020.
  47. ^ Lieberman, Philip; Blumstein, Sheila E. (4 February 1988). Speech Physiology, Speech Perception, and Acoustic Phonetics. Cambridge, Cambridgeshire, UK/New York: Cambridge University Press. pp. 51–52. ISBN 0521308666. LCCN 87013187. Retrieved 22 May 2020.
  48. ^ "Origins of SOSUS". Commander, Undersea Surveillance. Archived from the original on 7 August 2020. Retrieved 22 May 2020.
  49. ^ Lent, K (2002). "Very High Resolution Imaging Diver Held Sonar". Report to the Office of Naval Research. Archived from the original on 2008-10-08. Retrieved 2008-08-11.{{cite journal}}: CS1 maint: unfit URL (link)
  50. ^ Krueger, Kenneth L. (2003-05-05). "Diver Charting and Graphical Display". Texas Univ at Austin Applied Research Labs. Archived from the original on 2009-08-13. Retrieved 2009-01-21.{{cite web}}: CS1 maint: unfit URL (link)
  51. ^ "NOAA Ocean Explorer: Echo Sounding Reading". Archived from the original on 2015-09-10.
  52. ^ "This Suit Gives You A Real Life Spider-Sense". Forbes. 23 February 2013. Archived from the original on 27 February 2013. Retrieved 12 March 2013.
  53. ^ Pydyn, Andrzej; Popek, Mateusz; Kubacka, Maria; Janowski, Łukasz (2021-05-08). "Exploration and reconstruction of a medieval harbour using hydroacoustics, 3‐D shallow seismic and underwater photogrammetry: A case study from Puck, southern Baltic Sea". Archaeological Prospection. 28 (4): 527–542. doi:10.1002/arp.1823.
  54. ^ a b c d Leighton, T.G.; White, P.R. (2012). "Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions" (PDF). Proceedings of the Royal Society A. 468 (2138): 485–510. Bibcode:2012RSPSA.468..485L. doi:10.1098/rspa.2011.0221. S2CID 108841954.
  55. ^ Blackford, J.; Stahl, H.; Bull, J.; et al. (28 September 2014). "Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage" (PDF). Nature Climate Change. 4 (11): Published online. Bibcode:2014NatCC...4.1011B. doi:10.1038/nclimate2381. S2CID 54825193.
  56. ^ Berges, B. J. P; Leighton, T.G.; White, P.R. (2015). "Passive acoustic quantification of gas fluxes during controlled gas release experiments". International Journal of Greenhouse Gas Control. 38: 64–79. doi:10.1016/j.ijggc.2015.02.008.
  57. ^ Hannis, S.; Chadwick, A.; Pearce, J.; et al. (2015). "Review of Offshore Monitoring for CCS Projects" (PDF). IEAGHG Technical Report 2015-02 (July 2015): Copyright 2016 IEAGHG.
  58. ^ Hannis, S.; Chadwick, A.; Connelly, D.; et al. (2017). "Review of offshore CO2 storage monitoring: Operational and research experiences of meeting regulatory and technical requirements". Energy Procedia. 114: 5967–5980. doi:10.1016/j.egypro.2017.03.1732.
  59. ^ Ainslie, M. A.; Leighton, T. G. (2011). "Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble" (PDF). The Journal of the Acoustical Society of America. 130 (5): 3184–3208. Bibcode:2011ASAJ..130.3184A. doi:10.1121/1.3628321. PMID 22087992.
  60. ^ H O Berktay, Some Finite Amplitude Effects in Underwater Acoustics in V M Albers "Underwater Acoustics" 1967
  61. ^ Westervelt, P. J. (1963). Parametric acoustic array. The Journal of the Acoustical Society of America, 35(4), 535-537.
  62. ^ Leighton, T. G.; Petculescu, A. (1 August 2016). "Acoustic and related waves in extraterrestrial environments" (PDF). The Journal of the Acoustical Society of America. 140 (2): 1397–1399. Bibcode:2016ASAJ..140.1397L. doi:10.1121/1.4961539. ISSN 0001-4966. PMID 27586765.
  63. ^ Arvelo & Lorenz (2013), J Acoust Soc Am
  64. ^ Leighton, T. G.; White, P. R.; Finfer, D. C. (2005). "The sounds of seas in space" (PDF). Proceedings of the International Conference on Underwater Acoustic Measurements, Technologies and Results, Heraklion, Crete, 28 June-1 July 2005. II: 833–840.
  65. ^ Ainslie, M. A.; Leighton, T. G. (2016). "Sonar equations for planetary exploration" (PDF). The Journal of the Acoustical Society of America. 140 (2): 1400–1419. Bibcode:2016ASAJ..140.1400A. doi:10.1121/1.4960786. PMID 27586766.
  66. ^ Leighton, T.G.; Finfer, D.C.; White, P.R. (2008). "The problems with acoustics on a small planet" (PDF). Icarus. 193 (2): 649–652. Bibcode:2008Icar..193..649L. doi:10.1016/j.icarus.2007.10.008.
