Get Our Extension

Sexual dimorphism

From Wikipedia, in a visual modern way
Mandarin ducks, male (left) and female (right), illustrating the dramatic difference in plumage between sexes, a manifestation of sexual dimorphism
Mandarin ducks, male (left) and female (right), illustrating the dramatic difference in plumage between sexes, a manifestation of sexual dimorphism

Sexual dimorphism is the condition where sexes of the same species exhibit different morphological characteristics, particularly characteristics not directly involved in reproduction.[1] The condition occurs in most animals and some plants. Differences may include secondary sex characteristics, size, weight, color, markings, or behavioral or cognitive traits. Male–male reproductive competition has evolved a diverse array of sexually dimorphic traits. Aggressive utility traits such as “battle” teeth and blunt heads reinforced as battering rams are used as weapons in aggressive interactions between rivals. Passive displays such as ornamental feathering or song-calling have also evolved mainly through sexual selection.[2] These differences may be subtle or exaggerated and may be subjected to sexual selection and natural selection. The opposite of dimorphism is monomorphism, when both biological sexes are phenotypically indistinguishable from each other.[3]

Discover more about Sexual dimorphism related topics

Sex

Sex

Sex is the trait that determines whether a sexually reproducing organism produces male or female gametes. Male plants and animals produce small mobile gametes, while females produce larger, non-motile ones. Organisms that produce both types of gametes are called hermaphrodites. During sexual reproduction, male and female gametes fuse to form zygotes, which develop into offspring that inherit traits from each parent.

Species

Species

In biology, a species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.

Morphology (biology)

Morphology (biology)

Morphology is a branch of biology dealing with the study of the form and structure of organisms and their specific structural features.

Reproduction

Reproduction

Reproduction is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. Reproduction is a fundamental feature of all known life; each individual organism exists as the result of reproduction. There are two forms of reproduction: asexual and sexual.

Secondary sex characteristic

Secondary sex characteristic

A secondary sex characteristic is a physical characteristic of an organism that is related to or derived from its sex, but not directly part of its reproductive system. In humans, these characteristics typically start to appear during puberty. In animals, they can start to appear at sexual maturity. In humans, secondary sex characteristics include enlarged breasts and widened hips of females, facial hair and Adam's apples on males, and pubic hair on both. In non-human animals, secondary sex characteristics include, for example, the manes of male lions, the bright facial and rump coloration of male mandrills, and horns in many goats and antelopes.

Sexual selection

Sexual selection

Sexual selection is a mode of natural selection in which members of one biological sex choose mates of the other sex to mate with, and compete with members of the same sex for access to members of the opposite sex. These two forms of selection mean that some individuals have greater reproductive success than others within a population, for example because they are more attractive or prefer more attractive partners to produce offspring. Successful males benefit from frequent mating and monopolizing access to one or more fertile females. Females can maximise the return on the energy they invest in reproduction by selecting and mating with the best males.

Natural selection

Natural selection

Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Charles Darwin popularised the term "natural selection", contrasting it with artificial selection, which is intentional, whereas natural selection is not.

Phenotype

Phenotype

In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".

Overview

The peacock, on the right, is courting the peahen, on the left.
The peacock, on the right, is courting the peahen, on the left.
Male (bottom) and female mallards. The male mallard has an unmistakable bottle green head when his breeding plumage is present.
Male (bottom) and female mallards. The male mallard has an unmistakable bottle green head when his breeding plumage is present.

Ornamentation and coloration

Orgyia antiqua male (left) and female (right).
Orgyia antiqua male (left) and female (right).

Common and easily identified types of dimorphism consist of ornamentation and coloration, though not always apparent. A difference in the coloration of sexes within a given species is called sexual dichromatism, commonly seen in many species of birds and reptiles.[4] Sexual selection leads to the exaggerated dimorphic traits that are used predominantly in competition over mates. The increased fitness resulting from ornamentation offsets its cost to produce or maintain suggesting complex evolutionary implications, but the costs and evolutionary implications vary from species to species.[5][6] The costs and implications differ depending on the nature of the ornamentation (such as the color mechanism involved).

The peafowl constitute conspicuous illustrations of the principle. The ornate plumage of peacocks, as used in the courting display, attracts peahens. At first sight, one might mistake peacocks and peahens for completely different species because of the vibrant colours and the sheer size of the male's plumage; the peahen is of a subdued brown coloration.[7] The plumage of the peacock increases its vulnerability to predators because it is a hindrance in flight, and it renders the bird conspicuous in general.[7] Similar examples are manifold, such as in birds of paradise and argus pheasants.

Another example of sexual dichromatism is that of the nestling blue tits. Males are chromatically more yellow than females. It is believed that this is obtained by the ingestion of green Lepidopteran larvae, which contain large amounts of the carotenoids lutein and zeaxanthin.[8] This diet also affects the sexually dimorphic colours in the human-invisible ultraviolet spectrum.[9][10] Hence, the male birds, although appearing yellow to humans actually have a violet-tinted plumage that is seen by females. This plumage is thought to be an indicator of male parental abilities.[11] Perhaps this is a good indicator for females because it shows that they are good at obtaining a food supply from which the carotenoid is obtained. There is a positive correlation between the chromas of the tail and breast feathers and body condition.[12] Carotenoids play an important role in immune function for many animals, so carotenoid dependent signals might indicate health.[13]

Frogs constitute another conspicuous illustration of the principle. There are two types of dichromatism for frog species: ontogenetic and dynamic. Ontogenetic frogs are more common and have permanent color changes in males or females. Ranoidea lesueuri is an example of a dynamic frog with temporary color changes in males during the breeding season.[14] Hyperolius ocellatus is an ontogenetic frog with dramatic differences in both color and pattern between the sexes. At sexual maturity, the males display a bright green with white dorsolateral lines.[15] In contrast, the females are rusty red to silver with small spots. The bright coloration in the male population attracts females and is an aposematic sign to potential predators.

Females often show a preference for exaggerated male secondary sexual characteristics in mate selection.[16] The sexy son hypothesis explains that females prefer more elaborate males and select against males that are dull in color, independent of the species' vision.[17]

Similar sexual dimorphism and mating choice are also observed in many fish species. For example, male guppies have colorful spots and ornamentations, while females are generally grey. Female guppies prefer brightly colored males to duller males.[18]

In redlip blennies, only the male fish develops an organ at the anal-urogenital region that produces antimicrobial substances. During parental care, males rub their anal-urogenital regions over their nests' internal surfaces, thereby protecting their eggs from microbial infections, one of the most common causes for mortality in young fish.[19]

Discover more about Overview related topics

Mallard

Mallard

The mallard or wild duck is a dabbling duck that breeds throughout the temperate and subtropical Americas, Eurasia, and North Africa, and has been introduced to New Zealand, Australia, Peru, Brazil, Uruguay, Argentina, Chile, Colombia, the Falkland Islands, and South Africa. This duck belongs to the subfamily Anatinae of the waterfowl family Anatidae. Males have purple patches on their wings, while the females have mainly brown-speckled plumage. Both sexes have an area of white-bordered black or iridescent blue feathers called a speculum on their wings; males especially tend to have blue speculum feathers. The mallard is 50–65 cm (20–26 in) long, of which the body makes up around two-thirds the length. The wingspan is 81–98 cm (32–39 in) and the bill is 4.4 to 6.1 cm long. It is often slightly heavier than most other dabbling ducks, weighing 0.7–1.6 kg (1.5–3.5 lb). Mallards live in wetlands, eat water plants and small animals, and are social animals preferring to congregate in groups or flocks of varying sizes.

Orgyia antiqua

Orgyia antiqua

Orgyia antiqua, the rusty tussock moth or vapourer, is a moth in the family Erebidae.

Biological ornament

Biological ornament

A biological ornament is a characteristic of an animal that appears to serve a decorative function rather than a utilitarian function. Many are secondary sexual characteristics, and others appear on young birds during the period when they are dependent on being fed by their parents. Ornaments are used in displays to attract mates, which may lead to the evolutionary process known as sexual selection. An animal may shake, lengthen, or spread out its ornament in order to get the attention of the opposite sex, which will in turn choose the most attractive one with which to mate. Ornaments are most often observed in males, and choosing an extravagantly ornamented male benefits females as the genes that produce the ornament will be passed on to her offspring, increasing their own reproductive fitness. As Ronald Fisher noted, the male offspring will inherit the ornament while the female offspring will inherit the preference for said ornament, which can lead to a positive feedback loop known as a Fisherian runaway. These structures serve as cues to animal sexual behaviour, that is, they are sensory signals that affect mating responses. Therefore, ornamental traits are often selected by mate choice.

Sexual selection

Sexual selection

Sexual selection is a mode of natural selection in which members of one biological sex choose mates of the other sex to mate with, and compete with members of the same sex for access to members of the opposite sex. These two forms of selection mean that some individuals have greater reproductive success than others within a population, for example because they are more attractive or prefer more attractive partners to produce offspring. Successful males benefit from frequent mating and monopolizing access to one or more fertile females. Females can maximise the return on the energy they invest in reproduction by selecting and mating with the best males.

Peafowl

Peafowl

Peafowl is a common name for three bird species in the genera Pavo and Afropavo within the tribe Pavonini of the family Phasianidae, the pheasants and their allies. Male peafowl are referred to as peacocks, and female peafowl are referred to as peahens, although peafowl of either sex are often referred to colloquially as "peacocks."

Plumage

Plumage

Plumage is a layer of feathers that covers a bird and the pattern, colour, and arrangement of those feathers. The pattern and colours of plumage differ between species and subspecies and may vary with age classes. Within species, there can be different colour morphs. The placement of feathers on a bird is not haphazard, but rather emerge in organized, overlapping rows and groups, and these feather tracts are known by standardized names.

Bird-of-paradise

Bird-of-paradise

The birds-of-paradise are members of the family Paradisaeidae of the order Passeriformes. The majority of species are found in eastern Indonesia, Papua New Guinea and eastern Australia. The family has 45 species in 17 genera. The members of this family are perhaps best known for the plumage of the males of the species, the majority of which are sexually dimorphic. The males of these species tend to have very long, elaborate feathers extending from the beak, wings, tail or head. For the most part they are confined to dense rainforest habitat. The diet of all species is dominated by fruit and to a lesser extent arthropods. The birds-of-paradise have a variety of breeding systems, ranging from monogamy to lek-type polygamy.

Argus (bird)

Argus (bird)

An argus, or argus pheasant, is a member of a clade in the tribe Pavonini of the family Phasianidae, containing two species of bird that are closely related to peafowl. It has hundreds or thousands of tiny white spots on its plumage pattern, and thus its naming might have been in reference to the mythical hundred-eyed giant, Argus Panoptes.

Lepidoptera

Lepidoptera

Lepidoptera is an order of insects that includes butterflies and moths. About 180,000 species of the Lepidoptera are described, in 126 families and 46 superfamilies, 10 percent of the total described species of living organisms. It is one of the most widespread and widely recognizable insect orders in the world. The Lepidoptera show many variations of the basic body structure that have evolved to gain advantages in lifestyle and distribution. Recent estimates suggest the order may have more species than earlier thought, and is among the four most species-rich orders, along with the Hymenoptera, Diptera, and Coleoptera.

Carotenoid

Carotenoid

Carotenoids, also called tetraterpenoids, are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, corn, tomatoes, canaries, flamingos, salmon, lobster, shrimp, and daffodils. Carotenoids can be produced from fats and other basic organic metabolic building blocks by all these organisms. It is also produced by endosymbiotic bacteria in whiteflies. Carotenoids from the diet are stored in the fatty tissues of animals, and exclusively carnivorous animals obtain the compounds from animal fat. In the human diet, absorption of carotenoids is improved when consumed with fat in a meal. Cooking carotenoid-containing vegetables in oil and shredding the vegetable both increase carotenoid bioavailability.

Lutein

Lutein

Lutein is a xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants, and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll, which is overproduced at very high light levels, during photosynthesis. See xanthophyll cycle for this topic.

Ultraviolet

Ultraviolet

Ultraviolet (UV) is a form of electromagnetic radiation with wavelength shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, derive from the way that UV radiation can interact with organic molecules. These interactions can involve absorption or adjusting energy states in molecules, but do not necessarily involve heating.

Plants

Most flowering plants are hermaphroditic but approximately 6% of species have separate males and females (dioecy).[20] Sexual dimorphism is common in dioecious plants[21]: 403  and dioicous species.[22]: 71 

Males and females in insect-pollinated species generally look similar to one another because plants provide rewards (e.g. nectar) that encourage pollinators to visit another similar flower, completing pollination. Catasetum orchids are one interesting exception to this rule. Male Catasetum orchids violently attach pollinia to euglossine bee pollinators. The bees will then avoid other male flowers but may visit the female, which looks different from the males.[23]

Various other dioecious exceptions, such as Loxostylis alata have visibly different sexes, with the effect of eliciting the most efficient behavior from pollinators, who then use the most efficient strategy in visiting each gender of flower instead of searching, say, for pollen in a nectar-bearing female flower.

Some plants, such as some species of Geranium have what amounts to serial sexual dimorphism. The flowers of such species might, for example, present their anthers on opening, then shed the exhausted anthers after a day or two and perhaps change their colours as well while the pistil matures; specialist pollinators are very much inclined to concentrate on the exact appearance of the flowers they serve, which saves their time and effort and serves the interests of the plant accordingly. Some such plants go even further and change their appearance once fertilized, thereby discouraging further visits from pollinators. This is advantageous to both parties because it avoids damaging the developing fruit and wasting the pollinator's effort on unrewarding visits. In effect, the strategy ensures that pollinators can expect a reward every time they visit an appropriately advertising flower.

Females of the aquatic plant Vallisneria americana have floating flowers attached by a long flower stalk that are fertilized if they contact one of the thousands of free-floating flowers released by a male.[24] Sexual dimorphism is most often associated with wind-pollination in plants due to selection for efficient pollen dispersal in males vs pollen capture in females, e.g. Leucadendron rubrum.[25]

Sexual dimorphism in plants can also be dependent on reproductive development. This can be seen in Cannabis sativa, a type of hemp, which have higher photosynthesis rates in males while growing but higher rates in females once the plants become sexually mature.[26]

Every sexually reproducing extant species of the vascular plant has an alternation of generations; the plants we see about us generally are diploid sporophytes, but their offspring are not the seeds that people commonly recognize as the new generation. The seed actually is the offspring of the haploid generation of microgametophytes (pollen) and megagametophytes (the embryo sacs in the ovules). Each pollen grain accordingly may be seen as a male plant in its own right; it produces a sperm cell and is dramatically different from the female plant, the megagametophyte that produces the female gamete.

