Roman metallurgy
Library resources about Roman metallurgy |
![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations. (October 2010) |
Roman Chronology | |
---|---|
Context for Metallurgy (Shepard 1993) | |
circa 753 BC | First settlement in the Iron Age; see also founding of Rome. |
600–524 BC |
Etruscans control Italy. |
550–500 BC |
Carthaginian occupation of parts of Sardinia and Sicily. |
509 BC | Creation of the Roman Republic. |
510–27 BC | Roman Republic and beginning of Rome's expansion. |
390 BC |
Etruria becomes part of Rome. |
264–146 BC | |
197 BC |
Iberia becomes a Roman province. |
197 BC |
Athens becomes a Roman province. |
146 BC |
Carthage becomes a Roman province. |
129 BC |
Asia Minor becomes a Roman province. |
58–52 BC | Roman conquest of Gaul. |
30 BC |
Egypt becomes a Roman province. |
27 BC | The institution of the Roman Empire begins with Emperor Augustus. |
44 AD |
Britannia becomes a Roman province. |
106 AD |
Dacia becomes a Roman province. |
Metals and metal working had been known to the people of modern Italy since the Bronze Age. By 53 BC, Rome had expanded to control an immense expanse of the Mediterranean. This included Italy and its islands, Spain, Macedonia, Africa, Asia Minor, Syria and Greece; by the end of the Emperor Trajan's reign, the Roman Empire had grown further to encompass parts of Britain, Egypt, all of modern Germany west of the Rhine, Dacia, Noricum, Judea, Armenia, Illyria, and Thrace (Shepard 1993).[1] As the empire grew, so did its need for metals.
Central Italy itself was not rich in metal ores, leading to necessary trade networks in order to meet the demand for metal. Early Italians had some access to metals in the northern regions of the peninsula in Tuscany and Cisalpine Gaul, as well as the islands Elba and Sardinia. With the conquest of Etruria in 275 BC and the subsequent acquisitions due to the Punic Wars, Rome had the ability to stretch further into Transalpine Gaul and Iberia, both areas rich in minerals. At the height of the Empire, Rome exploited mineral resources from Tingitana in north western Africa to Egypt, Arabia to North Armenia, Galatia to Germania, and Britannia to Iberia, encompassing all of the Mediterranean coast. Britannia, Iberia, Dacia, and Noricum were of special significance, as they were very rich in deposits and became major sites of resource exploitation (Shepard, 1993).
There is evidence that after the middle years of the Empire there was a sudden and steep decline in mineral extraction. This was mirrored in other trades and industries.
One of the most important Roman sources of information is the Naturalis Historia of Pliny the Elder. Several books (XXXIII–XXXVII) of his encyclopedia cover metals and metal ores, their occurrence, importance and development.
Discover more about Roman metallurgy related topics
Types of metal used
Many of the first metal artifacts that archaeologists have identified have been tools or weapons, as well as objects used as ornaments such as jewellery. These early metal objects were made of the softer metals; copper, gold, and lead in particular, as the metals either as native metal or by thermal extraction from minerals, and softened by minimal heat (Craddock, 1995). While technology did advance to the point of creating surprisingly pure copper, most ancient metals are in fact alloys, the most important being bronze, an alloy of copper and tin. As metallurgical technology developed (hammering, melting, smelting, roasting, cupellation, moulding, smithing, etc.), more metals were intentionally included in the metallurgical repertoire.
By the height of the Roman Empire, metals in use included: silver, zinc, iron, mercury, arsenic, antimony, lead, gold, copper, tin (Healy 1978). As in the Bronze Age, metals were used based on many physical properties: aesthetics, hardness, colour, taste/smell (for cooking wares), timbre (instruments), aversion to corrosion, weight, and other factors. Many alloys were also possible, and were intentionally made in order to change the properties of the metal e.g. the alloy of predominately tin with lead would harden the soft tin, to create pewter, which would prove its utility as cooking and tableware.
