Get Our Extension

Propeller

From Wikipedia, in a visual modern way
External video
video icon Construction of Wooden Propellers 1 2 3, NASA Langley
A 'right-handed' propeller on a merchant vessel, which rotates clockwise to propel the ship forward
A 'right-handed' propeller on a merchant vessel, which rotates clockwise to propel the ship forward

A propeller (colloquially often called a screw if on a ship or an airscrew if on an aircraft) is a device with a rotating hub and radiating blades that are set at a pitch to form a helical spiral which, when rotated, exerts linear thrust upon a working fluid such as water or air.[1] Propellers are used to pump fluid through a pipe or duct, or to create thrust to propel a boat through water or an aircraft through air. The blades are shaped so that their rotational motion through the fluid causes a pressure difference between the two surfaces of the blade by Bernoulli's principle which exerts force on the fluid.[2] Most marine propellers are screw propellers with helical blades rotating on a propeller shaft with an approximately horizontal axis.[a]

Discover more about Propeller related topics

Ship

Ship

A ship is a large watercraft that travels the world's oceans and other sufficiently deep waterways, carrying cargo or passengers, or in support of specialized missions, such as defense, research and fishing. Ships are generally distinguished from boats, based on size, shape, load capacity and purpose. Ships have supported exploration, trade, warfare, migration, colonization, and science. After the 15th century, new crops that had come from and to the Americas via the European seafarers significantly contributed to world population growth. Ship transport is responsible for the largest portion of world commerce.

Aircraft

Aircraft

An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or the dynamic lift of an airfoil, or, in a few cases, the downward thrust from jet engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors, and hot air balloons.

Thrust

Thrust

Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that system. The force applied on a surface in a direction perpendicular or normal to the surface is also called thrust. Force, and thus thrust, is measured using the International System of Units (SI) in newtons, and represents the amount needed to accelerate 1 kilogram of mass at the rate of 1 meter per second per second. In mechanical engineering, force orthogonal to the main load is referred to as static thrust.

Boat

Boat

A boat is a watercraft of a large range of types and sizes, but generally smaller than a ship, which is distinguished by its larger size, shape, cargo or passenger capacity, or its ability to carry boats.

Bernoulli's principle

Bernoulli's principle

In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. The principle is only applicable for isentropic flows: when the effects of irreversible processes and non-adiabatic processes are small and can be neglected.

History

Early developments

The principle employed in using a screw propeller is derived from sculling. In sculling, a single blade is moved through an arc, from side to side taking care to keep presenting the blade to the water at the effective angle. The innovation introduced with the screw propeller was the extension of that arc through more than 360° by attaching the blade to a rotating shaft. Propellers can have a single blade, but in practice there are nearly always more than one so as to balance the forces involved.

The origin of the screw propeller starts at least as early as Archimedes (c. 287 – c. 212 BC), who used a screw to lift water for irrigation and bailing boats, so famously that it became known as Archimedes' screw. It was probably an application of spiral movement in space (spirals were a special study of Archimedes) to a hollow segmented water-wheel used for irrigation by Egyptians for centuries. A flying toy, the bamboo-copter, was enjoyed in China beginning around 320 AD. Later, Leonardo da Vinci adopted the screw principle to drive his theoretical helicopter, sketches of which involved a large canvas screw overhead.

In 1661, Toogood and Hays proposed using screws for waterjet propulsion, though not as a propeller.[3] Robert Hooke in 1681 designed a horizontal watermill which was remarkably similar to the Kirsten-Boeing vertical axis propeller designed almost two and a half centuries later in 1928; two years later Hooke modified the design to provide motive power for ships through water.[4] In 1693 a Frenchman by the name of Du Quet invented a screw propeller which was tried in 1693 but later abandoned.[5][6] In 1752, the Academie des Sciences in Paris granted Burnelli a prize for a design of a propeller-wheel. At about the same time, the French mathematician Alexis-Jean-Pierre Paucton suggested a water propulsion system based on the Archimedean screw.[4] In 1771, steam-engine inventor James Watt in a private letter suggested using "spiral oars" to propel boats, although he did not use them with his steam engines, or ever implement the idea.[7]