Discover more about Plants related topics

Flowering plant

Flowering plant

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae, commonly called angiosperms. The term "angiosperm" is derived from the Greek words ἀγγεῖον /angeion and σπέρμα / sperma ('seed'), meaning those plants that produce their seeds enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta.

Dioecy

Dioecy

Dioecy is a characteristic of certain species that have distinct unisexual individuals, each producing either male or female gametes, either directly or indirectly. Dioecious reproduction is biparental reproduction. Dioecy has costs, since only about half the population directly produces offspring. It is one method for excluding self-fertilization and promoting allogamy (outcrossing), and thus tends to reduce the expression of recessive deleterious mutations present in a population. Plants have several other methods of preventing self-fertilization including, for example, dichogamy, herkogamy, and self-incompatibility.

Dioicy

Dioicy

Dioicy is a sexual system where archegonia and antheridia are produced on separate gametophytes. It is one of the two main sexual systems in bryophytes. Both dioicous and monoicous gametophytes produce gametes in gametangia by mitosis rather than meiosis, so that sperm and eggs are genetically identical with their parent gametophyte.

Nectar

Nectar

Nectar is a sugar-rich liquid produced by plants in glands called nectaries or nectarines, either within the flowers with which it attracts pollinating animals, or by extrafloral nectaries, which provide a nutrient source to animal mutualists, which in turn provide herbivore protection. Common nectar-consuming pollinators include mosquitoes, hoverflies, wasps, bees, butterflies and moths, hummingbirds, honeyeaters and bats. Nectar plays a crucial role in the foraging economics and evolution of nectar-eating species; for example, nectar foraging behavior is largely responsible for the divergent evolution of the African honey bee, A. m. scutellata and the western honey bee.

Flower

Flower

A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants. Flowers produce gametophytes, which in flowering plants consist of a few haploid cells which produce gametes. The "male" gametophyte, which produces non-motile sperm, is enclosed within pollen grains; the "female" gametophyte is contained within the ovule. When pollen from the anther of a flower is deposited on the stigma, this is called pollination. Some flowers may self-pollinate, producing seed using pollen from the same flower or a different flower of the same plant, but others have mechanisms to prevent self-pollination and rely on cross-pollination, when pollen is transferred from the anther of one flower to the stigma of another flower on a different individual of the same species.

Pollination

Pollination

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds, most often by an animal or by wind. Pollinating agents can be animals such as insects, birds, and bats; water; wind; and even plants themselves, when self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

Catasetum

Catasetum

Catasetum, abbreviated as Ctsm. in horticultural trade, is a genus of showy epiphytic Orchids, family Orchidaceae, subfamily Epidendroideae, tribe Cymbidieae, subtribe Catasetinae, with 166 species, many of which are highly prized in horticulture.

Geranium

Geranium

Geranium is a genus of 422 species of annual, biennial, and perennial plants that are commonly known as geraniums or cranesbills. They are found throughout the temperate regions of the world and the mountains of the tropics, but mostly in the eastern part of the Mediterranean region.

Vallisneria americana

Vallisneria americana

Vallisneria americana, commonly called wild celery, water-celery, tape grass, or eelgrass, is a plant in the family Hydrocharitaceae, the "tape-grasses". V. americana is a fresh water species that can tolerate salt, living in salinities varying from fresh water to 18 parts per thousand, although the limit to the salt tolerance is unclear, and is generally dependent on the duration and intensity of the plants’ exposure to the saline water. V. americana is a deep rooted plant with leaves, approximately one inch wide, with the ability to rise two or more meters above the clustered base of the plant. Contrary to the implications of one of its common names, wild celery bears little to no resemblance to the celery used as a vegetable. V. americana grows under water and is consumed by various animals, including the canvasback. The plants themselves are long, limp, flat, and have a green mid-ridge.

Scape (botany)

Scape (botany)

In botany, a scape is a peduncle arising from a subterranean or very compressed stem, with the lower internodes very long and hence few or no bracts except the part near the rachis or receptacle. Typically it takes the form of a long, leafless flowering stem rising directly from a bulb, rhizome, or similar subterranean or underwater structure.

Pollination syndrome

Pollination syndrome

Pollination syndromes are suites of flower traits that have evolved in response to natural selection imposed by different pollen vectors, which can be abiotic or biotic, such as birds, bees, flies, and so forth through a process called pollinator-mediated selection. These traits include flower shape, size, colour, odour, reward type and amount, nectar composition, timing of flowering, etc. For example, tubular red flowers with copious nectar often attract birds; foul smelling flowers attract carrion flies or beetles, etc.

Insects

Colias dimera mating. The male is a brighter yellow than the female.
Colias dimera mating. The male is a brighter yellow than the female.

Insects display a wide variety of sexual dimorphism between taxa including size, ornamentation and coloration.[27] The female-biased sexual size dimorphism observed in many taxa evolved despite intense male–male competition for mates.[28] In Osmia rufa, for example, the female is larger/broader than males, with males being 8–10 mm in size and females being 10–12 mm in size.[29] In the hackberry emperor females are similarly larger than males.[30] The reason for the sexual dimorphism is due to provision size mass, in which females consume more pollen than males.[31]

In some species, there is evidence of male dimorphism, but it appears to be for distinctions of roles. This is seen in the bee species Macrotera portalis in which there is a small-headed morph, capable of flight, and large-headed morph, incapable of flight, for males.[32] Anthidium manicatum also displays male-biased sexual dimorphism. The selection for larger size in males rather than females in this species may have resulted due to their aggressive territorial behavior and subsequent differential mating success.[33] Another example is Lasioglossum hemichalceum, which is a species of sweat bee that shows drastic physical dimorphisms between male offspring.[34] Not all dimorphism has to have a drastic difference between the sexes. Andrena agilissima is a mining bee where the females only have a slightly larger head than the males.[35]

Weaponry leads to increased fitness by increasing success in male–male competition in many insect species.[36] The beetle horns in Onthophagus taurus are enlarged growths of the head or thorax expressed only in the males. Copris ochus also has distinct sexual and male dimorphism in head horns.[37] These structures are impressive because of the exaggerated sizes.[38] There is a direct correlation between male horn lengths and body size and higher access to mates and fitness.[38] In other beetle species, both males and females may have ornamentation such as horns.[37] Generally, insect sexual size dimorphism (SSD) within species increases with body size.[39]

Sexual dimorphism within insects is also displayed by dichromatism. In butterfly genera Bicyclus and Junonia, dimorphic wing patterns evolved due to sex-limited expression, which mediates the intralocus sexual conflict and leads to increased fitness in males.[40] The sexual dichromatic nature of Bicyclus anynana is reflected by female selection on the basis of dorsal UV-reflective eyespot pupils.[41] The common brimstone also displays sexual dichromatism; males have yellow and iridescent wings, while female wings are white and non-iridescent.[42] Naturally selected deviation in protective female coloration is displayed in mimetic butterflies.[43]

Discover more about Insects related topics

Colias dimera

Colias dimera

Colias dimera, the Dimera sulphur, is a butterfly in the family Pieridae. It is found in the Tropical Andes subregion of the Neotropical realm. The species was first discovered in Colombia. It is the most abundant butterfly in the interior of Ecuador.

Asterocampa celtis

Asterocampa celtis

Asterocampa celtis, the hackberry emperor, is a North American butterfly that belongs to the brushfooted butterfly family, Nymphalidae. It gets its name from the hackberry tree upon which it lays its eggs. The hackberry tree is the only host plant for A. celtis and is the food source for larvae.

Macrotera portalis

Macrotera portalis

Macrotera portalis is a species of communal, ground nesting, partially bivoltine bees found in arid grasslands and desert regions of North America. An oligolectic bee, M. portalis gathers pollen only from plants in the genus Sphaeralcea and has patterns of seasonal emergence to survive the harsh conditions of the desert, with emergence delayed until monsoon rains arrive.

Anthidium manicatum

Anthidium manicatum

Anthidium manicatum, commonly called the European wool carder bee, is a species of bee in the family Megachilidae, the leaf-cutter bees or mason bees.

Lasioglossum hemichalceum

Lasioglossum hemichalceum

Lasioglossum hemichalceum, which has sometimes been confused with L. erythrurum, is a sweat bee endemic to Australia. Large numbers of unrelated females will typically share a single nest, a behavior referred to as "communal". Nests are constructed underground by the independent efforts of the females. L. hemichalceum will typically begin creating new colonies during the summer, with brood production from late November through the first few months of spring. Members of this species do not demonstrate aggressive behavior towards one another. As the size of the colony increases, the reproductive potential of each female does not change, unlike many species of bees.

Andrena agilissima

Andrena agilissima

Andrena agilissima is a species of mining bee. They are present in most of Europe, the Near East and North Africa and can be found from April through July. Andrena agilissima is an oligolectic species, feeding only on the pollen of a few genera of Cruciferous vegetables.

Onthophagus taurus

Onthophagus taurus

Onthophagus taurus, the taurus scarab, is a species of dung beetle in the genus Onthophagus and the family Scarabaeidae.

Bicyclus

Bicyclus

Bicyclus is a butterfly genus from the subfamily Satyrinae in the family Nymphalidae. The species are found in the Afrotropical realm.

Junonia

Junonia

Junonia is a genus of nymphalid butterflies, described by Jacob Hübner in 1819. They are commonly known as buckeyes, pansies or commodores. This genus flies on every continent except Antarctica. The genus contains roughly 30 to 35 species.

Intralocus sexual conflict

Intralocus sexual conflict

Intralocus sexual conflict is a type of sexual conflict that occurs when a genetic locus harbours alleles which have opposing effects on the fitness of each sex, such that one allele improves the fitness of males, while the alternative allele improves the fitness of females. Such "sexually antagonistic" polymorphisms are ultimately generated by two forces: (i) the divergent reproductive roles of each sex, such as conflicts over optimal mating strategy, and (ii) the shared genome of both sexes, which generates positive between-sex genetic correlations for most traits. In the long term, intralocus sexual conflict is resolved when genetic mechanisms evolve that decouple the between-sex genetic correlations between traits. This can be achieved, for example, via the evolution of sex-biased or sex-limited genes.

Bicyclus anynana

Bicyclus anynana

Bicyclus anynana is a small brown butterfly in the family Nymphalidae, the most globally diverse family of butterflies. It is primarily found in eastern Africa from southern Sudan to Eswatini. It is found mostly in woodland areas and flies close to the ground. Male wingspans are 35–40 mm and female wingspans are 45–49 mm.

Gonepteryx rhamni

Gonepteryx rhamni

Gonepteryx rhamni is a butterfly of the family Pieridae. It lives throughout the Palearctic zone and is commonly found across Europe, Asia, and North Africa. Across much of its range, it is the only species of its genus, and is therefore simply known locally as the brimstone. Its wing span size is 60 - 74 mm.

Spiders and sexual cannibalism

Female (left) and male (right) Argiope appensa, displaying typical sexual differences in spiders, with dramatically smaller males
Female (left) and male (right) Argiope appensa, displaying typical sexual differences in spiders, with dramatically smaller males
Hammock Spiders (Pityohyphantes sp.) courting. Female left and male right.
Hammock Spiders (Pityohyphantes sp.) courting. Female left and male right.

Many arachnid groups exhibit sexual dimorphism,[44] but it is most widely studied in the spiders. In the orb-weaving spider Zygiella x-notata, for example, adult females have a larger body size than adult males.[45] Size dimorphism shows a correlation with sexual cannibalism,[46] which is prominent in spiders (it is also found in insects such as praying mantises). In the size dimorphic wolf spider Tigrosa helluo, food-limited females cannibalize more frequently.[47] Therefore, there is a high risk of low fitness for males due to pre-copulatory cannibalism, which led to male selection of larger females for two reasons: higher fecundity and lower rates of cannibalism.[47] In addition, female fecundity is positively correlated with female body size and large female body size is selected for, which is seen in the family Araneidae. All Argiope species, including Argiope bruennichi, use this method. Some males evolved ornamentation including binding the female with silk, having proportionally longer legs, modifying the female's web, mating while the female is feeding, or providing a nuptial gift in response to sexual cannibalism.[47] Male body size is not under selection due to cannibalism in all spider species such as Nephila pilipes, but is more prominently selected for in less dimorphic species of spiders, which often selects for larger male size.[48] In the species Maratus volans, the males are known for their characteristic colorful fan which attracts the females during mating.[49]

Discover more about Spiders and sexual cannibalism related topics

Argiope appensa

Argiope appensa

Argiope appensa, also referred to as the Hawaiian garden spider or banana spider, is an orb-weaving spider belonging to the family Araneidae.

Arachnid

Arachnid

Arachnida is a class of joint-legged invertebrate animals (arthropods), in the subphylum Chelicerata. Arachnida includes, among others, spiders, scorpions, ticks, mites, pseudoscorpions, harvestmen, camel spiders, whip spiders and vinegaroons.

Zygiella x-notata

Zygiella x-notata

Zygiella x-notata, sometimes known as the missing sector orb weaver or the silver-sided sector spider, is a spider species in the family Araneidae. They are solitary spiders, residing in daily-spun orb webs. Z. x-notata is a member of the genus Zygiella, the orb-weaving spiders. The adult female is easily recognized by the characteristic leaf-like mark on her posterior opisthosoma, caudal to the yellow-brown cephalothorax.

Sexual cannibalism

Sexual cannibalism

Sexual cannibalism is when an animal, usually the female, cannibalizes its mate prior to, during, or after copulation. It is a trait observed in many arachnid orders and several insect orders. Several hypotheses to explain this seemingly paradoxical behavior have been proposed. The adaptive foraging hypothesis, aggressive spillover hypothesis and mistaken identity hypothesis are among the proposed hypotheses to explain how sexual cannibalism evolved. This behavior is believed to have evolved as a manifestation of sexual conflict, occurring when the reproductive interests of males and females differ. In many species that exhibit sexual cannibalism, the female consumes the male upon detection. Females of cannibalistic species are generally hostile and unwilling to mate; thus many males of these species have developed adaptive behaviors to counteract female aggression.

Wolf spider

Wolf spider

Wolf spiders are members of the family Lycosidae. They are robust and agile hunters with excellent eyesight. They live mostly in solitude, hunt alone, and do not spin webs. Some are opportunistic hunters, pouncing upon prey as they find it or chasing it over short distances; others wait for passing prey in or near the mouth of a burrow.

Tigrosa helluo

Tigrosa helluo

Tigrosa helluo is a species of spider belonging to the family Lycosidae, also known as wolf spiders. T. helluo was formerly known as Hogna helluo before differences between dorsal color patterns, habitat preferences, body structures, etc. were discovered. The species is native to the United States, Canada, and Mexico. It can be found across the eastern half of the United States, primarily in the Northeast and New England, and as far west as Nebraska and Kansas. T. helluo can be found in diverse habitats including woods, marshes, fields, and riparian areas. Typically, members of this species prefer to live in wetter areas as opposed to dry environments. Males tend to live for around a year and females will live for close to two years.