Discover more about Types of metal used related topics
Sources of ore

Sources of ore | |
---|---|
Ores and Origin (Healy 1978) | |
Gold |
Iberia, Gaul, Cisalpine Gaul, Britannia, Noricum, Dalmatia, Moesia Superior, Arabia, India, Africa |
Silver |
Iberia, Gaul, Laurion (Greece), Asia Minor, Carmania, Midian, India, Bactria, Britannia, Cyprus |
Copper |
Iberia, Gaul,
Cisthene, Cyprus, Carmania, Arabia, Aleppo, Sinai, Meroe, Masaesyi , India, Britannia. |
Tin |
Iberia, Persia, Britannia |
Lead |
Iberia, Gaul, Sardinia, Sicily, Britannia |
Iron |
Iberia, Elba, Sardinia, Hallstatt, Noricum, Illyria, Macedonia, Dacia, Sinai, Meroe, Britannia |
Zinc |
Gaul, Gallia Transpadana, Campania, Germania, Andeira (in Asia Minor), Cyprus |
Mercury |
Iberia, Armani, Ethiopia |
Arsenic |
Phalagonia, Carmania |
Antimony |
Hypothesised:
Mytilene, Chios, around Smyrna, Transcaucasia, Persia, Tehran, Punjab, Britannia |
Iberia (modern Spain and Portugal) was possibly the Roman province richest in mineral ore, containing deposits of gold, silver, copper, tin, lead, iron, and mercury).[2] From its acquisition after the Second Punic War to the Fall of Rome, Iberia continued to produce a significant amount of Roman metals. [3]
Britannia was also very rich in metals. Gold was mined at Dolaucothi in Wales, copper and tin in Cornwall, and lead in the Pennines, Mendip Hills and Wales. Significant studies have been made on the iron production of Roman Britain; iron use in Europe was intensified by the Romans, and was part of the exchange of ideas between the cultures through Roman occupation.[4] It was the importance placed on iron by the Romans throughout the Empire which completed the shift from the few cultures still using primarily bronze into the Iron Age.
Noricum (modern Austria) was exceedingly rich in gold and iron, Pliny, Strabo, and Ovid all lauded its bountiful deposits. Iron was its main commodity, but alluvial gold was also prospected. By 15 BC, Noricum was officially made a province of the Empire, and the metal trade saw prosperity well into the fifth century AD.[5] Some scholars believe that the art of iron forging was not necessarily created, but well developed in this area and it was the population of Noricum which reminded Romans of the usefulness of iron.[6] For example, of the three forms of iron (wrought iron, steel, and soft), the forms which were exported were of the wrought iron (containing a small percentage of uniformly distributed slag material) and steel (carbonised iron) categories, as pure iron is too soft to function like wrought or steel iron.[7]
Dacia, located in the area of Transylvania, was conquered in 107 AD in order to capture the resources of the region for Rome. The amount of gold that came into Roman possession actually brought down the value of gold. Iron was also of importance to the region. The difference between the mines of Noricum and Dacia was the presence of a slave population as a workforce.[8]
Discover more about Sources of ore related topics
Technology

The earliest metal manipulation was probably hammering (Craddock 1995, 1999), where copper ore was pounded into thin sheets. Beneficiation, or the process of ’making better,’ could be carried out on the ore (if there were large enough pieces of metal separate from mineral) or after melting, where the prills of metal could be hand picked from the cooled slag. Melting beneficiated metal also allowed early metallurgists to use moulds and casts to form shapes of molten metal (Craddock 1995). Many of the metallurgical skills developed in the Bronze Age were still in use during Roman times. Melting—the process of using heat to separate slag and metal, smelting—using a reduced oxygen heated environment to separate metal oxides into metal and carbon dioxide, roasting—process of using an oxygen rich environment to isolate sulphur oxide from metal oxide which can then be smelted, casting—pouring liquid metal into a mould to make an object, hammering—using blunt force to make a thin sheet which can be annealed or shaped, and cupellation—separating metal alloys to isolate a specific metal—were all techniques which were well understood (Zwicker 1985, Tylecote 1962, Craddock 1995). However, the Romans provided few new technological advances other than the use of iron and the cupellation and granulation in the separation of gold alloys (Tylecote 1962).
While native gold is common, the ore will sometimes contain small amounts of silver and copper. The Romans utilised a sophisticated system to separate these precious metals. The use of cupellation, a process developed before the rise of Rome, would extract copper from gold and silver, or an alloy called electrum. In order to separate the gold and silver, however, the Romans would granulate the alloy by pouring the liquid, molten metal into cold water, and then smelt the granules with salt, separating the gold from the chemically altered silver chloride (Tylecote 1962). They used a similar method to extract silver from lead.