One of the first practical and applied uses of a propeller was on a submarine dubbed Turtle which was designed in New Haven, Connecticut, in 1775 by Yale student and inventor David Bushnell, with the help of clock maker, engraver, and brass foundryman Isaac Doolittle. Bushnell's brother Ezra Bushnell and ship's carpenter and clock maker Phineas Pratt constructed the hull in Saybrook, Connecticut.[8][9] On the night of September 6, 1776, Sergeant Ezra Lee piloted Turtle in an attack on HMS Eagle in New York Harbor.[10][11] Turtle also has the distinction of being the first submarine used in battle. Bushnell later described the propeller in an October 1787 letter to Thomas Jefferson: "An oar formed upon the principle of the screw was fixed in the forepart of the vessel its axis entered the vessel and being turned one way rowed the vessel forward but being turned the other way rowed it backward. It was made to be turned by the hand or foot."[12] The brass propeller, like all the brass and moving parts on Turtle, was crafted by Issac Doolittle of New Haven.[13]

In 1785, Joseph Bramah of England proposed a propeller solution of a rod going through the underwater aft of a boat attached to a bladed propeller, though he never built it.[14]

In February 1800, Edward Shorter of London proposed using a similar propeller attached to a rod angled down temporarily deployed from the deck above the waterline and thus requiring no water seal, and intended only to assist becalmed sailing vessels. He tested it on the transport ship Doncaster at Gibraltar and Malta, achieving a speed of 1.5 mph (2.4 km/h).[15]

In 1802, American lawyer and inventor John Stevens built a 25-foot (7.6 m) boat with a rotary steam engine coupled to a four-bladed propeller. The craft achieved a speed of 4 mph (6.4 km/h), but Stevens abandoned propellers due to the inherent danger in using the high-pressure steam engines. His subsequent vessels were paddle-wheeled boats.[15]

By 1827, Czech-Austrian inventor Josef Ressel had invented a screw propeller with multiple blades on a conical base. He tested it in February 1826 on a manually-driven ship and successfully used it on a steamboat in 1829. His 48-ton ship Civetta reached 6 knots. This was the first successful Archimedes screw-propelled ship. His experiments were banned by police after a steam engine accident. Ressel, a forestry inspector, held an Austro-Hungarian patent for his propeller. The screw propeller was an improvement over paddlewheels as it wasn't affected by ship motions or draft changes.[16]

John Patch, a mariner in Yarmouth, Nova Scotia developed a two-bladed, fan-shaped propeller in 1832 and publicly demonstrated it in 1833, propelling a row boat across Yarmouth Harbour and a small coastal schooner at Saint John, New Brunswick, but his patent application in the United States was rejected until 1849 because he was not an American citizen.[17] His efficient design drew praise in American scientific circles[18] but by then he faced multiple competitors.

Screw propellers

Despite experimentation with screw propulsion before the 1830s, few of these inventions were pursued to the testing stage, and those that were proved unsatisfactory for one reason or another.[19]

Smith's original 1836 patent for a screw propeller of two full turns. He would later revise the patent, reducing the length to one turn.
Smith's original 1836 patent for a screw propeller of two full turns. He would later revise the patent, reducing the length to one turn.

In 1835, two inventors in Britain, John Ericsson and Francis Pettit Smith, began working separately on the problem. Smith was first to take out a screw propeller patent on 31 May, while Ericsson, a gifted Swedish engineer then working in Britain, filed his patent six weeks later.[20] Smith quickly built a small model boat to test his invention, which was demonstrated first on a pond at his Hendon farm, and later at the Royal Adelaide Gallery of Practical Science in London, where it was seen by the Secretary of the Navy, Sir William Barrow. Having secured the patronage of a London banker named Wright, Smith then built a 30-foot (9.1 m), 6-horsepower (4.5 kW) canal boat of six tons burthen called Francis Smith, which was fitted with his wooden propeller and demonstrated on the Paddington Canal from November 1836 to September 1837. By a fortuitous accident, the wooden propeller of two turns was damaged during a voyage in February 1837, and to Smith's surprise the broken propeller, which now consisted of only a single turn, doubled the boat's previous speed, from about four miles an hour to eight.[20] Smith would subsequently file a revised patent in keeping with this accidental discovery.