Fecundity

Fecundity

Fecundity is defined in two ways; in human demography, it is the potential for reproduction of a recorded population as opposed to a sole organism, while in population biology, it is considered similar to fertility, the natural capability to produce offspring, measured by the number of gametes (eggs), seed set, or asexual propagules.

Orb-weaver spider

Orb-weaver spider

Orb-weaver spiders are members of the spider family Araneidae. They are the most common group of builders of spiral wheel-shaped webs often found in gardens, fields, and forests. The English word "orb" can mean "circular", hence the English name of the group. Araneids have eight similar eyes, hairy or spiny legs, and no stridulating organs.

Argiope bruennichi

Argiope bruennichi

Argiope bruennichi is a species of orb-web spider distributed throughout central Europe, northern Europe, north Africa, parts of Asia, and the Azores archipelago. Like many other members of the genus Argiope, it has striking yellow and black markings on its abdomen.

Nephila pilipes

Nephila pilipes

Nephila pilipes is a species of golden orb-web spider. It resides all over countries in East and Southeast Asia as well as Oceania. It is commonly found in primary and secondary forests and gardens. Females are large and grow to a body size of 30–50 mm, with males growing to 5–6 mm. It is the second largest of the orb-weaving spiders apart from the recently discovered Nephila komaci. The first, second, and fourth pairs of legs of juvenile females have dense hairy brushes, but these brushes disappear as the spider matures.

Maratus volans

Maratus volans

Maratus volans is a species in the jumping spider family (Salticidae), belonging to the genus Maratus. These spiders are native to certain areas in Australia and occupy a wide distribution of habitats. They have a specialized visual system that allows them to see the full visible spectrum as well as in the UV-range; this helps them detect and pursue prey. Males of this species are characterized by their colorful abdomen flaps that are used to attract females during courtship.

Fish

Ray finned fish are an ancient and diverse class, with the widest degree of sexual dimorphism of any animal class. Fairbairn notes that "females are generally larger than males but males are often larger in species with male–male combat or male paternal care ... [sizes range] from dwarf males to males more than 12 times heavier than females."[50]

There are cases where males are substantially larger than females. An example is Lamprologus callipterus, a type of cichlid fish. In this fish, the males are characterized as being up to 60 times larger than the females. The male's increased size is believed to be advantageous because males collect and defend empty snail shells in each of which a female breeds.[51] Males must be larger and more powerful in order to collect the largest shells. The female's body size must remain small because in order for her to breed, she must lay her eggs inside the empty shells. If she grows too large, she will not fit in the shells and will be unable to breed. The female's small body size is also likely beneficial to her chances of finding an unoccupied shell. Larger shells, although preferred by females, are often limited in availability.[52] Hence, the female is limited to the growth of the size of the shell and may actually change her growth rate according to shell size availability.[53] In other words, the male's ability to collect large shells depends on his size. The larger the male, the larger the shells he is able to collect. This then allows for females to be larger in his brooding nest which makes the difference between the sizes of the sexes less substantial. Male–male competition in this fish species also selects for large size in males. There is aggressive competition by males over territory and access to larger shells. Large males win fights and steal shells from competitors. Another example is the dragonet, in which males are considerably larger than females and possess longer fins.

Sexual dimorphism also occurs in hermaphroditic fish. These species are known as sequential hermaphrodites. In fish, reproductive histories often include the sex-change from female to male where there is a strong connection between growth, the sex of an individual, and the mating system it operates within.[54] In protogynous mating systems where males dominate mating with many females, size plays a significant role in male reproductive success.[55] Males have a propensity to be larger than females of a comparable age but it is unclear whether the size increase is due to a growth spurt at the time of the sexual transition or due to the history of faster growth in sex changing individuals.[56] Larger males are able to stifle the growth of females and control environmental resources.

Social organization plays a large role in the changing of sex by the fish. It is often seen that a fish will change its sex when there is a lack of dominant male within the social hierarchy. The females that change sex are often those who attain and preserve an initial size advantage early in life. In either case, females which change sex to males are larger and often prove to be a good example of dimorphism.

In other cases with fish, males will go through noticeable changes in body size, and females will go through morphological changes that can only be seen inside of the body. For example, in sockeye salmon, males develop larger body size at maturity, including an increase in body depth, hump height, and snout length. Females experience minor changes in snout length, but the most noticeable difference is the huge increase in gonad size, which accounts for about 25% of body mass.[57]

Sexual selection was observed for female ornamentation in Gobiusculus flavescens, known as two-spotted gobies.[58] Traditional hypotheses suggest that male–male competition drives selection. However, selection for ornamentation within this species suggests that showy female traits can be selected through either female–female competition or male mate choice.[58] Since carotenoid-based ornamentation suggests mate quality, female two-spotted guppies that develop colorful orange bellies during the breeding season are considered favorable to males.[59] The males invest heavily in offspring during the incubation, which leads to the sexual preference in colorful females due to higher egg quality.[59]

Discover more about Fish related topics

Lamprologus callipterus

Lamprologus callipterus

Lamprologus callipterus is a species of cichlid endemic to Lake Tanganyika where it very actively moves about in search of crustaceans and other invertebrates. Males of this species can reach a length of 12.4 centimetres (4.9 in) TL while the females only grow to 4.5 centimetres (1.8 in) TL. This fish can also be found in the aquarium trade, though it is considered to be poorly suited for captivity.

Dragonet

Dragonet

Dragonets are small, percomorph, marine fish of the diverse family Callionymidae found mainly in the tropical waters of the western Indo-Pacific. They are benthic organisms, spending most of their time near the sandy bottoms, at a depth of roughly two hundred meters. There exist 139 species of the fish, in nineteen genera.

Life history theory

Life history theory

Life history theory is an analytical framework designed to study the diversity of life history strategies used by different organisms throughout the world, as well as the causes and results of the variation in their life cycles. It is a theory of biological evolution that seeks to explain aspects of organisms' anatomy and behavior by reference to the way that their life histories—including their reproductive development and behaviors, post-reproductive behaviors, and lifespan —have been shaped by natural selection. A life history strategy is the "age- and stage-specific patterns" and timing of events that make up an organism's life, such as birth, weaning, maturation, death, etc. These events, notably juvenile development, age of sexual maturity, first reproduction, number of offspring and level of parental investment, senescence and death, depend on the physical and ecological environment of the organism.

Sockeye salmon

Sockeye salmon

The sockeye salmon, also called red salmon, kokanee salmon, blueback salmon, or simply sockeye, is an anadromous species of salmon found in the Northern Pacific Ocean and rivers discharging into it. This species is a Pacific salmon that is primarily red in hue during spawning. They can grow up to 84 cm in length and weigh 2.3 to 7 kg (5–15 lb). Juveniles remain in freshwater until they are ready to migrate to the ocean, over distances of up to 1,600 km (1,000 mi). Their diet consists primarily of zooplankton. Sockeye salmon are semelparous, dying after they spawn. Some populations, referred to as kokanee, do not migrate to the ocean and live their entire lives in fresh water.

Gonad

Gonad

A gonad, sex gland, or reproductive gland is a mixed gland that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces sperm in the form of spermatozoa. The female gonad, the ovary, produces egg cells. Both of these gametes are haploid cells. Some hermaphroditic animals have a type of gonad called an ovotestis.

Amphibians and non-avian reptiles

Mississippi map turtles (Graptemys pseudogeographica kohni) adult female (left) and adult male (right)
Mississippi map turtles (Graptemys pseudogeographica kohni) adult female (left) and adult male (right)

In amphibians and reptiles, the degree of sexual dimorphism varies widely among taxonomic groups. The sexual dimorphism in amphibians and reptiles may be reflected in any of the following: anatomy; relative length of tail; relative size of head; overall size as in many species of vipers and lizards; coloration as in many amphibians, snakes, and lizards, as well as in some turtles; an ornament as in many newts and lizards; the presence of specific sex-related behaviour is common to many lizards; and vocal qualities which are frequently observed in frogs.

Anole lizards show prominent size dimorphism with males typically being significantly larger than females. For instance, the average male Anolis sagrei was 53.4 mm vs. 40 mm in females.[60] Different sizes of the heads in anoles have been explained by differences in the estrogen pathway.[61] The sexual dimorphism in lizards is generally attributed to the effects of sexual selection, but other mechanisms including ecological divergence and fecundity selection provide alternative explanations.[62] The development of color dimorphism in lizards is induced by hormonal changes at the onset of sexual maturity, as seen in Psamodromus algirus, Sceloporus gadoviae, and S. undulates erythrocheilus.[62] Sexual dimorphism in size is also seen in frog species like P. bibronii.

Male painted dragon lizards, Ctenophorus pictus. are brightly conspicuous in their breeding coloration, but male colour declines with aging. Male coloration appears to reflect innate anti-oxidation capacity that protects against oxidative DNA damage.[63] Male breeding coloration is likely an indicator to females of the underlying level of oxidative DNA damage (a significant component of aging) in potential mates.[63]

Discover more about Amphibians and non-avian reptiles related topics

Mississippi map turtle

Mississippi map turtle

The Mississippi map turtle is a subspecies of land and water turtle belonging to the family Emydidae. G. p. kohni is endemic to the central United States.

Viperidae

Viperidae

The Viperidae (vipers) are a family of snakes found in most parts of the world, except for Antarctica, Australia, Hawaii, Madagascar, and various other isolated islands. They are venomous and have long, hinged fangs that permit deep penetration and injection of their venom. Three subfamilies are currently recognized. They are also known as viperids. The name "viper" is derived from the Latin word vipera, -ae, also meaning viper, possibly from vivus ("living") and parere, referring to the trait viviparity common in vipers like most of the species of Boidae.

Bibron's toadlet

Bibron's toadlet

The Bibron's toadlet or brown toadlet is a species of Australian ground-dwelling frog that, although having declined over much of its range, is widespread through most of New South Wales, Victoria, south-eastern Queensland, and eastern South Australia, including Kangaroo Island. Bibron's toadlet settles in a wide variety of habitats within these region but they mainly reside in dry forests, woodland, shrubland, grassland, coastal swamps, heathland, and sub-alpine areas. They deposit their eggs in leaf litters during the flooding season, which is essential for the proper development of the egg. This species has high sexual dimorphism within the species and utilizes chemosignals to attract potential mates.

Ctenophorus pictus

Ctenophorus pictus

Ctenophorus pictus, commonly known as the painted ground-dragon or painted dragon, is a species of lizard from the family Agamidae. It is endemic to the drier areas of southern and central Australia.

Ageing

Ageing

Ageing or aging is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. In a broader sense, ageing can refer to single cells within an organism which have ceased dividing, or to the population of a species.

DNA oxidation

DNA oxidation

DNA oxidation is the process of oxidative damage of deoxyribonucleic acid. As described in detail by Burrows et al., 8-oxo-2'-deoxyguanosine (8-oxo-dG) is the most common oxidative lesion observed in duplex DNA because guanine has a lower one-electron reduction potential than the other nucleosides in DNA. The one electron reduction potentials of the nucleosides are guanine 1.29, adenine 1.42, cytosine 1.6 and thymine 1.7. About 1 in 40,000 guanines in the genome are present as 8-oxo-dG under normal conditions. This means that >30,000 8-oxo-dGs may exist at any given time in the genome of a human cell. Another product of DNA oxidation is 8-oxo-dA. 8-oxo-dA occurs at about 1/10 the frequency of 8-oxo-dG. The reduction potential of guanine may be reduced by as much as 50%, depending on the particular neighboring nucleosides stacked next to it within DNA.

Birds

Female (left) and male (right) common pheasant, showing that the male is much larger and more colorful than the female
Female (left) and male (right) common pheasant, showing that the male is much larger and more colorful than the female
Some bird species, such as this mute swan, do not display sexual dimorphism through their plumage, and instead can be distinguished by other physiological or behavioural characteristics. Generally, male Mute swans, or cobs, are taller and larger than females, or pens, and have thicker necks and a more pronounced 'knob' above their bill.
Some bird species, such as this mute swan, do not display sexual dimorphism through their plumage, and instead can be distinguished by other physiological or behavioural characteristics. Generally, male Mute swans, or cobs, are taller and larger than females, or pens, and have thicker necks and a more pronounced 'knob' above their bill.
Skeletons of female (left) and Male (right) black-casqued hornbills (Ceratogymna atrata). The difference between the sexes is apparent in the casque on the top of their bill. This pair is on display at the Museum of Osteology.
Skeletons of female (left) and Male (right) black-casqued hornbills (Ceratogymna atrata). The difference between the sexes is apparent in the casque on the top of their bill. This pair is on display at the Museum of Osteology.
The eclectus parrot is a rare example of a bird where the female (right) is more colorful than the male (left)
The eclectus parrot is a rare example of a bird where the female (right) is more colorful than the male (left)

Sexual dimorphism in birds can be manifested in size or plumage differences between the sexes. Sexual size dimorphism varies among taxa with males typically being larger, though this is not always the case, e.g. birds of prey, hummingbirds, and some species of flightless birds.[64][65] Plumage dimorphism, in the form of ornamentation or coloration, also varies, though males are typically the more ornamented or brightly colored sex.[66] Such differences have been attributed to the unequal reproductive contributions of the sexes.[67] This difference produces a stronger female choice since they have more risk in producing offspring. In some species, the male's contribution to reproduction ends at copulation, while in other species the male becomes the main caregiver. Plumage polymorphisms have evolved to reflect these differences and other measures of reproductive fitness, such as body condition[68] or survival.[69] The male phenotype sends signals to females who then choose the 'fittest' available male.

Sexual dimorphism is a product of both genetics and environmental factors. An example of sexual polymorphism determined by environmental conditions exists in the red-backed fairywren. Red-backed fairywren males can be classified into three categories during breeding season: black breeders, brown breeders, and brown auxiliaries.[68] These differences arise in response to the bird's body condition: if they are healthy they will produce more androgens thus becoming black breeders, while less healthy birds produce less androgens and become brown auxiliaries.[68] The reproductive success of the male is thus determined by his success during each year's non-breeding season, causing reproductive success to vary with each year's environmental conditions.