While Roman production became standardised in many ways, the evidence for distinct unity of furnace types is not strong, alluding to a tendency of the peripheries continuing with their own past furnace technologies. In order to complete some of the more complex metallurgical techniques, there is a bare minimum of necessary components for Roman metallurgy: metallic ore, furnace of unspecified type with a form of oxygen source (assumed by Tylecote to be bellows) and a method of restricting said oxygen (a lid or cover), a source of fuel (charcoal from wood or occasionally peat), moulds and/or hammers and anvils for shaping, the use of crucibles for isolating metals (Zwicker 1985), and likewise cupellation hearths (Tylecote 1962).
Discover more about Technology related topics
Mechanisation
There is direct evidence that the Romans mechanised at least part of the extraction processes. They used water power from water wheels for grinding grains and sawing timber or stone, for example. A set of sixteen such overshot wheels is still visible at Barbegal near Arles dating from the 1st century AD or possibly earlier, the water being supplied by the main aqueduct to Arles. It is likely that the mills supplied flour for Arles and other towns locally. Multiple grain mills also existed on the Janiculum hill in Rome.
Ausonius attests the use of a water mill for sawing stone in his poem Mosella from the 4th century AD. They could easily have adapted the technology to crush ore using tilt hammers, and just such is mentioned by Pliny the Elder in his Naturalis Historia dating to about 75 AD, and there is evidence for the method from Dolaucothi in South Wales. The Roman gold mines developed from c. 75 AD. The methods survived into the medieval period, as described and illustrated by Georgius Agricola in his De Re Metallica.
They also used reverse overshot water-wheel for draining mines, the parts being prefabricated and numbered for ease of assembly. Multiple set of such wheels have been found in Spain at the Rio Tinto copper mines and a fragment of a wheel at Dolaucothi. An incomplete wheel from Spain is now on public show in the British Museum.
Discover more about Mechanisation related topics
Output
The invention and widespread application of hydraulic mining, namely hushing and ground-sluicing, aided by the ability of the Romans to plan and execute mining operations on a large scale, allowed various base and precious metals to be extracted on a proto-industrial scale only rarely matched until the Industrial Revolution.[9]
The most common fuel by far for smelting and forging operations, as well as heating purposes, was wood and particularly charcoal, which is nearly twice as efficient.[10] In addition, coal was mined in some regions to a fairly large extent: Almost all major coalfields in Roman Britain were exploited by the late 2nd century AD, and a lively trade along the English North Sea coast developed, which extended to the continental Rhineland, where bituminous coal was already used for the smelting of iron ore.[11] The annual iron production at Populonia alone accounted for an estimated 2,000[12] to 10,000 tons.[13]
Output per annum | Comment | |
---|---|---|
Iron |
82,500 t[14] | Based on estimate of iron production at 1.5 kg per head in Roman Britain, extrapolated to population size of 55 million for entire empire[15] |
Copper |
15,000 t[16] | Largest preindustrial producer.[17] |
80,000 t[18] | Largest preindustrial producer.[19] | |
Silver |
[20] | 200 tAt its peak around the mid-2nd century AD, Roman stock is estimated at 10,000 t, five to ten times larger than the combined silver mass of medieval Europe and the Caliphate around 800 AD.[21] |
[22] | 9 tProduction in Asturia, Callaecia, and Lusitania (all Iberian Peninsula) alone. |
Discover more about Output related topics
Production of objects
Romans used many methods to create metal objects. Like Samian ware, moulds were created by making a model of the desired shape (whether through wood, wax, or metal), which would then be pressed into a clay mould. In the case of a metal or wax model, once dry, the ceramic could be heated and the wax or metal melted until it could be poured from the mould (this process utilising wax is called the “lost wax“ technique). By pouring metal into the aperture, exact copies of an object could be cast. This process made the creation of a line of objects quite uniform. This is not to suggest that the creativity of individual artisans did not continue; rather, unique handcrafted pieces were normally the work of small, rural metalworkers on the peripheries of Rome using local techniques (Tylecote 1962).