In the meantime, Ericsson built a 45-foot (14 m) screw-propelled steamboat, Francis B. Ogden in 1837, and demonstrated his boat on the River Thames to senior members of the British Admiralty, including Surveyor of the Navy Sir William Symonds. In spite of the boat achieving a speed of 10 miles an hour, comparable with that of existing paddle steamers, Symonds and his entourage were unimpressed. The Admiralty maintained the view that screw propulsion would be ineffective in ocean-going service, while Symonds himself believed that screw propelled ships could not be steered efficiently.[b] Following this rejection, Ericsson built a second, larger screw-propelled boat, Robert F. Stockton, and had her sailed in 1839 to the United States, where he was soon to gain fame as the designer of the U.S. Navy's first screw-propelled warship, USS Princeton.[21]

Screw propeller of SS Archimedes
Screw propeller of SS Archimedes

Apparently aware of the Royal Navy's view that screw propellers would prove unsuitable for seagoing service, Smith determined to prove this assumption wrong. In September 1837, he took his small vessel (now fitted with an iron propeller of a single turn) to sea, steaming from Blackwall, London to Hythe, Kent, with stops at Ramsgate, Dover and Folkestone. On the way back to London on the 25th, Smith's craft was observed making headway in stormy seas by officers of the Royal Navy. This revived Admiralty's interest and Smith was encouraged to build a full size ship to more conclusively demonstrate the technology.[22]

A replica of SS Great Britain's first propeller. A four-bladed model replaced the original in 1845. The ship was designed to have paddles, but plans changed after screw propellers were shown to be much more efficient.
A replica of SS Great Britain's first propeller. A four-bladed model replaced the original in 1845. The ship was designed to have paddles, but plans changed after screw propellers were shown to be much more efficient.

SS Archimedes was built in 1838 by Henry Wimshurst of London, as the world's first steamship[c] to be driven by a screw propeller.[23][24][25][26]

The Archimedes had considerable influence on ship development, encouraging the adoption of screw propulsion by the Royal Navy, in addition to her influence on commercial vessels. Trials with Smith's Archimedes led to a tug-of-war competition in 1845 between HMS Rattler and HMS Alecto with the screw-driven Rattler pulling the paddle steamer Alecto backward at 2.5 knots (4.6 km/h).[27]

The Archimedes also influenced the design of Isambard Kingdom Brunel's SS Great Britain in 1843, then the world's largest ship and the first screw-propelled steamship to cross the Atlantic Ocean in August 1845.

HMS Terror and HMS Erebus were both heavily modified to become the first Royal Navy ships to have steam-powered engines and screw propellers. Both participated in Franklin's lost expedition, last seen in July 1845 near Baffin Bay.

Screw propeller design stabilized in the 1880s.

Aircraft

ATR 72 propeller in flight
ATR 72 propeller in flight

The Wright brothers pioneered the twisted aerofoil shape of modern aircraft propellers. They realized an air propeller was similar to a wing. They verified this using wind tunnel experiments. They introduced a twist in their blades to keep the angle of attack constant. Their blades were only 5% less efficient than those used 100 years later.[28] Understanding of low-speed propeller aerodynamics was complete by the 1920s, although increased power and smaller diameters added design constraints.[29]

Alberto Santos Dumont, another early pioneer, applied the knowledge he gained from experiences with airships to make a propeller with a steel shaft and aluminium blades for his 14 bis biplane. Some of his designs used a bent aluminium sheet for blades, thus creating an airfoil shape. They were heavily undercambered, and this plus the absence of lengthwise twist made them less efficient than the Wright propellers. Even so, this may have been the first use of aluminium in the construction of an airscrew.