Migratory patterns and behaviors also influence sexual dimorphisms. This aspect also stems back to the size dimorphism in species. It has been shown that the larger males are better at coping with the difficulties of migration and thus are more successful in reproducing when reaching the breeding destination.[70] When viewing this in an evolutionary standpoint many theories and explanations come to consideration. If these are the result for every migration and breeding season the expected results should be a shift towards a larger male population through sexual selection. Sexual selection is strong when the factor of environmental selection is also introduced. The environmental selection may support a smaller chick size if those chicks were born in an area that allowed them to grow to a larger size, even though under normal conditions they would not be able to reach this optimal size for migration. When the environment gives advantages and disadvantages of this sort, the strength of selection is weakened and the environmental forces are given greater morphological weight. The sexual dimorphism could also produce a change in timing of migration leading to differences in mating success within the bird population.[71] When the dimorphism produces that large of a variation between the sexes and between the members of the sexes multiple evolutionary effects can take place. This timing could even lead to a speciation phenomenon if the variation becomes strongly drastic and favorable towards two different outcomes. Sexual dimorphism is maintained by the counteracting pressures of natural selection and sexual selection. For example, sexual dimorphism in coloration increases the vulnerability of bird species to predation by European sparrowhawks in Denmark.[72] Presumably, increased sexual dimorphism means males are brighter and more conspicuous, leading to increased predation.[72] Moreover, the production of more exaggerated ornaments in males may come at the cost of suppressed immune function.[68] So long as the reproductive benefits of the trait due to sexual selection are greater than the costs imposed by natural selection, then the trait will propagate throughout the population. Reproductive benefits arise in the form of a larger number of offspring, while natural selection imposes costs in the form of reduced survival. This means that even if the trait causes males to die earlier, the trait is still beneficial so long as males with the trait produce more offspring than males lacking the trait. This balance keeps the dimorphism alive in these species and ensures that the next generation of successful males will also display these traits that are attractive to the females.

Such differences in form and reproductive roles often cause differences in behavior. As previously stated, males and females often have different roles in reproduction. The courtship and mating behavior of males and females are regulated largely by hormones throughout a bird's lifetime.[73] Activational hormones occur during puberty and adulthood and serve to 'activate' certain behaviors when appropriate, such as territoriality during breeding season.[73] Organizational hormones occur only during a critical period early in development, either just before or just after hatching in most birds, and determine patterns of behavior for the rest of the bird's life.[73] Such behavioral differences can cause disproportionate sensitivities to anthropogenic pressures.[74] Females of the whinchat in Switzerland breed in intensely managed grasslands.[74] Earlier harvesting of the grasses during the breeding season lead to more female deaths.[74] Populations of many birds are often male-skewed and when sexual differences in behavior increase this ratio, populations decline at a more rapid rate.[74] Also not all male dimorphic traits are due to hormones like testosterone, instead they are a naturally occurring part of development, for example plumage.[75] In addition, the strong hormonal influence on phenotypic differences suggest that the genetic mechanism and genetic basis of these sexually dimorphic traits may involve transcription factors or cofactors rather than regulatory sequences.[76]

Sexual dimorphism may also influence differences in parental investment during times of food scarcity. For example, in the blue-footed booby, the female chicks grow faster than the males, resulting in booby parents producing the smaller sex, the males, during times of food shortage. This then results in the maximization of parental lifetime reproductive success.[77] In Black-tailed Godwits Limosa limosa limosa females are also the larger sex, and the growth rates of female chicks are more susceptible to limited environmental conditions.[78]

Sexual dimorphism may also only appear during mating season, some species of birds only show dimorphic traits in seasonal variation. The males of these species will molt into a less bright or less exaggerated color during the off breeding season.[76] This occurs because the species is more focused on survival than reproduction, causing a shift into a less ornate state.

Consequently, sexual dimorphism has important ramifications for conservation. However, sexual dimorphism is not only found in birds and is thus important to the conservation of many animals. Such differences in form and behavior can lead to sexual segregation, defined as sex differences in space and resource use.[79] Most sexual segregation research has been done on ungulates,[79] but such research extends to bats,[80] kangaroos,[81] and birds.[82] Sex-specific conservation plans have even been suggested for species with pronounced sexual segregation.[80]

The term sesquimorphism (the Latin numeral prefix sesqui- means one-and-one-half, so halfway between mono- (one) and di- (two)) has been proposed for bird species in which "both sexes have basically the same plumage pattern, though the female is clearly distinguishable by reason of her paler or washed-out colour".[83]: 14  Examples include Cape sparrow (Passer melanurus),[83]: 67  rufous sparrow (subspecies P. motinensis motinensis),[83]: 80  and saxaul sparrow (P. ammodendri).[83]: 245 

Discover more about Birds related topics

Common pheasant

Common pheasant

The common pheasant is a bird in the pheasant family (Phasianidae). The genus name comes from Latin phasianus, "pheasant". The species name colchicus is Latin for "of Colchis", a country on the Black Sea where pheasants became known to Europeans. Although Phasianus was previously thought to be closely related to the genus Gallus, the genus of junglefowl and domesticated chickens, recent studies show that they are in different subfamilies, having diverged over 20 million years ago.

Black-casqued hornbill

Black-casqued hornbill

The black-casqued hornbill or black-casqued wattled hornbill, is a species of hornbill in the family Bucerotidae. It is widely spread across the African tropical rainforest.

Museum of Osteology

Museum of Osteology

The Museum of Osteology, located in Oklahoma City, Oklahoma, U.S., is a private museum devoted to the study of bones and skeletons (osteology). This museum displays over 450 skeletons of animal species from all over the world. With another 7,000 specimens as part of the collection, but not on display, this is the largest privately held collection of osteological specimens in the world. This museum is an entity of their parent company, Skulls Unlimited International.

Eclectus parrot

Eclectus parrot

Eclectus parrot has been split into five species:Moluccan eclectus, Eclectus roratus Sumba eclectus, Eclectus cornelia Tanimbar eclectus, Eclectus riedeli Papuan eclectus, Eclectus polychloros † Oceanic eclectus, Eclectus infectus

Hummingbird

Hummingbird

Hummingbirds are birds native to the Americas and comprise the biological family Trochilidae. With about 366 species and 113 genera, they occur from Alaska to Tierra del Fuego, but most species are found in Central and South America. About 28 hummingbird species are listed as endangered or critically endangered, with numerous species declining in population.

Grouse

Grouse

Grouse are a group of birds from the order Galliformes, in the family Phasianidae. Grouse are presently assigned to the tribe Tetraonini, a classification supported by mitochondrial DNA sequence studies, and applied by the American Ornithologists' Union, ITIS, International Ornithological Congress, and others. Grouse inhabit temperate and subarctic regions of the Northern Hemisphere, from pine forests to moorland and mountainside, from 83°N to 28°N. Turkeys are closely related to grouse and are also classified in the tribe Tetraonini. The koklass pheasant is also closely allied with them.

Blue-footed booby

Blue-footed booby

The blue-footed booby is a marine bird native to subtropical and tropical regions of the eastern Pacific Ocean. It is one of six species of the genus Sula – known as boobies. It is easily recognizable by its distinctive bright blue feet, which is a sexually selected trait and a product of their diet. Males display their feet in an elaborate mating ritual by lifting them up and down while strutting before the female. The female is slightly larger than the male and can measure up to 90 cm (35 in) long with a wingspan up to 1.5 m (5 ft).

Black-tailed godwit

Black-tailed godwit

The black-tailed godwit is a large, long-legged, long-billed shorebird first described by Carl Linnaeus in 1758. It is a member of the godwit genus, Limosa. There are four subspecies, all with orange head, neck and chest in breeding plumage and dull grey-brown winter coloration, and distinctive black and white wingbar at all times.

Bat

Bat

Bats are mammals of the order Chiroptera. With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their very long spread-out digits covered with a thin membrane or patagium. The smallest bat, and arguably the smallest extant mammal, is Kitti's hog-nosed bat, which is 29–34 millimetres in length, 150 mm (6 in) across the wings and 2–2.6 g in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox, reaching a weight of 1.6 kg and having a wingspan of 1.7 m.

Kangaroo

Kangaroo

Kangaroos are four marsupials from the family Macropodidae. In common use the term is used to describe the largest species from this family, the red kangaroo, as well as the antilopine kangaroo, eastern grey kangaroo, and western grey kangaroo. Kangaroos are indigenous to Australia and New Guinea. The Australian government estimates that 42.8 million kangaroos lived within the commercial harvest areas of Australia in 2019, down from 53.2 million in 2013.

Cape sparrow

Cape sparrow

The Cape sparrow, or mossie, is a bird of the sparrow family Passeridae found in southern Africa. A medium-sized sparrow at 14–16 centimetres (5.5–6.3 in), it has distinctive plumage, including large pale head stripes in both sexes. Its plumage is mostly grey, brown, and chestnut, and the male has some bold black and white markings on its head and neck. The species inhabits semi-arid savannah, cultivated areas, and towns, and ranges from the central coast of Angola to eastern South Africa and Eswatini. Three subspecies are distinguished in different parts of its range.

Great sparrow

Great sparrow

The great sparrow, also known as the southern rufous sparrow, is found in southern Africa in dry, wooded savannah and towns.

Mammals

In a large proportion of mammal species, males are larger than females. Both genes and hormones affect the formation of many animal brains before "birth" (or hatching), and also behaviour of adult individuals. Hormones significantly affect human brain formation, and also brain development at puberty. A 2004 review in Nature Reviews Neuroscience observed that "because it is easier to manipulate hormone levels than the expression of sex chromosome genes, the effects of hormones have been studied much more extensively, and are much better understood, than the direct actions in the brain of sex chromosome genes." It concluded that while "the differentiating effects of gonadal secretions seem to be dominant," the existing body of research "support the idea that sex differences in neural expression of X and Y genes significantly contribute to sex differences in brain functions and disease."[84]

Pinnipeds

Male and female northern elephant seal, the male being larger with a big proboscis
Male and female northern elephant seal, the male being larger with a big proboscis

Marine mammals show some of the greatest sexual size differences of mammals, because of sexual selection and environmental factors like breeding location.[85] The mating system of pinnipeds varies from polygamy to serial monogamy. Pinnipeds are known for early differential growth and maternal investment since the only nutrients for newborn pups is the milk provided by the mother.[86] For example, the males are significantly larger (about 10% heavier and 2% longer) than the females at birth in sea lion pups.[87] The pattern of differential investment can be varied principally prenatally and post-natally.[88] Mirounga leonina, the southern elephant seal, is one of the most dimorphic mammals.[89]

Primates

Humans

Pioneer plaque
Male pelvis
Female pelvis

Top: Stylised illustration of humans on the Pioneer plaque, showing both male (left) and female (right).
Bottom: Comparison between male (left) and female (right) pelvises.

According to Clark Spencer Larsen, modern day Homo sapiens show a range of sexual dimorphism, with average body mass between the sexes differing by roughly 15%.[90] Substantial discussion in academic literature considers potential evolutionary advantages associated with sexual competition (both intrasexual and intersexual), as well as short- and long-term sexual strategies.[91] According to Daly and Wilson, "The sexes differ more in human beings than in monogamous mammals, but much less than in extremely polygamous mammals."[92]

The average basal metabolic rate is about 6 percent higher in adolescent males than females and increases to about 10 percent higher after puberty. Females tend to convert more food into fat, while males convert more into muscle and expendable circulating energy reserves. Aggregated data of absolute strength indicates that females have, on average, 40–60% the upper body strength of males, and 70–75% the lower body strength.[93] The difference in strength relative to body mass is less pronounced in trained individuals. In Olympic weightlifting, male records vary from 5.5× body mass in the lowest weight category to 4.2× in the highest weight category, while female records vary from 4.4× to 3.8×, a weight adjusted difference of only 10–20%, and an absolute difference of about 40% (i.e. 472 kg vs 333 kg for unlimited weight classes; see Olympic weightlifting records). A study, carried about by analyzing annual world rankings from 1980 to 1996, found that males' running times were, on average, 11% faster than females'.[94]

In early adolescence, females are on average taller than males (as females tend to go through puberty earlier), but males, on average, surpass them in height in later adolescence and adulthood. In the United States, adult males are on average 9% taller[95] and 16.5% heavier[96] than adult females.

Males typically have larger tracheae and branching bronchi, with about 30 percent greater lung volume per body mass. On average, males have larger hearts, 10 percent higher red blood cell count, higher hemoglobin, hence greater oxygen-carrying capacity. They also have higher circulating clotting factors (vitamin K, prothrombin and platelets). These differences lead to faster healing of wounds and lower sensitivity to nerve pain after injury.[97] In males, pain-causing injury to the peripheral nerve occurs through the microglia, while in females it occurs through the T cells (except in pregnant women, who follow a male pattern).[98]

Females typically have more white blood cells (stored and circulating), as well as more granulocytes and B and T lymphocytes. Additionally, they produce more antibodies at a faster rate than males, hence they develop fewer infectious diseases and succumb for shorter periods.[97] Ethologists argue that females, interacting with other females and multiple offspring in social groups, have experienced such traits as a selective advantage.[99][100][101][102][103] Females have a higher sensitivity to pain due to aforementioned nerve differences that increase the sensation, and females thus require higher levels of pain medication after injury.[98] Hormonal changes in females affect pain sensitivity, and pregnant women have the same sensitivity as males. Acute pain tolerance is also more consistent over a lifetime in females than males, despite these hormonal changes.[104] Despite differences in the physical feeling, both sexes have similar psychological tolerance to (or ability to cope with and ignore) pain.[105]

In the human brain, a difference between sexes was observed in the transcription of the PCDH11X/Y gene pair unique to Homo sapiens.[106] Sexual differentiation in the human brain from the undifferentiated state is triggered by testosterone from the fetal testis. Testosterone is converted to estrogen in the brain through the action of the enzyme aromatase. Testosterone acts on many brain areas, including the SDN-POA, to create the masculinized brain pattern.[107] Brains of pregnant females carrying male fetuses may be shielded from the masculinizing effects of androgen through the action of sex hormone-binding globulin.[108]

The relationship between sex differences in the brain and human behavior is a subject of controversy in psychology and society at large.[109][110] Many females tend to have a higher ratio of gray matter in the left hemisphere of the brain in comparison to males.[111][112] Males on average have larger brains than females; however, when adjusted for total brain volume the gray matter differences between sexes is almost nonexistent. Thus, the percentage of gray matter appears to be more related to brain size than it is to sex.[113][114] Differences in brain physiology between sexes do not necessarily relate to differences in intellect. Haier et al. found in a 2004 study that "men and women apparently achieve similar IQ results with different brain regions, suggesting that there is no singular underlying neuroanatomical structure to general intelligence and that different types of brain designs may manifest equivalent intellectual performance".[115] (See the sex and intelligence article for more on this subject.) Strict graph-theoretical analysis of the human brain connections revealed[116] that in numerous graph-theoretical parameters (e.g., minimum bipartition width, edge number, the expander graph property, minimum vertex cover), the structural connectome of women are significantly "better" connected than the connectome of men. It was shown[117] that the graph-theoretical differences are due to the sex and not to the differences in the cerebral volume, by analyzing the data of 36 females and 36 males, where the brain volume of each man in the group was smaller than the brain volume of each woman in the group.