There is archaeological evidence throughout the Empire demonstrating the large scale excavations, smelting, and trade routes concerning metals. With the Romans came the concept of mass production; this is arguably the most important aspect of Roman influence in the study of metallurgy. Three particular objects produced en masse and seen in the archaeological record throughout the Roman Empire are brooches called fibulae, worn by both men and women (Bayley 2004), coins, and ingots (Hughes 1980). These cast objects can allow archaeologists to trace years of communication, trade, and even historic/stylistic changes throughout the centuries of Roman power.
Discover more about Production of objects related topics
Source: "Roman metallurgy", Wikipedia, Wikimedia Foundation, (2023, February 15th), https://en.wikipedia.org/wiki/Roman_metallurgy.
References
- ^ F., Healy, J. (1978). Mining and metallurgy in the greek and roman world. Thames & Hudson. OCLC 463199001.
- ^ Healy 1978
- ^ Healy 1978, Shepard 1993
- ^ Aitchison, 1960
- ^ Shepard 1993, Healy 1978
- ^ Aitchison, 1960
- ^ Sim 1999, Aitchison 1960
- ^ Shepard 1993)
- ^ Wilson 2002, pp. 17–21, 25, 32
- ^ Cech 2010, p. 20
- ^ Smith 1997, pp. 322–324
- ^ Ian Morris, Francoise Audouze, Cyprian Broodbank (1994): Classical Greece: Ancient Histories and Modern Archaeologies, Cambridge University Press, p. 102 ISBN 978-0-521-45678-4
- ^ Wertime, Theodore A. (1983): "The Furnace versus the Goat: The Pyrotechnologic Industries and Mediterranean Deforestation in Antiquity", Journal of Field Archaeology, Vol. 10, No. 4, pp. 445–452 (451); Williams, Joey (2009): "The Environmental Effects of Populonia's Metallurgical Industry: Current Evidence and Future Directions", Etruscan and Italic Studies, Vol. 12, No. 1, pp. 131–150 (134f.)
- ^ Craddock 2008, p. 108; Sim, Ridge 2002, p. 23; Healy 1978, p. 196
- ^ Sim, Ridge 2002, p. 23; Healy 1978, p. 196
- ^ World output, the large bulk of which is attributed to Roman mining and smelting activities (mainly in Spain, Cyprus and Central Europe): Hong, Candelone, Patterson, Boutron 1996, p. 247; Callataÿ 2005, pp. 366–369; cf. also Wilson 2002, pp. 25–29
- ^ Hong, Candelone, Patterson, Boutron 1996, p. 247, fig. 1 & 2; 248, table 1; Callataÿ 2005, pp. 366–369
- ^ World output, the large bulk of which is attributed to Roman silver mining and smelting activities (in Central Europe, Britain, the Balkans, Greece, Asia Minor and, above all, Spain, with a 40% share in world production alone): Hong, Candelone, Patterson, Boutron 1994, p. 1841–1843; Callataÿ 2005, pp. 361–365; Settle, Patterson 1980, pp. 1170f.; cf. also Wilson 2002, pp. 25–29
- ^ Hong, Candelone, Patterson, Boutron 1994, p. 1841–1843; Settle, Patterson 1980, pp. 1170f.; Callataÿ 2005, pp. 361–365 follows the aforementioned authors, but cautions that the Greco-Roman levels may have already been surpassed by the end of the Middle Ages (p. 365).
- ^ Patterson 1972, p. 228, table 6; Callataÿ 2005, pp. 365f.; cf. also Wilson 2002, pp. 25–29
- ^ Patterson 1972, p. 216, table 2; Callataÿ 2005, pp. 365f.
- ^ Pliny the Elder: Naturalis Historia, 33.21.78, in: Wilson 2002, p. 27
Sources
- General
- Aitchison, Leslie. 1960. A History of Metals. London: Macdonald & Evans Ltd.
- Bayley, Justine; Butcher, Sarnia. 2004. Roman Brooches in Britain: A Technological and Typological Study based on the Richborough Collection. London: The Society of Antiquaries of London.
- Craddock, Paul T. 1995. Early Metal Mining and Production. Edinburgh: Edinburgh University Press.