Discover more about History related topics

Archimedes' screw

Archimedes' screw

The Archimedes screw, also known as the Archimedean screw, hydrodynamic screw, water screw or Egyptian screw, is one of the earliest hydraulic machines. Using Archimedes screws as water pumps dates back many centuries. As a machine used for transferring water from a low-lying body of water into irrigation ditches, water is pumped by turning a screw-shaped surface inside a pipe. In the modern world, Archimedes screw pumps are widely used in wastewater treatment plants and for dewatering low-lying regions. Archimedes Screws Turbines (ASTs) are a new form of small hydroelectric powerplant that can be applied even in low head sites. Archimedes screw generators operate in a wide range of flows and heads, including low heads and moderate flow rates that is not ideal for traditional turbines and not occupied by high performance technologies. The Archimedes screw is a reversible hydraulic machine, and there are several examples of Archimedes screw installations where the screw can operate at different times as either pump or generator, depending on needs for power and watercourse flow.

Archimedes

Archimedes

Archimedes of Syracuse was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time, Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral.

Irrigation

Irrigation

Irrigation is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been developed by many cultures around the world. Irrigation helps to grow crops, maintain landscapes, and revegetate disturbed soils in dry areas and during times of below-average rainfall. In addition to these uses, irrigation is also employed to protect crops from frost, suppress weed growth in grain fields, and prevent soil consolidation. It is also used to cool livestock, reduce dust, dispose of sewage, and support mining operations. Drainage, which involves the removal of surface and sub-surface water from a given location, is often studied in conjunction with irrigation.

Egyptians

Egyptians

Egyptians are an ethnic group native to the Nile Valley in Egypt. Egyptian identity is closely tied to geography. The population is concentrated in the Nile Valley, a small strip of cultivable land stretching from the First Cataract to the Mediterranean and enclosed by desert both to the east and to the west. This unique geography has been the basis of the development of Egyptian society since antiquity.

Bamboo-copter

Bamboo-copter

The bamboo-copter, also known as the bamboo dragonfly or Chinese top, is a toy helicopter rotor that flies up when its shaft is rapidly spun. This helicopter-like top originated in Jin dynasty China around 320 AD, and was the object of early experiments by English engineer George Cayley, the inventor of modern aeronautics.

James Watt

James Watt

James Watt was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was fundamental to the changes brought by the Industrial Revolution in both his native Great Britain and the rest of the world.

David Bushnell

David Bushnell

David Bushnell , of Westbrook, Connecticut, was an American inventor, a patriot, one of the first American combat engineers, a teacher, and a medical doctor.

Isaac Doolittle

Isaac Doolittle

Isaac Doolittle was an early American clockmaker, inventor, engineer, manufacturer, militia officer, entrepreneur, printer, politician, and brass, iron, and silver artisan. Doolittle was a watchmaker and clockmaker, known for making and selling at his shop in New Haven, Connecticut, one of the first brass wheel hall clocks in America, where he also crafted and sold scientific instruments, and is regarded as "the first native practitioner" of silversmithing in the Connecticut Colony. He was also an engraver and printer of both legal forms and currency, and became the first American to design, manufacture, and sell a printing press in 1769. Somewhat late in life, he became a successful self-educated bell-foundryman, learning the difficult craft of casting large metal bells.

Edward Shorter

Edward Shorter

Edward Shorter (1767-1836) was an English engineer and inventor of several useful inventions including an early screw propeller.

Doncaster (1792 ship)

Doncaster (1792 ship)

Doncaster was launched in 1792 at South Shields. She spent many years as a transport. It was during this period that she became, during an experimental trial, the first British ship to be propelled by a propeller. Later, she traded across the North Atlantic with Quebec and north. She was wrecked in ice in 1835 off Cape North, Cape Breton Island.

John Patch

John Patch

John Patch was a Nova Scotian fisherman who invented one of the first versions of the screw propeller.

John Ericsson

John Ericsson

John Ericsson was a Swedish-American inventor. He was active in England and the United States.

Theory

Propellers of RMS Olympic. The outer two are counter-rotating.
Propellers of RMS Olympic. The outer two are counter-rotating.

In the nineteenth century, several theories concerning propellers were proposed. The momentum theory or disk actuator theory – a theory describing a mathematical model of an ideal propeller – was developed by W.J.M. Rankine (1865), A.G. Greenhill (1888) and R.E. Froude (1889). The propeller is modelled as an infinitely thin disc, inducing a constant velocity along the axis of rotation and creating a flow around the propeller.