  67. ^ Jiang, J; Baik, K; Leighton, T.G. (2011). "Acoustic attenuation, phase and group velocities in liquid-filled pipes II: Simulation for Spallation Neutron Sources and planetary exploration" (PDF). The Journal of the Acoustical Society of America. 130 (2): 695–706. Bibcode:2011ASAJ..130..695J. doi:10.1121/1.3598463. PMID 21877784.
  68. ^ Leighton, T.G. (2009). "Fluid loading effects for acoustical sensors in the atmospheres of Mars, Venus, Titan, and Jupiter" (PDF). The Journal of the Acoustical Society of America. 125 (5): EL214–9. Bibcode:2009ASAJ..125L.214L. doi:10.1121/1.3104628. PMID 19425625.
  69. ^ Ainslie, M. A.; Leighton, T. G. (2009). "Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound" (PDF). The Journal of the Acoustical Society of America. 126 (5): 2163–75. Bibcode:2009ASAJ..126.2163A. doi:10.1121/1.3180130. PMID 19894796.
  70. ^ Leighton, T.G.; White, P.R.; Finfer, D.C. (2012). "The opportunities and challenges in the use of extra-terrestrial acoustics in the exploration of the oceans of icy planetary bodies" (PDF). Earth, Moon, and Planets. 109 (1–4): 99–116. Bibcode:2012EM&P..109...91L. doi:10.1007/s11038-012-9399-6. S2CID 120569869.
  71. ^ a b Damian Carrington (3 July 2013). "Whales flee from military sonar leading to mass strandings, research shows". The Guardian. Archived from the original on 1 October 2017.
  72. ^ Stacy L. DeRuiter; Brandon L. Southall; John Calambokidis; Walter M. X. Zimmer; Dinara Sadykova; Erin A. Falcone; Ari S. Friedlaender; John E. Joseph; David Moretti; Gregory S. Schorr; Len Thomas; Peter L. Tyack (2013). "First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar". Biology Letters. 9 (4): 20130223. doi:10.1098/rsbl.2013.0223. PMC 3730631. PMID 23825085.
  73. ^ Goldbogen J. A.; Southall B. L.; Deruiter S. L.; Calambokidis J.; Friedlaender A. S.; Hazen E. L.; Falcone E. A.; Schorr G. S.; Douglas A.; Moretti D. J.; Kyburg C.; McKenna M. F.; Tyack P. L. (Jul 3, 2013). "Blue whales respond to simulated mid-frequency military sonar". Proceedings of the Royal Society B. 280 (765): 20130657. doi:10.1098/rspb.2013.0657. PMC 3712439. PMID 23825206.
  74. ^ Jepson P. D.; Deaville R.; Acevedo-Whitehouse K.; et al. (Apr 30, 2013). "What caused the UK's largest common dolphin (Delphinus delphis) mass stranding event?". PLOS ONE. 8 (4): e60953. Bibcode:2013PLoSO...860953J. doi:10.1371/journal.pone.0060953. PMC 3640001. PMID 23646103.
  75. ^ Winter vs. National Resources Defense Council Archived 2017-12-09 at the Wayback Machine No. 07–1239., October term, 2008
  76. ^ Goldbogen J. A.; Southall B. L.; Deruiter S. L.; Calambokidis J.; Friedlaender A. S.; Hazen E. L.; Falcone E. A.; Schorr G. S.; Douglas A.; Moretti D. J.; Kyburg C.; McKenna M. F.; Tyack P. L. (Jul 3, 2013). "Blue whales respond to simulated mid-frequency military sonar". Proceedings of the Royal Society B. 280 (765): 20130657. doi:10.1098/rspb.2013.0657. PMC 3712439. PMID 23825206.
  77. ^ Bernaldo de Quirós Y; Fernandez A; Baird RW; et al. (30 January 2019). "Advances in research on the impacts of anti-submarine sonar on beaked whales". Proceedings of the Royal Society B. 286 (1895): 20182533. doi:10.1098/rspb.2018.2533. PMC 6364578. PMID 30963955.
  78. ^ Batchelor, Tom (30 January 2019). "Scientists demand military sonar ban to end mass whale strandings". The Independent.
  79. ^ Popper A. N.; Halvorsen M. B.; Kane A.; Miller D. L.; Smith M. E.; Song J.; Wysocki L. E. (2007). "The effects of high-intensity, low-frequency active sonar on rainbow trout". The Journal of the Acoustical Society of America. 122 (1): 623–635. Bibcode:2007ASAJ..122..623P. doi:10.1121/1.2735115. PMID 17614519.
  80. ^ Halvorsen M. B.; Zeddies D. G.; Chicoine D.; Popper A. N. (2013). "Effects of low-frequency naval sonar exposure on three species of fish". The Journal of the Acoustical Society of America. 134 (2): EL205–EL210. Bibcode:2013ASAJ..134L.205H. doi:10.1121/1.4812818. PMID 23927226.
  81. ^ a b c Friedman, Norman (1997). The Naval Institute Guide to World Naval Weapons Systems, 1997–1998. ISBN 9781557502681. Archived from the original on 2018-04-26.
  82. ^ Søreide, Fredrik (2011-04-28). Ships from the Depths. ISBN 9781603442183. Archived from the original on 2018-04-26.
General bibliography

Fisheries acoustics references

Further reading
External links


The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.