- Craddock, Paul T. 1999. Paradigms of Metallurgical Innovation in Prehistoric Europe in Hauptmann, A., Ernst, P., Rehren, T., Yalcin, U. (eds). The Beginnings of Metallurgy: Proceedings of the International Conference “The Beginnings of Metallurgy”, Bochum 1995. Hamburg
- Davies, O. Roman Mines in Europe 1935., Oxford University Press
- Hughes, M. J. 1980 The Analysis of Roman Tin and Pewter Ingots in Ody, W. A. (ed) Aspects of Early Metallurgy. Occasional Paper No 17. British Museum Occasional Papers.
- Shepard, Robert. 1993. Ancient Mining. London: Elsevier Applied Science.
- Sim, David. 1998. Beyond the Bloom: Bloom Refining and Iron Artifact Production in the Roman World. Ridge, Isabel (ed). BAR International Series 725. Oxford: Archaeopress.
- Tylecote, R.F. 1962. Metallurgy in Archaeology: A Prehistory of Metallurgy in the British Isles. London: Edward Arnold (Publishers) Ltd.
- Zwicker, U., Greiner, H., Hofmann, K-H., Reithinger, M. 1985. Smelting, Refining and Alloying of Copper and Copper Alloys in Crucible Furnaces During Prehistoric up to Roman Times in Craddock, P.T., Hughes, M.J. (eds) Furnaces and Smelting Technology in Antiquity. Occasional Paper No 48. London: British Museum Occasional Papers.
- J. S., Hodgkinson. 2008. "The Wealden Iron Industry." (The History Press, Stroud).
- Cleere, Henry. 1981. The Iron Industry of Roman Britain. Wealden Iron Research Group.
- Output
- Callataÿ, François de (2005): "The Graeco-Roman Economy in the Super Long-Run: Lead, Copper, and Shipwrecks", Journal of Roman Archaeology, Vol. 18, pp. 361–372
- Cech, Brigitte (2010): Technik in der Antike, Wissenschaftliche Buchgesellschaft, Darmstadt, ISBN 978-3-8062-2080-3
- Cleere, H. & Crossley, D. (1995): The Iron industry of the Weald. 2nd edition, Merton Priory Press, Cardiff, ISBN 1-898937-04-4: republishing the 1st edition (Leicester University Press 1985) with a supplement.
- Cleere, Henry. 1981. The Iron Industry of Roman Britain. Wealden Iron Research Group. p. 74-75
- Craddock, Paul T. (2008): "Mining and Metallurgy", in: Oleson, John Peter (ed.): The Oxford Handbook of Engineering and Technology in the Classical World, Oxford University Press, ISBN 978-0-19-518731-1, pp. 93–120
- Healy, John F. (1978): Mining and Metallurgy in the Greek and Roman World, Thames and Hudson, London, ISBN 0-500-40035-0
- Hong, Sungmin; Candelone, Jean-Pierre; Patterson, Clair C.; Boutron, Claude F. (1994): "Greenland Ice Evidence of Hemispheric Lead Pollution Two Millennia Ago by Greek and Roman Civilizations", Science, Vol. 265, No. 5180, pp. 1841–1843
- Hong, Sungmin; Candelone, Jean-Pierre; Patterson, Clair C.; Boutron, Claude F. (1996): "History of Ancient Copper Smelting Pollution During Roman and Medieval Times Recorded in Greenland Ice", Science, Vol. 272, No. 5259, pp. 246–249
- Patterson, Clair C. (1972): "Silver Stocks and Losses in Ancient and Medieval Times", The Economic History Review, Vol. 25, No. 2, pp. 205–235
- Lewis, P. R. and G. D. B. Jones, The Dolaucothi gold mines, I: the surface evidence, The Antiquaries Journal, 49, no. 2 (1969): 244-72.
- Lewis, P. R. and G. D. B. Jones, Roman gold-mining in north-west Spain, Journal of Roman Studies 60 (1970): 169-85.
- Lewis, P. R., The Ogofau Roman gold mines at Dolaucothi, The National Trust Year Book 1976-77 (1977).