A screw turning through a solid will have zero "slip"; but as a propeller screw operates in a fluid (either air or water), there will be some losses. The most efficient propellers are large-diameter, slow-turning screws, such as on large ships; the least efficient are small-diameter and fast-turning (such as on an outboard motor). Using Newton's laws of motion, one may usefully think of a propeller's forward thrust as being a reaction proportionate to the mass of fluid sent backward per time and the speed the propeller adds to that mass, and in practice there is more loss associated with producing a fast jet than with creating a heavier, slower jet. (The same applies in aircraft, in which larger-diameter turbofan engines tend to be more efficient than earlier, smaller-diameter turbofans, and even smaller turbojets, which eject less mass at greater speeds.)[30]

Propeller geometry

The geometry of a marine screw propeller is based on a helicoidal surface. This may form the face of the blade, or the faces of the blades may be described by offsets from this surface. The back of the blade is described by offsets from the helicoid surface in the same way that an aerofoil may be described by offsets from the chord line. The pitch surface may be a true helicoid or one having a warp to provide a better match of angle of attack to the wake velocity over the blades. A warped helicoid is described by specifying the shape of the radial reference line and the pitch angle in terms of radial distance. The traditional propeller drawing includes four parts: a side elevation, which defines the rake, the variation of blade thickness from root to tip, a longitudinal section through the hub, and a projected outline of a blade onto a longitudinal centreline plane. The expanded blade view shows the section shapes at their various radii, with their pitch faces drawn parallel to the base line, and thickness parallel to the axis. The outline indicated by a line connecting the leading and trailing tips of the sections depicts the expanded blade outline. The pitch diagram shows variation of pitch with radius from root to tip. The transverse view shows the transverse projection of a blade and the developed outline of the blade.[31]

The blades are the foil section plates that develop thrust when the propeller is rotated The hub is the central part of the propeller, which connects the blades together and fixes the propeller to the shaft. Rake is the angle of the blade to a radius perpendicular to the shaft. Skew is the tangential offset of the line of maximum thickness to a radius

The propeller characteristics are commonly expressed as dimensionless ratios:[31]

  • Pitch ratio PR = propeller pitch/propeller diameter, or P/D
  • Disk area A0 = πD2/4
  • Expanded area ratio = AE/A0, where expanded area AE = Expanded area of all blades outside of the hub.
  • Developed area ratio = AD/A0, where developed area AD = Developed area of all blades outside of the hub
  • Projected area ratio = AP/A0, where projected area AP = Projected area of all blades outside of the hub
  • Mean width ratio = (Area of one blade outside the hub/length of the blade outside the hub)/Diameter
  • Blade width ratio = Maximum width of a blade/Diameter
  • Blade thickness fraction = Thickness of a blade produced to shaft axis/Diameter

Cavitation

Cavitating propeller in water tunnel experiment
Cavitating propeller in water tunnel experiment
Cavitation damage evident on the impeller of a personal watercraft
Cavitation damage evident on the impeller of a personal watercraft

Cavitation is the formation of vapor bubbles in water near a moving propeller blade in regions of very low pressure. It can occur if an attempt is made to transmit too much power through the screw, or if the propeller is operating at a very high speed. Cavitation can waste power, create vibration and wear, and cause damage to the propeller. It can occur in many ways on a propeller. The two most common types of propeller cavitation are suction side surface cavitation and tip vortex cavitation.

Suction side surface cavitation forms when the propeller is operating at high rotational speeds or under heavy load (high blade lift coefficient). The pressure on the upstream surface of the blade (the "suction side") can drop below the vapor pressure of the water, resulting in the formation of a vapor pocket. Under such conditions, the change in pressure between the downstream surface of the blade (the "pressure side") and the suction side is limited, and eventually reduced as the extent of cavitation is increased. When most of the blade surface is covered by cavitation, the pressure difference between the pressure side and suction side of the blade drops considerably, as does the thrust produced by the propeller. This condition is called "thrust breakdown". Operating the propeller under these conditions wastes energy, generates considerable noise, and as the vapor bubbles collapse it rapidly erodes the screw's surface due to localized shock waves against the blade surface.