Sexual dimorphism was also described in the gene level and shown to extend from the sex chromosomes. Overall, about 6500 genes have been found to have sex-differential expression in at least one tissue. Many of these genes are not directly associated with reproduction, but rather linked to more general biological features. In addition, it has been shown that genes with sex-specific expression undergo reduced selection efficiency, which lead to higher population frequencies of deleterious mutations and contributing to the prevalence of several human diseases.[118][119]

Discover more about Mammals related topics

Hormone

Hormone

A hormone is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required for the correct development of animals, plants and fungi. Due to the broad definition of a hormone, numerous kinds of molecules can be classified as hormones. Among the substances that can be considered hormones, are eicosanoids, steroids, amino acid derivatives, protein or peptides, and gases.

Birth

Birth

Birth is the act or process of bearing or bringing forth offspring, also referred to in technical contexts as parturition. In mammals, the process is initiated by hormones which cause the muscular walls of the uterus to contract, expelling the fetus at a developmental stage when it is ready to feed and breathe.

Nature Reviews Neuroscience

Nature Reviews Neuroscience

Nature Reviews Neuroscience is a monthly peer-reviewed review journal published by Nature Portfolio. It was established in 2000. The editor-in-chief is Darran Yates.

Northern elephant seal

Northern elephant seal

The northern elephant seal is one of two species of elephant seal. It is a member of the family Phocidae. Elephant seals derive their name from their great size and from the male's large proboscis, which is used in making extraordinarily loud roaring noises, especially during the mating competition. Sexual dimorphism in size is great. Correspondingly, the mating system is highly polygynous; a successful male is able to impregnate up to 50 females in one season.

Proboscis

Proboscis

A proboscis is an elongated appendage from the head of an animal, either a vertebrate or an invertebrate. In invertebrates, the term usually refers to tubular mouthparts used for feeding and sucking. In vertebrates, a proboscis is an elongated nose or snout.

Southern elephant seal

Southern elephant seal

The southern elephant seal is one of two species of elephant seals. It is the largest member of the clade Pinnipedia and the order Carnivora, as well as the largest extant marine mammal that is not a cetacean. It gets its name from its massive size and the large proboscis of the adult male, which is used to produce very loud roars, especially during the breeding season. A bull southern elephant seal is about 40% heavier than a male northern elephant seal, twice as heavy as a male walrus, and 6–7 times heavier than the largest living mostly-terrestrial carnivoran, the polar bear and the Kodiak bear ,.

Sexual dimorphism in non-human primates

Sexual dimorphism in non-human primates

Sexual dimorphism describes the morphological, physiological, and behavioral differences between males and females of the same species. Most primates are sexually dimorphic for different biological characteristics, such as body size, canine tooth size, craniofacial structure, skeletal dimensions, pelage color and markings, and vocalization. However, such sex differences are primarily limited to the anthropoid primates; most of the strepsirrhine primates and tarsiers are monomorphic.

Sex differences in humans

Sex differences in humans

Sex differences in humans have been studied in a variety of fields. Sex determination occurs by the presence or absence of a Y in the 23rd pair of chromosomes in the human genome. Phenotypic sex refers to an individual's sex as determined by their internal and external genitalia and expression of secondary sex characteristics.

Pioneer plaque

Pioneer plaque

The Pioneer plaques are a pair of gold-anodized aluminum plaques that were placed on board the 1972 Pioneer 10 and 1973 Pioneer 11 spacecraft, featuring a pictorial message, in case either Pioneer 10 or 11 is intercepted by intelligent extraterrestrial life. The plaques show the nude figures of a human male and female along with several symbols that are designed to provide information about the origin of the spacecraft.

Pelvis

Pelvis

The pelvis is the lower part of the trunk, between the abdomen and the thighs, together with its embedded skeleton.

Basal metabolic rate

Basal metabolic rate

Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. It is reported in energy units per unit time ranging from watt (joule/second) to ml O2/min or joule per hour per kg body mass J/(h·kg). Proper measurement requires a strict set of criteria to be met. These criteria include being in a physically and psychologically undisturbed state and being in a thermally neutral environment while in the post-absorptive state (i.e., not actively digesting food). In bradymetabolic animals, such as fish and reptiles, the equivalent term standard metabolic rate (SMR) applies. It follows the same criteria as BMR, but requires the documentation of the temperature at which the metabolic rate was measured. This makes BMR a variant of standard metabolic rate measurement that excludes the temperature data, a practice that has led to problems in defining "standard" rates of metabolism for many mammals.

Fat

Fat

In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food.

Immune function

Sexual dimorphism in immune function is a common pattern in vertebrates and also in a number of invertebrates. Most often, females are more 'immunocompetent' than males. This trait is not consistent among all animals, but differs depending on taxonomy, with the most female-biased immune systems being found in insects.[120] In mammals this results in more frequent and severe infections in males and higher rates of autoimmune disorders in females. One potential cause may be differences in gene expression of immune cells between the sexes.[121] Another explanation is that endocrinological differences between the sexes impact the immune system – for example, testosterone acts as an immunosuppressive agent.[122]

Cells

Phenotypic differences between sexes are evident even in cultured cells from tissues.[123] For example, female muscle-derived stem cells have a better muscle regeneration efficiency than male ones.[124] There are reports of several metabolic differences between male and female cells[125] and they also respond to stress differently.[126]

Reproductively advantageous

In theory, larger females are favored by competition for mates, especially in polygamous species. Larger females offer an advantage in fertility, since the physiological demands of reproduction are limiting in females. Hence there is a theoretical expectation that females tend to be larger in species that are monogamous. Females are larger in many species of insects, many spiders, many fish, many reptiles, owls, birds of prey and certain mammals such as the spotted hyena, and baleen whales such as blue whale. As an example, in some species, females are sedentary, and so males must search for them. Fritz Vollrath and Geoff Parker argue that this difference in behaviour leads to radically different selection pressures on the two sexes, evidently favouring smaller males.[127] Cases where the male is larger than the female have been studied as well,[127] and require alternative explanations.

One example of this type of sexual size dimorphism is the bat Myotis nigricans, (black myotis bat) where females are substantially larger than males in terms of body weight, skull measurement, and forearm length.[128] The interaction between the sexes and the energy needed to produce viable offspring make it favorable for females to be larger in this species. Females bear the energetic cost of producing eggs, which is much greater than the cost of making sperm by the males. The fecundity advantage hypothesis states that a larger female is able to produce more offspring and give them more favorable conditions to ensure their survival; this is true for most ectotherms. A larger female can provide parental care for a longer time while the offspring matures. The gestation and lactation periods are fairly long in M. nigricans, the females suckling their offspring until they reach nearly adult size.[129] They would not be able to fly and catch prey if they did not compensate for the additional mass of the offspring during this time. Smaller male size may be an adaptation to increase maneuverability and agility, allowing males to compete better with females for food and other resources.

Female triplewart seadevil, an anglerfish, with male attached near vent (arrow)
Female triplewart seadevil, an anglerfish, with male attached near vent (arrow)

Some species of anglerfish also display extreme sexual dimorphism. Females are more typical in appearance to other fish, whereas the males are tiny rudimentary creatures with stunted digestive systems. A male must find a female and fuse with her: he then lives parasitically, becoming little more than a sperm-producing body in what amounts to an effectively hermaphrodite composite organism. A similar situation is found in the Zeus water bug Phoreticovelia disparata where the female has a glandular area on her back that can serve to feed a male, which clings to her (note that although males can survive away from females, they generally are not free-living).[130] This is taken to the logical extreme in the Rhizocephala crustaceans, like the Sacculina, where the male injects itself into the female's body and becomes nothing more than sperm producing cells, to the point that the superorder used to be mistaken for hermaphroditic.[131]

Some plant species also exhibit dimorphism in which the females are significantly larger than the males, such as in the moss Dicranum[132] and the liverwort Sphaerocarpos.[133] There is some evidence that, in these genera, the dimorphism may be tied to a sex chromosome,[133][134] or to chemical signalling from females.[135]

Another complicated example of sexual dimorphism is in Vespula squamosa, the southern yellowjacket. In this wasp species, the female workers are the smallest, the male workers are slightly larger, and the female queens are significantly larger than her female worker and male counterparts.

Discover more about Reproductively advantageous related topics

Insect

Insect

Insects are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body, three pairs of jointed legs, compound eyes and one pair of antennae. Their blood is not totally contained in vessels; some circulates in an open cavity known as the haemocoel. Insects are the most diverse group of animals; they include more than a million described species and represent more than half of all known living organisms. The total number of extant species is estimated at between six and ten million; potentially over 90% of the animal life forms on Earth are insects. Insects may be found in nearly all environments, although only a small number of species reside in the oceans, which are dominated by another arthropod group, crustaceans, which recent research has indicated insects are nested within.

Spider

Spider

Spiders are air-breathing arthropods that have eight legs, chelicerae with fangs generally able to inject venom, and spinnerets that extrude silk. They are the largest order of arachnids and rank seventh in total species diversity among all orders of organisms. Spiders are found worldwide on every continent except for Antarctica, and have become established in nearly every land habitat. As of August 2022, 50,356 spider species in 132 families have been recorded by taxonomists. However, there has been debate among scientists about how families should be classified, with over 20 different classifications proposed since 1900.

Fish

Fish

Fish are aquatic, craniate, gill-bearing animals that lack limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of living fish species are ray-finned fish, belonging to the class Actinopterygii, with around 99% of those being teleosts.

Owl

Owl

Owls are birds from the order Strigiformes, which includes over 200 species of mostly solitary and nocturnal birds of prey typified by an upright stance, a large, broad head, binocular vision, binaural hearing, sharp talons, and feathers adapted for silent flight. Exceptions include the diurnal northern hawk-owl and the gregarious burrowing owl.

Blue whale

Blue whale

The blue whale is a marine mammal and a baleen whale. Reaching a maximum confirmed length of 29.9 meters (98 ft) and weighing up to 199 tonnes, it is the largest animal known ever to have existed. The blue whale's long and slender body can be of various shades of greyish-blue dorsally and somewhat lighter underneath. Four subspecies are recognized: B. m. musculus in the North Atlantic and North Pacific, B. m. intermedia in the Southern Ocean, B. m. brevicauda in the Indian Ocean and South Pacific Ocean, B. m. indica in the Northern Indian Ocean. There is also a population in the waters off Chile that may constitute a fifth subspecies.

Geoff Parker

Geoff Parker

Professor Geoffrey Alan Parker FRS is an emeritus professor of biology at the University of Liverpool and the 2008 recipient of the Darwin Medal. Parker has been called “the professional’s professional”.

Anglerfish

Anglerfish

The anglerfish are fish of the teleost order Lophiiformes. They are bony fish named for their characteristic mode of predation, in which a modified luminescent fin ray acts as a lure for other fish. The luminescence comes from symbiotic bacteria, which are thought to be acquired from seawater, that dwell in and around the sea.

Phoreticovelia disparata

Phoreticovelia disparata

Phoreticovelia disparata, also called the Zeus bug, is a species of semi-aquatic bug from the family Veliidae with a unique form of sexual dimorphism. It is endemic to Australia (Queensland).

Rhizocephala

Rhizocephala

Rhizocephala are derived barnacles that parasitise mostly decapod crustaceans, but can also infest Peracarida, mantis shrimps and thoracican barnacles, and are found from the deep ocean to freshwater. Together with their sister groups Thoracica and Acrothoracica, they make up the subclass Cirripedia. Their body plan is uniquely reduced in an extreme adaptation to their parasitic lifestyle, and makes their relationship to other barnacles unrecognisable in the adult form. The name Rhizocephala derives from the Ancient Greek roots ῥίζα and κεφαλή, describing the adult female, which mostly consists of a network of thread-like extensions penetrating the body of the host.

Sacculina

Sacculina

Sacculina is a genus of barnacles that is a parasitic castrator of crabs. They belong to a group called Rhizocephala. The adults bear no resemblance to the barnacles that cover ships and piers; they are recognised as barnacles because their larval forms are like other members of the barnacle class Cirripedia. The prevalence of this crustacean parasite in its crab host can be as high as 50%.

Dicranum

Dicranum

Dicranum is a genus of mosses, also called wind-blown mosses or fork mosses. These mosses form in densely packed clumps. Stems may fork, but do not branch. In general, upright stems will be single but packed together. Dicranum is distributed globally. In North America these are commonly found in Jack pine or Red pine stands.

Sphaerocarpos

Sphaerocarpos

Sphaerocarpos is a genus of plants known as bottle liverworts. There are eight or nine species in this genus.

Evolution

Sexual dimorphism in Cambrian trilobites.[136]
Sexual dimorphism in Cambrian trilobites.[136]

In 1871, Charles Darwin advanced the theory of sexual selection, which related sexual dimorphism with sexual selection.[137]

The first step towards sexual dimorphism is the size differentiation of sperm and eggs (anisogamy).[138] Anisogamy and the usually large number of small male gametes relative to the larger female gametes usually lies in the development of strong sperm competition,[139][140] because small sperm enable organisms to produce a large number of sperm, and make males (or male function of hermaphrodites[141]) more redundant.

This intensifies male competition for mates and promotes the evolution of other sexual dimorphism in many species, especially in vertebrates including mammals. However, in some species females compete for mates in ways more usually associated with males (usually species in which males invest a lot in rearing offspring and thus are no longer considered as so redundant).

Sexual dimorphism by size is evident in some extinct species such as the velociraptor. In the case of velociraptors the sexual size dimorphism may have been caused by two factors: male competition for hunting ground to attract mates, and/or female competition for nesting locations and mates, males being a scarce breeding resource.[142]

Volvocine algae have been useful in understanding the evolution of sexual dimorphism [143] and species like the beetle C. maculatus, where the females are larger than the males, are used to study its underlying genetic mechanisms. [144]

In many non-monogamous species, the benefit to a male's reproductive fitness of mating with multiple females is large, whereas the benefit to a female's reproductive fitness of mating with multiple males is small or nonexistent.[145] In these species, there is a selection pressure for whatever traits enable a male to have more matings. The male may therefore come to have different traits from the female.

Male (left), offspring, and female (right) Sumatran orangutans.
Male (left), offspring, and female (right) Sumatran orangutans.

These traits could be ones that allow him to fight off other males for control of territory or a harem, such as large size or weapons;[146] or they could be traits that females, for whatever reason, prefer in mates.[147] Male–male competition poses no deep theoretical questions[148] but mate choice does.

Females may choose males that appear strong and healthy, thus likely to possess "good alleles" and give rise to healthy offspring.[149] In some species, however, females seem to choose males with traits that do not improve offspring survival rates, and even traits that reduce it (potentially leading to traits like the peacock's tail).[148] Two hypotheses for explaining this fact are the sexy son hypothesis and the handicap principle.