- Settle, Dorothy M.; Patterson, Clair C. (1980): "Lead in Albacore: Guide to Lead Pollution in Americans", Science, Vol. 207, No. 4436, pp. 1167–1176
- Sim, David; Ridge, Isabel (2002): Iron for the Eagles. The Iron Industry of Roman Britain, Tempus, Stroud, Gloucestershire, ISBN 0-7524-1900-5
- Smith, A. H. V. (1997): "Provenance of Coals from Roman Sites in England and Wales", Britannia, Vol. 28, pp. 297–324
- Wilson, Andrew (2002): "Machines, Power and the Ancient Economy", The Journal of Roman Studies, Vol. 92, pp. 1–32
Further reading
- Butcher, Kevin, Matthew Ponting, Jane Evans, Vanessa Pashley, and Christopher Somerfield. The Metallurgy of Roman Silver Coinage: From the Reform of Nero to the Reform of Trajan. Cambridge: Cambridge University Press, 2014.
- Corretti,Benvenuti. "Beginning of iron metallurgy in Tuscany, with special reference to Etruria mineraria." Mediterranean archaeology 14 (2001): 127–45.
- Healy, John F. Mining and metallurgy in the Greek and Roman world. London: Thames and Hudson, 1978.
- Hobbs, Richard. Late Roman Precious Metal Deposits, C. AD 200-700: Changes Over Time and Space. Oxford: Archaeopress, 2006.
- Montagu, Jennifer. Gold, Silver, and Bronze: Metal Sculpture of the Roman Baroque. Princeton: Princeton University Press, 1996.
- Papi, Emanuele., and Michel Bonifay. Supplying Rome and the Empire: The Proceedings of an International Seminar Held At Siena-Certosa Di Pontignano On May 2-4, 2004, On Rome, the Provinces, Production and Distribution. Portsmouth, RI: Journal of Roman Archaeology, 2007.
- Rihll, T. E. Technology and Society In the Ancient Greek and Roman Worlds. Washington, D.C.: American Historical Association, Society for the History of Technology, 2013.
- Schrüfer-Kolb, Irene. Roman Iron Production In Britain: Technological and Socio-Economic Landscape Development Along the Jurassic Ridge. Oxford: Archaeopress, 2004.
- Young, Suzanne M. M. Metals In Antiquity. Oxford, England: Archaeopress, 1999.
Categories
- All articles lacking in-text citations
- All articles with specifically marked weasel-worded phrases
- All articles with unsourced statements
- Ancient Roman metalwork
- Articles lacking in-text citations from October 2010
- Articles with short description
- Articles with specifically marked weasel-worded phrases from November 2022
- Articles with unsourced statements from October 2010
- History of metallurgy
- Industry in ancient Rome
- Short description matches Wikidata
The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.
Social ramifications
Slavery
When the cost of producing slaves became too high to justify slave labourers for the many mines throughout the empire around the second century, a system of indentured servitude was introduced for convicts. In 369 AD a law was reinstated due to the closure of many deep mines; the emperor Hadrian had previously given the control of mines to private employers, so that workers were hired rather than working out of force. Through the institution of this system profits increased (Shepard 1993). In the case of Noricum, there is archaeological evidence of freemen labour in the metal trade and extraction through graffiti on mine walls. In this province, many men were given Roman citizenship for their efforts contributing to the procurement of metal for the empire. Both privately owned and government run mines were in operation simultaneously (Shepard 1993).
Economy
From the formation of the Roman Empire, Rome was an almost completely closed economy, not reliant on imports although exotic goods from India and China (such as gems, silk and spices) were highly prized (Shepard 1993). Through the recovery of Roman coins and ingots throughout the ancient world (Hughes 1980), metallurgy has supplied the archaeologist with material culture through which to see the expanse of the Roman world.
Discover more about Social ramifications related topics
Mining
Mining is the extraction of valuable geological materials from the Earth and other astronomical objects. Mining is required to obtain most materials that cannot be grown through agricultural processes, or feasibly created artificially in a laboratory or factory. Ores recovered by mining include metals, coal, oil shale, gemstones, limestone, chalk, dimension stone, rock salt, potash, gravel, and clay. Ore must be a rock or mineral that contains valuable constituent, can be extracted or mined and sold for profit. Mining in a wider sense includes extraction of any non-renewable resource such as petroleum, natural gas, or even water.
Empire
An empire is a political unit made up of several territories and peoples, "usually created by conquest, and divided between a dominant center and subordinate peripheries". The center of the empire exercises political control over the peripheries. Within an empire, different populations have different sets of rights and are governed differently. Narrowly defined, an empire is a sovereign state whose head of state is an emperor; but not all states with aggregate territory under the rule of supreme authorities are called empires or ruled by an emperor; nor have all self-described empires been accepted as such by contemporaries and historians.