Tip vortex cavitation is caused by the extremely low pressures formed at the core of the tip vortex. The tip vortex is caused by fluid wrapping around the tip of the propeller; from the pressure side to the suction side. This video demonstrates tip vortex cavitation. Tip vortex cavitation typically occurs before suction side surface cavitation and is less damaging to the blade, since this type of cavitation doesn't collapse on the blade, but some distance downstream.

Discover more about Theory related topics

RMS Olympic

RMS Olympic

RMS Olympic was a British ocean liner and the lead ship of the White Star Line's trio of Olympic-class liners. Olympic had a career spanning 24 years from 1911 to 1935, in contrast to her short-lived sister ships, Titanic and Britannic. This included service as a troopship during the First World War, which gained her the nickname Old Reliable. She returned to civilian service after the war, and served successfully as an ocean liner throughout the 1920s and into the first half of the 1930s, although increased competition, and the slump in trade during the Great Depression after 1930, made her operation increasingly unprofitable.

Propeller theory

Propeller theory

Propeller theory is the science governing the design of efficient propellers. A propeller is the most common propulsor on ships, and on small aircraft.

Momentum theory

Momentum theory

In fluid dynamics, momentum theory or disk actuator theory is a theory describing a mathematical model of an ideal actuator disk, such as a propeller or helicopter rotor, by W.J.M. Rankine (1865), Alfred George Greenhill (1888) and Robert Edmund Froude (1889).

Mathematical model

Mathematical model

A mathematical model is an abstract description of a concrete system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences and engineering disciplines, as well as in non-physical systems such as the social sciences (such as economics, psychology, sociology, political science). It can also be taught as a subject in its own right.

Alfred George Greenhill

Alfred George Greenhill

Sir Alfred George Greenhill, FRS FRAeS, was a British mathematician.

Turbofan

Turbofan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

Turbojet

Turbojet

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

Helicoid

Helicoid

The helicoid, also known as helical surface, after the plane and the catenoid, is the third minimal surface to be known.

Cavitation

Cavitation

Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, called "bubbles" or "voids", collapse and can generate shock waves that may damage machinery. These shock waves are strong when they are very close to the imploded bubble, but rapidly weaken as they propagate away from the implosion. Cavitation is a significant cause of wear in some engineering contexts. Collapsing voids that implode near to a metal surface cause cyclic stress through repeated implosion. This results in surface fatigue of the metal, causing a type of wear also called "cavitation". The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs. Cavitation is usually divided into two classes of behavior: inertial cavitation and non-inertial cavitation.

Lift coefficient

Lift coefficient

In fluid dynamics, the lift coefficient is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft. CL is a function of the angle of the body to the flow, its Reynolds number and its Mach number. The section lift coefficient cl refers to the dynamic lift characteristics of a two-dimensional foil section, with the reference area replaced by the foil chord.

Vapor pressure

Vapor pressure

Vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.

Shock wave

Shock wave

In physics, a shock wave, or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

Types of propellers

Controllable-pitch propeller

A controllable-pitch propeller
A controllable-pitch propeller
A variable-pitch propeller on a fishing vessel
A variable-pitch propeller on a fishing vessel

Variable-pitch propellers (also known as controllable-pitch propellers) have significant advantages over the fixed-pitch variety. Advantages include:

  • the ability to select the most effective blade angle for any given speed
  • when motorsailing, the ability to coarsen the blade angle to attain the optimum drive from wind and engines
  • the ability to move astern (in reverse) much more efficiently (fixed props perform very poorly in astern)
  • the ability to "feather" the blades to give the least resistance when not in use (for example, when sailing)

Skewback propeller

An advanced type of propeller used on German Type 212 submarines is called a skewback propeller. As in the scimitar blades used on some aircraft, the blade tips of a skewback propeller are swept back against the direction of rotation. In addition, the blades are tilted rearward along the longitudinal axis, giving the propeller an overall cup-shaped appearance. This design preserves thrust efficiency while reducing cavitation, and thus makes for a quiet, stealthy design.[32][33]

A small number of ships use propellers with winglets similar to those on some airplane wings, reducing tip vortices and improving efficiency.[34][35][36][37][38]

Modular propeller

A modular propeller provides more control over the boat's performance. There is no need to change an entire propeller when there is an opportunity to only change the pitch or the damaged blades. Being able to adjust pitch will allow for boaters to have better performance while in different altitudes, water sports, or cruising.[39]

Voith Schneider propeller

Voith Schneider propellers use four untwisted straight blades turning around a vertical axis instead of helical blades and can provide thrust in any direction at any time, at the cost of higher mechanical complexity.