The sexy son hypothesis states that females may initially choose a trait because it improves the survival of their young, but once this preference has become widespread, females must continue to choose the trait, even if it becomes harmful. Those that do not will have sons that are unattractive to most females (since the preference is widespread) and so receive few matings.[150]

The handicap principle states that a male who survives despite possessing some sort of handicap thus proves that the rest of his genes are "good alleles". If males with "bad alleles" could not survive the handicap, females may evolve to choose males with this sort of handicap; the trait is acting as a hard-to-fake signal of fitness.[151]

Discover more about Evolution related topics

Sexual selection

Sexual selection

Sexual selection is a mode of natural selection in which members of one biological sex choose mates of the other sex to mate with, and compete with members of the same sex for access to members of the opposite sex. These two forms of selection mean that some individuals have greater reproductive success than others within a population, for example because they are more attractive or prefer more attractive partners to produce offspring. Successful males benefit from frequent mating and monopolizing access to one or more fertile females. Females can maximise the return on the energy they invest in reproduction by selecting and mating with the best males.

Mate choice

Mate choice

Mate choice is one of the primary mechanisms under which evolution can occur. It is characterized by a "selective response by animals to particular stimuli" which can be observed as behavior. In other words, before an animal engages with a potential mate, they first evaluate various aspects of that mate which are indicative of quality—such as the resources or phenotypes they have—and evaluate whether or not those particular trait(s) are somehow beneficial to them. The evaluation will then incur a response of some sort.

Cambrian

Cambrian

The Cambrian Period is the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million years ago (mya) to the beginning of the Ordovician Period 485.4 mya. Its subdivisions, and its base, are somewhat in flux. The period was established as "Cambrian series" by Adam Sedgwick, who named it after Cambria, the Latin name for 'Cymru' (Wales), where Britain's Cambrian rocks are best exposed. Sedgwick identified the layer as part of his task, along with Roderick Murchison, to subdivide the large "Transition Series", although the two geologists disagreed for a while on the appropriate categorization. The Cambrian is unique in its unusually high proportion of lagerstätte sedimentary deposits, sites of exceptional preservation where "soft" parts of organisms are preserved as well as their more resistant shells. As a result, our understanding of the Cambrian biology surpasses that of some later periods.

Trilobite

Trilobite

Trilobites are extinct marine arthropods that form the class Trilobita. Trilobites form one of the earliest known groups of arthropods. The first appearance of trilobites in the fossil record defines the base of the Atdabanian stage of the Early Cambrian period and they flourished throughout the lower Paleozoic before slipping into a long decline, when, during the Devonian, all trilobite orders except the Proetida died out. The last extant trilobites finally disappeared in the mass extinction at the end of the Permian about 252 million years ago. Trilobites were among the most successful of all early animals, existing in oceans for almost 270 million years, with over 22,000 species having been described.

Charles Darwin

Charles Darwin

Charles Robert Darwin was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended from a common ancestor is now generally accepted and considered a fundamental concept in science. In a joint publication with Alfred Russel Wallace, he introduced his scientific theory that this branching pattern of evolution resulted from a process he called natural selection, in which the struggle for existence has a similar effect to the artificial selection involved in selective breeding. Darwin has been described as one of the most influential figures in human history and was honoured by burial in Westminster Abbey.

Anisogamy

Anisogamy

Anisogamy is a form of sexual reproduction that involves the union or fusion of two gametes that differ in size and/or form. The smaller gamete is male, a sperm cell, whereas the larger gamete is female, typically an egg cell. Anisogamy is predominant among multicellular organisms. In both plants and animals gamete size difference is the fundamental difference between females and males.

Sperm competition

Sperm competition

Sperm competition is the competitive process between spermatozoa of two or more different males to fertilize the same egg during sexual reproduction. Competition can occur when females have multiple potential mating partners. Greater choice and variety of mates increases a female's chance to produce more viable offspring. However, multiple mates for a female means each individual male has decreased chances of producing offspring. Sperm competition is an evolutionary pressure on males, and has led to the development of adaptations to increase males' chance of reproductive success. Sperm competition results in a sexual conflict of interest between males and females. Males have evolved several defensive tactics including: mate-guarding, mating plugs, and releasing toxic seminal substances to reduce female re-mating tendencies to cope with sperm competition. Offensive tactics of sperm competition involve direct interference by one male on the reproductive success of another male, for instance by physically removing another male's sperm prior to mating with a female. For an example, see Gryllus bimaculatus.

Velociraptor

Velociraptor

Velociraptor is a genus of small dromaeosaurid dinosaur that lived in Asia during the Late Cretaceous epoch, about 75 million to 71 million years ago. Two species are currently recognized, although others have been assigned in the past. The type species is V. mongoliensis; fossils of this species have been discovered in the Djadochta Formation, Mongolia. A second species, V. osmolskae, was named in 2008 for skull material from the Bayan Mandahu Formation, China.

Callosobruchus maculatus

Callosobruchus maculatus

Callosobruchus maculatus is a species of beetles known commonly as the cowpea weevil or cowpea seed beetle. It is a member of the leaf beetle family, Chrysomelidae, and not a true weevil. This common pest of stored legumes has a cosmopolitan distribution, occurring on every continent except Antarctica. The beetle most likely originated in West Africa and moved around the globe with the trade of legumes and other crops. As only a small number of individuals were likely present in legumes carried by people to distant places, the populations that have invaded various parts of the globe have likely gone through multiple bottlenecks. Despite these bottlenecks and the subsequent rounds of inbreeding, these populations persist. This ability to withstand a high degree of inbreeding has likely contributed to this species’ prevalence as a pest.

Sumatran orangutan

Sumatran orangutan

The Sumatran orangutan is one of the three species of orangutans. Critically Endangered, and found only in the north of the Indonesian island of Sumatra, it is rarer than the Bornean orangutan but more common than the recently identified Tapanuli orangutan, also found in Sumatra. Its common name is based on two separate local words, "orang" and "hutan" ("forest"), derived from Malay, and translates as 'person of the forest'.

Harem (zoology)

Harem (zoology)

A harem is an animal group consisting of one or two males, a number of females, and their offspring. The dominant male drives off other males and maintains the unity of the group. If present, the second male is subservient to the dominant male. As juvenile males grow, they leave the group and roam as solitary individuals or join bachelor herds. Females in the group may be inter-related. The dominant male mates with the females as they become sexually active and drives off competitors, until he is displaced by another male. In some species, incoming males that achieve dominant status may commit infanticide.

Allele

Allele

An allele is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution.The word "Allele" is a short form of "allelomorph". "The chromosomal or genomic location of a gene or any other genetic element is called a locus and alternative DNA sequences at a locus are called alleles."