Indentured servitude
Indentured servitude is a form of labor in which a person is contracted to work without salary for a specific number of years. The contract, called an "indenture", may be entered "voluntarily" for purported eventual compensation or debt repayment, or it may be imposed as a judicial punishment. Historically, it has been used to pay for apprenticeships, typically when an apprentice agreed to work for free for a master tradesman to learn a trade. Later it was also used as a way for a person to pay the cost of transportation to colonies in the Americas.
Hadrian
Hadrian was Roman emperor from 117 to 138. He was born in Italica, a Roman municipium founded by Italic settlers in Hispania Baetica. He came from a branch of the gens Aelia that originated in the Picenean town of Hadria, the Aeli Hadriani. His father was of senatorial rank and was a first cousin of Emperor Trajan. Hadrian married Trajan's grand-niece Vibia Sabina early in his career before Trajan became emperor and possibly at the behest of Trajan's wife Pompeia Plotina. Plotina and Trajan's close friend and adviser Lucius Licinius Sura were well disposed towards Hadrian. When Trajan died, his widow claimed that he had nominated Hadrian as emperor immediately before his death.
Graffiti
Graffiti is art that is written, painted or drawn on a wall or other surface, usually without permission and within public view. Graffiti ranges from simple written words to elaborate wall paintings, and has existed since ancient times, with examples dating back to ancient Egypt, ancient Greece, and the Roman Empire.
Roman citizenship
Citizenship in ancient Rome was a privileged political and legal status afforded to free individuals with respect to laws, property, and governance. Citizenship in Ancient Rome was complex and based upon many different laws, traditions, and cultural practices. There existed several different types of citizenship, determined by one's gender, class, and political affiliations, and the exact duties or expectations of a citizen varied throughout the history of the Roman Empire.
Economy
An economy is an area of the production, distribution and trade, as well as consumption of goods and services. In general, it is defined as a social domain that emphasize the practices, discourses, and material expressions associated with the production, use, and management of scarce resources. A given economy is a set of processes that involves its culture, values, education, technological evolution, history, social organization, political structure, legal systems, and natural resources as main factors. These factors give context, content, and set the conditions and parameters in which an economy functions. In other words, the economic domain is a social domain of interrelated human practices and transactions that does not stand alone.
India
India, officially the Republic of India, is a country in South Asia. It is the seventh-largest country by area and the second-most populous country. Bounded by the Indian Ocean on the south, the Arabian Sea on the southwest, and the Bay of Bengal on the southeast, it shares land borders with Pakistan to the west; China, Nepal, and Bhutan to the north; and Bangladesh and Myanmar to the east. In the Indian Ocean, India is in the vicinity of Sri Lanka and the Maldives; its Andaman and Nicobar Islands share a maritime border with Thailand, Myanmar, and Indonesia.
China
China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and borders fourteen countries by land, the most of any country in the world, tied with Russia. With an area of approximately 9.6 million square kilometres (3,700,000 sq mi), it is the world's third largest country by total land area. The country consists of 22 provinces, five autonomous regions, four municipalities, and two special administrative regions. The national capital is Beijing, and the most populous city and largest financial center is Shanghai.
Gemstone
A gemstone is a piece of mineral crystal which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks and occasionally organic materials that are not minerals are also used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity and notoriety are other characteristics that lend value to gemstones.
Silk
Silk is a natural protein fiber, some forms of which can be woven into textiles. The protein fiber of silk is composed mainly of fibroin and is produced by certain insect larvae to form cocoons. The best-known silk is obtained from the cocoons of the larvae of the mulberry silkworm Bombyx mori reared in captivity (sericulture). The shimmering appearance of silk is due to the triangular prism-like structure of the silk fibre, which allows silk cloth to refract incoming light at different angles, thus producing different colors.
Metallurgy
Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the science and the technology of metals; that is, the way in which science is applied to the production of metals, and the engineering of metal components used in products for both consumers and manufacturers. Metallurgy is distinct from the craft of metalworking. Metalworking relies on metallurgy in a similar manner to how medicine relies on medical science for technical advancement. A specialist practitioner of metallurgy is known as a metallurgist.