Shaftless

A rim-driven thruster integrates an electric motor into a ducted propeller. The cylindrical acts as the stator, while the tips of the blades act as the rotor. They typically provide high torque and operate at low RPMs, producing less noise. The system does not require a shaft, reducing weight. Units can be placed at various locations around the hull and operated independently, e.g., to aid in maneuvering. The absence of a shaft allows alternative rear hull designs.[40]

Toroidal

Twisted-toroid (ring-shaped) propellers replace the blades with a-circular rings. They are significantly quieter (particularly at audible frequencies) and more efficient than traditional propellers for both air and water applications. The design distributes vortices generated by the propeller across the entire shape, causing them to dissipate faster in the atmosphere.[41][42]

Discover more about Types of propellers related topics

Variable-pitch propeller (marine)

Variable-pitch propeller (marine)

In marine propulsion, a variable-pitch propeller is a type of propeller with blades that can be rotated around their long axis to change the blade pitch. Reversible propellers—those where the pitch can be set to negative values—can also create reverse thrust for braking or going backwards without the need to change the direction of shaft revolution.

Motorsailer

Motorsailer

A motorsailer is a type of motor-powered sailing vessel, typically a yacht, that can derive power from its sails or engine, independently from each other during moderate seas or winds. A motorsailer may have a sail-to-engine power ratio in the range 30/70 to 70/30.

Scimitar propeller

Scimitar propeller

A scimitar propeller is a type of propeller that has curved blades with increasing sweep along the leading edge. Their name is derived from their visual similarity to the curved blades of scimitars. In the early 1900s, as established by the French aeronautical inventor Lucien Chauvière and his commercial success with his scimitar-shaped Integrale propeller design, they were made of laminated wood. The combination of light weight and efficient aerodynamics results in more power and reduced noise.

Stealth technology

Stealth technology

Stealth technology, also termed low observable technology, is a sub-discipline of military tactics and passive and active electronic countermeasures, which covers a range of methods used to make personnel, aircraft, ships, submarines, missiles, satellites, and ground vehicles less visible to radar, infrared, sonar and other detection methods. It corresponds to military camouflage for these parts of the electromagnetic spectrum.

Astern propulsion

Astern propulsion

Astern propulsion is a maneuver in which a ship's propelling mechanism is used to develop thrust in a retrograde direction. Astern propulsion does not necessarily imply the ship is moving astern ; astern propulsion is used to slow a ship by applying a force in the direction of the bow of the ship, instead of the stern. The equivalent concept for an airplane is thrust reversal.

Modular propeller

Modular propeller

Unlike a standard one-piece boat or aircraft propeller, a modular propeller is made up of using a number of replaceable parts, typically:a set of matched blades; a propeller hub; and an end cap to retain the blades and to secure the propeller as a solid unit.

Rim-driven thruster

Rim-driven thruster

The rim-driven thruster, also known as rim-driven propulsor/propeller is a novel type of electric propulsion unit for ships. The concept was proposed by Kort around 1940, but only became commercially practical in the early 21st century due to advances in DC motor controller technology. As of 2017, commercial models of between 500 kW and 3MW are available from manufacturers such as Rolls-Royce, Schottel, Brunvoll, Voith, Van der Velden, etc.

Toroid

Toroid

In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its edges, then a hollow rectangle-section ring is produced. If the revolved figure is a circle, then the object is called a torus.

Damage protection

Shaft protection

A failed rubber bushing in an outboard's propeller
A failed rubber bushing in an outboard's propeller

For smaller engines, such as outboards, where the propeller is exposed to the risk of collision with heavy objects, the propeller often includes a device that is designed to fail when overloaded; the device or the whole propeller is sacrificed so that the more expensive transmission and engine are not damaged.