Source: "Sexual dimorphism", Wikipedia, Wikimedia Foundation, (2023, March 20th), https://en.wikipedia.org/wiki/Sexual_dimorphism.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ Encyclopedia of Animal Behaviour. Vol. 2. Academic Press. 21 January 2019. p. 7. ISBN 978-0-12-813252-4.
  2. ^ Ralls K, Mesnick S (2009). "Sexual dimorphism". Academic Press. 1 (1): 1005–1011. doi:10.1016/B978-0-12-373553-9.00233-9. ISBN 9780123735539.
  3. ^ "Dictionary of Human Evolution and Biology". Human-biology.key-spot.ru. Archived from the original on 7 November 2017. Retrieved 3 November 2017.
  4. ^ Armenta JK, Dunn PO, Whittingham LA (August 2008). "Quantifying avian sexual dichromatism: a comparison of methods". The Journal of Experimental Biology. 211 (Pt 15): 2423–30. doi:10.1242/jeb.013094. PMID 18626076.
  5. ^ Zahavi A (September 1975). "Mate selection-a selection for a handicap" (PDF). Journal of Theoretical Biology. 53 (1): 205–14. Bibcode:1975JThBi..53..205Z. CiteSeerX 10.1.1.586.3819. doi:10.1016/0022-5193(75)90111-3. PMID 1195756.
  6. ^ Andersson 1994
  7. ^ a b Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, et al. (October 2003). "Coloration strategies in peacock feathers". Proceedings of the National Academy of Sciences of the United States of America. 100 (22): 12576–8. Bibcode:2003PNAS..10012576Z. doi:10.1073/pnas.2133313100. PMC 240659. PMID 14557541.
  8. ^ Slagsvold T, Lifjeld JT (1985). "Variation in plumage colour of the Great tit Parus major in relation to habitat, season and food". Journal of Zoology. 206 (3): 321–328. doi:10.1111/j.1469-7998.1985.tb05661.x.
  9. ^ Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (August 1997). "Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds". Vision Research. 37 (16): 2183–94. doi:10.1098/rspb.1998.0315. PMC 1688915. PMID 9578901.
  10. ^ Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (August 1997). "Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds". Vision Research. 37 (16): 2183–94. doi:10.1098/rspb.1998.0316. JSTOR 50814. PMC 1688906. PMID 9578901.
  11. ^ Senar JC, Figuerola J, Pascual J (February 2002). "Brighter yellow blue tits make better parents". Proceedings. Biological Sciences. 269 (1488): 257–61. doi:10.1098/rspb.2001.1882. PMC 1690890. PMID 11839194.
  12. ^ Johnsen A, Delhey K, Andersson S, Kempenaers B (June 2003). "Plumage colour in nestling blue tits: sexual dichromatism, condition dependence and genetic effects". Proceedings. Biological Sciences. 270 (1521): 1263–70. doi:10.1098/rspb.2003.2375. JSTOR 3558810. PMC 1691364. PMID 12816639.
  13. ^ Lozano GA (1994). "Carotenoids, parasites, and sexual selection" (PDF). Oikos. 70 (2): 309–311. doi:10.2307/3545643. JSTOR 3545643.
  14. ^ Donnellan, S. C., & Mahony, M. J. (2004). Allozyme, chromosomal, and morphological variability in the Litoria lesueuri species group (Anura : Hylidae), including a description of a new species. Australian Journal of Zoology
  15. ^ Bell, R. C., & Zamudio, K. R. (2012). Sexual dichromatism in frogs: natural selection, sexual selection, and unexpected diversity. Proceedings of the Royal Society B: Biological Sciences.
  16. ^ Ryan MJ, Rand AS (April 1993). "Species Recognition and Sexual Selection as a Unitary Problem in Animal Communication". Evolution; International Journal of Organic Evolution. 47 (2): 647–657. doi:10.2307/2410076. JSTOR 2410076. PMID 28568715.
  17. ^ Rubolini D, Spina F, Saino N (2004). "Protandry and sexual dimorphism in trans-Saharan migratory birds". Behavioral Ecology. 15 (4): 592–601. CiteSeerX 10.1.1.498.7541. doi:10.1093/beheco/arh048.
  18. ^ Short RV, Balaban E (4 August 1994). The Differences Between the Sexes. Cambridge University Press. ISBN 9780521448789. Retrieved 3 November 2017 – via Google Books.
  19. ^ Giacomello E, Marchini D, Rasotto MB (September 2006). "A male sexually dimorphic trait provides antimicrobials to eggs in blenny fish". Biology Letters. 2 (3): 330–3. doi:10.1098/rsbl.2006.0492. PMC 1686180. PMID 17148395.
  20. ^ Renner SS, Ricklefs RE (1995). "Dioecy and its correlates in the flowering plants". American Journal of Botany. 82 (5): 596–606. doi:10.2307/2445418. JSTOR 2445418.
  21. ^ Behnke H, Lüttge U, Esser K, Kadereit JW, Runge M (6 December 2012). Progress in Botany / Fortschritte der Botanik: Structural Botany Physiology Genetics Taxonomy Geobotany / Struktur Physiologie Genetik Systematik Geobotanik. Springer Science & Business Media. ISBN 978-3-642-79844-3.
  22. ^ Ramawat KG, Merillon JM, Shivanna KR (19 April 2016). Reproductive Biology of Plants. CRC Press. ISBN 978-1-4822-0133-8.
  23. ^ Romero GA, Nelson CE (June 1986). "Sexual dimorphism in Catasetum orchids: forcible pollen emplacement and male flower competition". Science. 232 (4757): 1538–40. Bibcode:1986Sci...232.1538R. doi:10.1126/science.232.4757.1538. JSTOR 1698050. PMID 17773505. S2CID 31296391.
  24. ^ "Eel Grass (aka wild celery, tape grass)". University of Massachusetts. Archived from the original on 12 July 2011.
  25. ^ Friedman J, Barrett SC (June 2009). "Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants". Annals of Botany. 103 (9): 1515–27. doi:10.1093/aob/mcp035. PMC 2701749. PMID 19218583.
  26. ^ Geber MA (1999). Gender and sexual dimorphism in flowering plants. Berlin: Springer. ISBN 978-3-540-64597-9. p. 206
  27. ^ Bonduriansky R (January 2007). "The evolution of condition-dependent sexual dimorphism". The American Naturalist. 169 (1): 9–19. doi:10.1086/510214. PMID 17206580. S2CID 17439073.
  28. ^ Barreto FS, Avise JC (August 2011). "The genetic mating system of a sea spider with male-biased sexual size dimorphism: evidence for paternity skew despite random mating success". Behavioral Ecology and Sociobiology. 65 (8): 1595–1604. doi:10.1007/s00265-011-1170-x. PMC 3134710. PMID 21874083.
  29. ^ Gruber B, Eckel K, Everaars J, Dormann CF (30 June 2011). "On managing the red mason bee (Osmia bicornis) in apple orchards" (PDF). Apidologie. 42 (5): 564–576. doi:10.1007/s13592-011-0059-z. ISSN 0044-8435. S2CID 22935710.
  30. ^ "hackberry emperor – Asterocampa celtis (Boisduval & Leconte)". entnemdept.ufl.edu. Retrieved 15 November 2017.
  31. ^ Rust R, Torchio P, Trostle G (1989). "Late embryogenesis and immature development of Osmia rufa cornigera (Rossi) (Hymenoptera : Megachilidae)". Apidologie. 20 (4): 359–367. doi:10.1051/apido:19890408.
  32. ^ Danforth B (1991). "The morphology and behavior of dimorphic males in Perdita portalis (Hymenoptera : Andrenidae)". Behavioral Ecology and Sociobiology. 29 (4): 235–247. doi:10.1007/bf00163980. S2CID 37651908.
  33. ^ Jaycox Elbert R (1967). "Territorial Behavior Among Males of Anthidium Bamngense". Journal of the Kansas Entomological Society. 40 (4): 565–570.
  34. ^ Kukuk PF (1 October 1996). "Male Dimorphism in Lasioglossum (Chilalictus) hemichalceum: The Role of Larval Nutrition". Journal of the Kansas Entomological Society. 69 (4): 147–157. JSTOR 25085712.
  35. ^ Paxton RJ, Giovanetti M, Andrietti F, Scamoni E, Scanni B (1 October 1999). "Mating in a communal bee, Andrena agilissima (Hymenoptera Andrenidae)". Ethology Ecology & Evolution. 11 (4): 371–382. doi:10.1080/08927014.1999.9522820. ISSN 0394-9370.
  36. ^ Wang MQ, Yang D (2005). "Sexual dimorphism in insects". Chinese Bulletin of Entomology. 42: 721–725.
  37. ^ a b Sugiura S, Yamaura Y, Makihara H (November 2007). "Sexual and male horn dimorphism in Copris ochus (Coleoptera: Scarabaeidae)". Zoological Science. 24 (11): 1082–1085. doi:10.2108/zsj.24.1082. PMID 18348608. S2CID 34705415.
  38. ^ a b Emlen DJ, Marangelo J, Ball B, Cunningham CW (May 2005). "Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae)". Evolution; International Journal of Organic Evolution. 59 (5): 1060–1084. CiteSeerX 10.1.1.133.7557. doi:10.1111/j.0014-3820.2005.tb01044.x. PMID 16136805. S2CID 221736269.
  39. ^ Teder, T., & Tammaru, T. (2005). "Sexual size dimorphism within species increases with body size in insects". Oikos
  40. ^ Oliver JC, Monteiro A (July 2011). "On the origins of sexual dimorphism in butterflies". Proceedings. Biological Sciences. 278 (1714): 1981–1988. doi:10.1098/rspb.2010.2220. PMC 3107650. PMID 21123259.
  41. ^ Robertson KA, Monteiro A (August 2005). "Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils". Proceedings. Biological Sciences. 272 (1572): 1541–1546. doi:10.1098/rspb.2005.3142. PMC 1559841. PMID 16048768.
  42. ^ Wiklund C, Lindfors V, Forsberg J (1996). "Early Male Emergence and Reproductive Phenology of the Adult Overwintering Butterfly Gonepteryx rhamni in Sweden". Oikos. 75 (2): 227–240. doi:10.2307/3546246. JSTOR 3546246.
  43. ^ Kunte K (July 2008). "Mimetic butterflies support Wallace's model of sexual dimorphism". Proceedings. Biological Sciences. 275 (1643): 1617–1624. doi:10.1098/rspb.2008.0171. PMC 2602815. PMID 18426753.
  44. ^ McLean CJ, Garwood RJ, Brassey CA (2018). "Sexual dimorphism in the Arachnid orders". PeerJ. 6: e5751. doi:10.7717/peerj.5751. PMC 6225839. PMID 30416880.
  45. ^ Smith T. Discovering the daily activity pattern of Zygiella x-notata and its relationship to light (PDF) (MS thesis).
  46. ^ Prenter J, Elwood RW, Montgomery WI (December 1999). "Sexual Size Dimorphism and Reproductive Investment by Female Spiders: A Comparative Analysis". Evolution; International Journal of Organic Evolution. 53 (6): 1987–1994. doi:10.2307/2640458. JSTOR 2640458. PMID 28565440.
  47. ^ a b c Wilder SM, Rypstra AL (2008). "Sexual size dimorphism mediates the occurrence of state-dependent sexual cannibalism in a wolf spider". Animal Behaviour. 76 (2): 447–454. doi:10.1016/j.anbehav.2007.12.023. S2CID 54373571.
  48. ^ Foellmer MW, Fairbairn DJ (2004). "Males under attack: Sexual cannibalism and its consequences for male morphology and behaviour in an orb-weaving spider". Evolutionary Ecology Research. 6: 163–181.
  49. ^ Girard MB, Elias DO, Kasumovic MM (December 2015). "Female preference for multi-modal courtship: multiple signals are important for male mating success in peacock spiders". Proceedings. Biological Sciences. 282 (1820): 20152222. doi:10.1098/rspb.2015.2222. PMC 4685782. PMID 26631566.
  50. ^ Fairbairn D (28 April 2013). Odd Couples: Extraordinary Differences between the Sexes in the Animal Kingdom. Princeton. ISBN 978-0691141961.
  51. ^ Ota K, Kohda M, Sato T (June 2010). "Unusual allometry for sexual size dimorphism in a cichlid where males are extremely larger than females". Journal of Biosciences. 35 (2): 257–65. doi:10.1007/s12038-010-0030-6. PMID 20689182. S2CID 12396902.
  52. ^ Sato T (1994). "Active accumulation of spawning substrate: a determinant of extreme polygyny in a shell-brooding cichlid fish". Animal Behaviour. 48 (3): 669–678. doi:10.1006/anbe.1994.1286. S2CID 53192909.
  53. ^ Schütz D, Taborsky M (2005). "Mate choice and sexual conflict in the size dimorphic water spider Argyroneta aquatica (Araneae: Argyronetidae)" (PDF). Journal of Arachnology. 33 (3): 767–775. doi:10.1636/S03-56.1. S2CID 26712792.
  54. ^ McCormick MI, Ryen CA, Munday PL, Walker SP (May 2010). Briffa M (ed.). "Differing mechanisms underlie sexual size-dimorphism in two populations of a sex-changing fish". PLOS ONE. 5 (5): e10616. Bibcode:2010PLoSO...510616M. doi:10.1371/journal.pone.0010616. PMC 2868897. PMID 20485547.
  55. ^ Warner RR (June 1988). "Sex change and the size-advantage model". Trends in Ecology & Evolution. 3 (6): 133–6. doi:10.1016/0169-5347(88)90176-0. PMID 21227182.
  56. ^ Adams S, Williams AJ (2001). "A preliminary test of the transitional growth spurt hypothesis using the protogynous coral trout Plectropomus maculatus". Journal of Fish Biology. 59 (1): 183–185. doi:10.1111/j.1095-8649.2001.tb02350.x.
  57. ^ Hendry A, Berg OK (1999). "Secondary sexual characters, energy use, senescence, and the cost of reproduction in sockeye salmon". Canadian Journal of Zoology. 77 (11): 1663–1675. doi:10.1139/cjz-77-11-1663.
  58. ^ a b Amundsen T, Forsgren E (November 2001). "Male mate choice selects for female coloration in a fish". Proceedings of the National Academy of Sciences of the United States of America. 98 (23): 13155–60. Bibcode:2001PNAS...9813155A. doi:10.1073/pnas.211439298. PMC 60840. PMID 11606720.
  59. ^ a b Svensson PA, Pélabon C, Blount JD, Surai PF, Amundsen T (2006). "Does female nuptial coloration reflect egg carotenoids and clutch quality in the Two-Spotted Goby (Gobiusculus flavescens, Gobiidae)?". Functional Ecology. 20 (4): 689–698. doi:10.1111/j.1365-2435.2006.01151.x.
  60. ^ Butler MA, Schoener TW, Losos JB (February 2000). "The relationship between sexual size dimorphism and habitat use in Greater Antillean Anolis lizards". Evolution; International Journal of Organic Evolution. 54 (1): 259–72. doi:10.1111/j.0014-3820.2000.tb00026.x. PMID 10937202. S2CID 7887284.
  61. ^ Sanger TJ, Seav SM, Tokita M, Langerhans RB, Ross LM, Losos JB, Abzhanov A (June 2014). "The oestrogen pathway underlies the evolution of exaggerated male cranial shapes in Anolis lizards". Proceedings. Biological Sciences. 281 (1784): 20140329. doi:10.1098/rspb.2014.0329. PMC 4043096. PMID 24741020.
  62. ^ a b Pinto, A., Wiederhecker, H., & Colli, G. (2005). Sexual dimorphism in the Neotropical lizard, Tropidurus torquatus (Squamata, Tropiduridae). Amphibia-Reptilia.
  63. ^ a b Olsson M, Tobler M, Healey M, Perrin C, Wilson M (August 2012). "A significant component of ageing (DNA damage) is reflected in fading breeding colors: an experimental test using innate antioxidant mimetics in painted dragon lizards". Evolution; International Journal of Organic Evolution. 66 (8): 2475–83. doi:10.1111/j.1558-5646.2012.01617.x. PMID 22834746. S2CID 205783815.
  64. ^ Andersson 1994, p. 269
  65. ^ Berns CM, Adams DC (11 November 2012). "Becoming Different But Staying Alike: Patterns of Sexual Size and Shape Dimorphism in Bills of Hummingbirds". Evolutionary Biology. 40 (2): 246–260. doi:10.1007/s11692-012-9206-3. ISSN 0071-3260. S2CID 276492.
  66. ^ McGraw KJ, Hill GE, Stradi R, Parker RS (February 2002). "The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American goldfinch" (PDF). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 131 (2): 261–9. doi:10.1016/S1096-4959(01)00500-0. PMID 11818247. Archived from the original (PDF) on 28 August 2005.
  67. ^ Gibbs HL, Weatherhead PJ, Boag PT, White BN, Tabak LM, Hoysak DJ (December 1990). "Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers". Science. 250 (4986): 1394–7. doi:10.1098/rspb.1998.0308. JSTOR 50849. PMC 1688905. PMID 17754986.
  68. ^ a b c d Lindsay WR, Webster MS, Varian CW, Schwabl H (2009). "Plumage colour acquisition and behaviour are associated with androgens in a phenotypically plastic bird". Animal Behaviour. 77 (6): 1525–1532. doi:10.1016/j.anbehav.2009.02.027. S2CID 15799876.
  69. ^ Petrie M (1994). "Improved growth and survival of offspring of peacocks with more elaborate trains". Nature. 371 (6498): 598–599. Bibcode:1994Natur.371..598P. doi:10.1038/371598a0. S2CID 4316752.
  70. ^ Rubolini D, Spina F, Saino N (2004). "Protandry and sexual dimorphism in trans-saharan migratory birds". Behavioral Ecology. 15 (4): 592–601. doi:10.1093/beheco/arh048.
  71. ^ Kissner KJ, Weatherhead PJ, Francis CM (January 2003). "Sexual size dimorphism and timing of spring migration in birds". Journal of Evolutionary Biology. 16 (1): 154–62. CiteSeerX 10.1.1.584.2867. doi:10.1046/j.1420-9101.2003.00479.x. PMID 14635890. S2CID 13830052.
  72. ^ a b Møller AP, Nielsen JT (2006). "Prey vulnerability in relation to sexual coloration of prey". Behavioral Ecology and Sociobiology. 60 (2): 227–233. doi:10.1007/s00265-006-0160-x. S2CID 36836956.
  73. ^ a b c Adkins-Regan E (2007). "Hormones and the development of sex differences in behavior". Journal of Ornithology. 148 (Supplement 1): S17–S26. doi:10.1007/s10336-007-0188-3. S2CID 13868097.
  74. ^ a b c d Martin U, Grüebler HS, Müller M, Spaar R, Horch P, Naef-Daenzer B (2008). "Female biased mortality caused by anthropogenic nest loss contributes to population decline and adult sex ratio of a meadow bird". Biological Conservation. 141 (12): 3040–3049. doi:10.1016/j.biocon.2008.09.008.
  75. ^ Owens, I. P. F., Short, R.V.,. (1995). Hormonal basis of sexual dimorphism in birds: Implications for new theories of sexual selection. Trends in Ecology & Evolution., 10(REF), 44.
  76. ^ a b Coyne JA, Kay EH, Pruett-Jones S (January 2008). "The genetic basis of sexual dimorphism in birds". Evolution; International Journal of Organic Evolution. 62 (1): 214–9. doi:10.1111/j.1558-5646.2007.00254.x. PMID 18005159. S2CID 11490688.
  77. ^ Velando A (2002). "Experimental Manipulation of Maternal Effort Produces Differential Effects in Sons and Daughters: Implications for Adaptive Sex Ratios in the Blue-footed Booby". Behavioral Ecology. 13 (4): 443–449. doi:10.1093/beheco/13.4.443.
  78. ^ Loonstra AJ, Verhoeven MA, Piersma T (2018). "Sex‐specific growth in chicks of the sexually dimorphic Black‐tailed Godwit" (PDF). Ibis. 160 (1): 89–100. doi:10.1111/ibi.12541. S2CID 90880117.
  79. ^ a b Main MB (March 2008). "Reconciling competing ecological explanations for sexual segregation in ungulates". Ecology. 89 (3): 693–704. doi:10.1890/07-0645.1. PMID 18459333.
  80. ^ a b Safi K, König B, Kerth G (2007). "Sex differences in population genetics, home range size and habitat use of the parti-colored bat (Vespertilio murinus, Linnaeus 1758) in Switzerland and their consequences for conservation" (PDF). Biological Conservation. 137 (1): 28–36. doi:10.1016/j.biocon.2007.01.011.
  81. ^ Coulson G, MacFarlane AM, Parsons SE, Cutter J (2006). "Evolution of sexual segregation in mammalian herbivores: kangaroos as marsupial models". Australian Journal of Zoology. 54 (3): 217–224. doi:10.1071/ZO05062.
  82. ^ González-Solís J, Croxall JP, Wood AG (2000). "Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels, Macronectes halli, during incubation". Oikos. 90 (2): 390–398. doi:10.1034/j.1600-0706.2000.900220.x.
  83. ^ a b c d Summers-Smith JD (1988). The Sparrows. Calton, Staffordshire, UK: T. & A. D. Poyser. ISBN 978-0-85661-048-6.
  84. ^ Arnold AP (September 2004). "Sex chromosomes and brain gender". Nature Reviews. Neuroscience. 5 (9): 701–8. doi:10.1038/nrn1494. PMID 15322528. S2CID 7419814.
  85. ^ Cassini MH (January 2020). "A mixed model of the evolution of polygyny and sexual size dimorphism in mammals". Mammal Review. 50 (1): 112–120. doi:10.1111/mam.12171. ISSN 0305-1838. S2CID 208557639.
  86. ^ Cappozzo HL, Campagna C, Monserrat J (1991). "Sexual Dimorphism in Newborn Southern Sea Lions". Marine Mammal Science. 7 (4): 385–394. doi:10.1111/j.1748-7692.1991.tb00113.x.
  87. ^ Salogni E, Galimberti F, Sanvito S, Miller EH (March 2019). "Male and female pups of the highly sexually dimorphic northern elephant seal (Mirounga angustirostris) differ slightly in body size". Canadian Journal of Zoology. 97 (3): 241–250. doi:10.1139/cjz-2018-0220. ISSN 0008-4301. S2CID 91796880.
  88. ^ Ono KA, Boness DJ (January 1996). "Sexual dimorphism in sea lion pups: differential maternal investment, or sex-specific differences in energy allocation?". Behavioral Ecology and Sociobiology. 38 (1): 31–41. doi:10.1007/s002650050214. S2CID 25307359.
  89. ^ Tarnawski BA, Cassini GH, Flores DA (2014). "Skull allometry and sexual dimorphism in the ontogeny of the southern elephant seal (Mirounga leonina)". Canadian Journal of Zoology. 31: 19–31. doi:10.1139/cjz-2013-0106.
  90. ^ Larsen CS (August 2003). "Equality for the sexes in human evolution? Early hominid sexual dimorphism and implications for mating systems and social behavior". Proceedings of the National Academy of Sciences of the United States of America. 100 (16): 9103–4. Bibcode:2003PNAS..100.9103L. doi:10.1073/pnas.1633678100. PMC 170877. PMID 12886010.
  91. ^ Buss DM (2007). "The evolution of human mating" (PDF). Acta Psychologica Sinica. 39 (3): 502–512.
  92. ^ Daly M, Wilson M (1996). "Evolutionary psychology and marital conflict". In Buss DM, Malamuth NM (eds.). Sex, Power, Conflict: Evolutionary and Feminist Perspectives. Oxford University Press. p. 13. ISBN 978-0-19-510357-1.
  93. ^ "Strength training for female athletes: A position paper: Part 1". NSCA. 11 (4). 1989.
  94. ^ Sparling PB, O'Donnell EM, Snow TK (December 1998). "The gender difference in distance running performance has plateaued: an analysis of world rankings from 1980 to 1996". Medicine and Science in Sports and Exercise. 30 (12): 1725–9. doi:10.1097/00005768-199812000-00011. PMID 9861606.
  95. ^ "National Health Statistics Reports" (PDF). National Health Statistics Reports. 10. 22 October 2008. Retrieved 21 April 2012.
  96. ^ "United States National Health and Nutrition Examination Survey, 1999–2002" (PDF). Retrieved 1 May 2014.
  97. ^ a b Glucksman A (1981). Sexual Dimorphism in Human and Mammalian Biology and Pathology. Academic Press. pp. 66–75. ISBN 978-0-12-286960-0. OCLC 7831448.
  98. ^ a b Dance A (27 March 2019). "Why the sexes don't feel pain the same way". Nature. 567 (7749): 448–450. Bibcode:2019Natur.567..448D. doi:10.1038/d41586-019-00895-3. PMID 30918396. S2CID 85527866.
  99. ^ Durden-Smith J, deSimone D (1983). Sex and the Brain. New York: Arbor House. ISBN 978-0-87795-484-2.
  100. ^ Gersh ES, Gersh I (1981). Biology of Women. Nature. Vol. 306. Baltimore: University Park Press (original from the University of Michigan). p. 511. Bibcode:1983Natur.306..511.. doi:10.1038/306511b0. ISBN 978-0-8391-1622-6. S2CID 28060318.
  101. ^ Stein JH (1987). Internal Medicine (2nd ed.). Boston: Little, Brown. ISBN 978-0-316-81236-8.
  102. ^ McLaughlin M, Shryer T (8 August 1988). "Men vs women: the new debate over sex differences". U.S. News & World Report: 50–58.
  103. ^ McEwen BS (March 1981). "Neural gonadal steroid actions". Science. 211 (4488): 1303–11. Bibcode:1981Sci...211.1303M. doi:10.1126/science.6259728. PMID 6259728.
  104. ^ "Acute Pain Tolerance Is More Consistent Over Time in Women Than Men, According to New Research". NCCIH. Retrieved 11 May 2022.
  105. ^ Woznicki K. "Pain Tolerance and Sensitivity in Men, Women, Redheads, and More". WebMD. Retrieved 11 May 2022.
  106. ^ Lopes AM, Ross N, Close J, Dagnall A, Amorim A, Crow TJ (April 2006). "Inactivation status of PCDH11X: sexual dimorphisms in gene expression levels in brain". Human Genetics. 119 (3): 267–75. doi:10.1007/s00439-006-0134-0. PMID 16425037. S2CID 19323646.
  107. ^ Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Taylor K, Hackett G, et al. (January 2012). "Fetal testosterone influences sexually dimorphic gray matter in the human brain". The Journal of Neuroscience. 32 (2): 674–80. doi:10.1523/JNEUROSCI.4389-11.2012. PMC 3306238. PMID 22238103.
  108. ^ "Diverse Roles for Sex Hormone-Binding Globulin in Reproduction". biolreprod.org. Archived from the original on 23 September 2015.
  109. ^ Fine C (August 2010). Delusions of Gender: How Our Minds, Society, and Neurosexism Create Difference (1st ed.). W. W. Norton & Company. ISBN 978-0-393-06838-2.
  110. ^ Jordan-Young R (September 2010). Brain Storm: The Flaws in the Science of Sex Differences. Harvard University Press. ISBN 978-0-674-05730-2.
  111. ^ Marner L, Nyengaard JR, Tang Y, Pakkenberg B (July 2003). "Marked loss of myelinated nerve fibers in the human brain with age". The Journal of Comparative Neurology. 462 (2): 144–52. doi:10.1002/cne.10714. PMID 12794739. S2CID 35293796.
  112. ^ Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P, Gur RE (May 1999). "Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance". The Journal of Neuroscience. 19 (10): 4065–72. doi:10.1523/JNEUROSCI.19-10-04065.1999. PMC 6782697. PMID 10234034.
  113. ^ Leonard CM, Towler S, Welcome S, Halderman LK, Otto R, Eckert MA, Chiarello C (December 2008). "Size matters: cerebral volume influences sex differences in neuroanatomy". Cerebral Cortex. 18 (12): 2920–31. doi:10.1093/cercor/bhn052. PMC 2583156. PMID 18440950.
  114. ^ Lüders E, Steinmetz H, Jäncke L (December 2002). "Brain size and grey matter volume in the healthy human brain". NeuroReport. 13 (17): 2371–4. doi:10.1097/00001756-200212030-00040. PMID 12488829.
  115. ^ Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (March 2005). "The neuroanatomy of general intelligence: sex matters" (PDF). NeuroImage. 25 (1): 320–7. doi:10.1016/j.neuroimage.2004.11.019. PMID 15734366. S2CID 4127512. Archived from the original (PDF) on 24 May 2010.
  116. ^ Szalkai B, Varga B, Grolmusz V (2015). "Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's". PLOS ONE. 10 (7): e0130045. arXiv:1501.00727. Bibcode:2015PLoSO..1030045S. doi:10.1371/journal.pone.0130045. PMC 4488527. PMID 26132764.
  117. ^ Szalkai B, Varga B, Grolmusz V (June 2018). "Brain size bias compensated graph-theoretical parameters are also better in women's structural connectomes". Brain Imaging and Behavior. 12 (3): 663–673. doi:10.1007/s11682-017-9720-0. PMID 28447246. S2CID 4028467.
  118. ^ Gershoni M, Pietrokovski S (February 2017). "The landscape of sex-differential transcriptome and its consequent selection in human adults". BMC Biology. 15 (1): 7. doi:10.1186/s12915-017-0352-z. PMC 5297171. PMID 28173793.
  119. ^ Gershoni M, Pietrokovski S (July 2014). "Reduced selection and accumulation of deleterious mutations in genes exclusively expressed in men". Nature Communications. 5: 4438. Bibcode:2014NatCo...5.4438G. doi:10.1038/ncomms5438. PMID 25014762.
  120. ^ Kelly CD, Stoehr AM, Nunn C, Smyth KN, Prokop ZM (December 2018). "Sexual dimorphism in immunity across animals: a meta-analysis". Ecology Letters. 21 (12): 1885–1894. doi:10.1111/ele.13164. PMID 30288910.
  121. ^ Gal-Oz ST, Maier B, Yoshida H, Seddu K, Elbaz N, Czysz C, et al. (September 2019). "ImmGen report: sexual dimorphism in the immune system transcriptome". Nature Communications. 10 (1): 4295. Bibcode:2019NatCo..10.4295G. doi:10.1038/s41467-019-12348-6. PMC 6754408. PMID 31541153.
  122. ^ Grossman C (1989). "Possible underlying mechanisms of sexual dimorphism in the immune response, fact and hypothesis". Journal of Steroid Biochemistry. 34 (1–6): 241–251. doi:10.1016/0022-4731(89)90088-5. PMID 2696846.
  123. ^ Pollitzer E (August 2013). "Biology: Cell sex matters". Nature. 500 (7460): 23–4. Bibcode:2013Natur.500...23P. doi:10.1038/500023a. PMID 23903733. S2CID 4318641.
  124. ^ Deasy BM, Lu A, Tebbets JC, Feduska JM, Schugar RC, Pollett JB, et al. (April 2007). "A role for cell sex in stem cell-mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency". The Journal of Cell Biology. 177 (1): 73–86. doi:10.1083/jcb.200612094. PMC 2064113. PMID 17420291.
  125. ^ Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, et al. (August 2011). McCarthy MI (ed.). "Discovery of sexual dimorphisms in metabolic and genetic biomarkers". PLOS Genetics. 7 (8): e1002215. doi:10.1371/journal.pgen.1002215. PMC 3154959. PMID 21852955.
  126. ^ Penaloza C, Estevez B, Orlanski S, Sikorska M, Walker R, Smith C, et al. (June 2009). "Sex of the cell dictates its response: differential gene expression and sensitivity to cell death inducing stress in male and female cells". FASEB Journal. 23 (6): 1869–79. doi:10.1096/fj.08-119388. PMC 2698656. PMID 19190082.
  127. ^ a b Vollrath F, Parker GA (1992). "Sexual dimorphism and distorted sex ratios in spiders". Nature. 360 (6400): 156–159. Bibcode:1992Natur.360..156V. doi:10.1038/360156a0. S2CID 4320130.
  128. ^ Bornholdt R, Oliveira LR, Fabián ME (November 2008). "Sexual size dimorphism in Myotis nigricans (Schinz, 1821) (Chiroptera: Vespertilionidae) from south Brazil" (PDF). Brazilian Journal of Biology. 68 (4): 897–904. doi:10.1590/S1519-69842008000400028. PMID 19197511.
  129. ^ Hayssen V, Kunz TH (1996). "Allometry of litter mass in bats: comparisons with maternal size, wing morphology, and phylogeny". Journal of Mammalogy. 77 (2): 476–490. doi:10.2307/1382823. JSTOR 1382823.
  130. ^ Arnqvist G, Jones TM, Elgar MA (July 2003). "Insect behaviour: reversal of sex roles in nuptial feeding" (PDF). Nature. 424 (6947): 387. Bibcode:2003Natur.424..387A. doi:10.1038/424387a. PMID 12879056. S2CID 4382038. Archived from the original (PDF) on 15 September 2004.
  131. ^ Mechanism of Fertilization: Plants to Humans, edited by Brian Dale
  132. ^ Shaw AJ (2000). "Population ecology, population genetics, and microevolution". In Shaw AJ, Goffinet B (eds.). Bryophyte Biology. Cambridge: Cambridge University Press. pp. 379–380. ISBN 978-0-521-66097-6.
  133. ^ a b Schuster RM (1984). "Comparative Anatomy and Morphology of the Hepaticae". New Manual of Bryology. Vol. 2. Nichinan, Miyazaki, Japan: The Hattori botanical Laboratory. p. 891.
  134. ^ Crum HA, Anderson LE (1980). Mosses of Eastern North America. Vol. 1. New York: Columbia University Press. p. 196. ISBN 978-0-231-04516-2.
  135. ^ Briggs D (1965). "Experimental taxonomy of some British species of genus Dicranum". New Phytologist. 64 (3): 366–386. doi:10.1111/j.1469-8137.1965.tb07546.x. JSTOR 2430169.
  136. ^ Dies Alvarez ME, Rushton AW, Gozalo R, Pillola GL, Linan E, Ahlberg P (2010). "Paradoxides brachyrhachis Linnarsson, 1883 versus Paradoxides mediterraneus Pompeckj, 1901: a problematic determination". GFF. 132 (2): 95–104. doi:10.1080/11035897.2010.481363. S2CID 129620469.
  137. ^ Padian K, Horner JR (1 November 2014). "Darwin's sexual selection: Understanding his ideas in context". Comptes Rendus Palevol. 13 (8): 709–715. doi:10.1016/j.crpv.2014.09.001. ISSN 1631-0683.
  138. ^ Togashi T, Bartelt JL, Yoshimura J, Tainaka K, Cox PA (August 2012). "Evolutionary trajectories explain the diversified evolution of isogamy and anisogamy in marine green algae". Proceedings of the National Academy of Sciences of the United States of America. 109 (34): 13692–7. Bibcode:2012PNAS..10913692T. doi:10.1073/pnas.1203495109. PMC 3427103. PMID 22869736.
  139. ^ Parker GA (May 1982). "Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes". Journal of Theoretical Biology. 96 (2): 281–94. Bibcode:1982JThBi..96..281P. doi:10.1016/0022-5193(82)90225-9. PMID 7121030. S2CID 29879237.
  140. ^ Yang JN (May 2010). "Cooperation and the evolution of anisogamy". Journal of Theoretical Biology. 264 (1): 24–36. Bibcode:2010JThBi.264...24Y. doi:10.1016/j.jtbi.2010.01.019. PMID 20097207.
  141. ^ Bell G (1985). "On the function of flowers". Proceedings of the Royal Society B: Biological Sciences. 224 (1235): 223–266. Bibcode:1985RSPSB.224..223B. doi:10.1098/rspb.1985.0031. JSTOR 36033. S2CID 84275261.
  142. ^ Olsen J, Olsen P (5 August 1986). "Sexual Size Dimorphism in Raptors: Intrasexual Competition in the Larger Sex for a Scarce Breeding Resource, the Smaller Se". Emu. 87: 59–62. doi:10.1071/MU9870059.
  143. ^ Geng S, De Hoff P, Umen JG (July 2014). "Evolution of sexes from an ancestral mating-type specification pathway". PLOS Biology. 12 (7): e1001904. doi:10.1371/journal.pbio.1001904. PMC 4086717. PMID 25003332.
  144. ^ Kaufmann P, Wolak ME, Husby A, Immonen E (October 2021). "Rapid evolution of sexual size dimorphism facilitated by Y-linked genetic variance". Nature Ecology & Evolution. 5 (10): 1394–1402. doi:10.1038/s41559-021-01530-z. PMID 34413504. S2CID 237242736.
  145. ^ Futuyma 2005, p. 330
  146. ^ Futuyma 2005, p. 331
  147. ^ Futuyma 2005, p. 332
  148. ^ a b Ridley 2004, p. 328
  149. ^ Futuyma 2005, p. 335
  150. ^ Ridley 2004, p. 330
  151. ^ Ridley 2004, p. 332

Sources

Further reading
External links
Listen to this article (37 minutes)
Spoken Wikipedia icon
This audio file was created from a revision of this article dated 30 August 2019 (2019-08-30), and does not reflect subsequent edits.

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.