Typically in smaller (less than 10 hp or 7.5 kW) and older engines, a narrow shear pin through the drive shaft and propeller hub transmits the power of the engine at normal loads. The pin is designed to shear when the propeller is put under a load that could damage the engine. After the pin is sheared the engine is unable to provide propulsive power to the boat until a new shear pin is fitted.[43]

In larger and more modern engines, a rubber bushing transmits the torque of the drive shaft to the propeller's hub. Under a damaging load the friction of the bushing in the hub is overcome and the rotating propeller slips on the shaft, preventing overloading of the engine's components.[44] After such an event the rubber bushing may be damaged. If so, it may continue to transmit reduced power at low revolutions, but may provide no power, due to reduced friction, at high revolutions. Also, the rubber bushing may perish over time leading to its failure under loads below its designed failure load.

Whether a rubber bushing can be replaced or repaired depends upon the propeller; some cannot. Some can, but need special equipment to insert the oversized bushing for an interference fit. Others can be replaced easily. The "special equipment" usually consists of a funnel, a press and rubber lubricant (soap). If one does not have access to a lathe, an improvised funnel can be made from steel tube and car body filler; as the filler is only subject to compressive forces it is able to do a good job. Often, the bushing can be drawn into place with nothing more complex than a couple of nuts, washers and a threaded rod. A more serious problem with this type of propeller is a "frozen-on" spline bushing, which makes propeller removal impossible. In such cases the propeller must be heated in order to deliberately destroy the rubber insert. Once the propeller is removed, the splined tube can be cut away with a grinder and a new spline bushing is then required. To prevent a recurrence of the problem, the splines can be coated with anti-seize anti-corrosion compound.

In some modern propellers, a hard polymer insert called a drive sleeve replaces the rubber bushing. The splined or other non-circular cross section of the sleeve inserted between the shaft and propeller hub transmits the engine torque to the propeller, rather than friction. The polymer is weaker than the components of the propeller and engine so it fails before they do when the propeller is overloaded.[45] This fails completely under excessive load, but can easily be replaced.

Weed hatches and rope cutters

Bronze propeller & stainless steel rope cutter
Bronze propeller & stainless steel rope cutter

Whereas the propeller on a large ship will be immersed in deep water and free of obstacles and flotsam, yachts, barges and river boats often suffer propeller fouling by debris such as weed, ropes, cables, nets and plastics. British narrowboats invariably have a weed hatch over the propeller, and once the narrowboat is stationary, the hatch may be opened to give access to the propeller, enabling debris to be cleared. Yachts and river boats rarely have weed hatches; instead they may fit a rope cutter that fits around the prop shaft and rotates with the propeller. These cutters clear the debris and obviate the need for divers to attend manually to the fouling. Several forms of rope cutters are available:[46]

  1. A simple sharp edged disc that cuts like a razor;[47]
  2. A rotor with two or more projecting blades that slice against a fixed blade, cutting with a scissor action;[48][49][50]
  3. A serrated rotor with a complex cutting edge made up of sharp edges and projections.[51]

Discover more about Damage protection related topics

Outboard motor

Outboard motor

An outboard motor is a propulsion system for boats, consisting of a self-contained unit that includes engine, gearbox and propeller or jet drive, designed to be affixed to the outside of the transom. They are the most common motorised method of propelling small watercraft. As well as providing propulsion, outboards provide steering control, as they are designed to pivot over their mountings and thus control the direction of thrust. The skeg also acts as a rudder when the engine is not running. Unlike inboard motors, outboard motors can be easily removed for storage or repairs.

Shear pin

Shear pin

A shear pin is a mechanical detail designed to allow a specific outcome to occur once a predetermined force is applied. It can either function as a safeguard designed to break to protect other parts, or as a conditional operator that will not allow a mechanical device to operate until the correct force is applied.

Shear stress

Shear stress

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

Bushing (isolator)

Bushing (isolator)

A bushing or rubber bushing is a type of vibration isolator. It provides an interface between two parts, damping the energy transmitted through the bushing. A common application is in vehicle suspension systems, where a bushing made of rubber separates the faces of two metal objects while allowing a certain amount of movement. This movement allows the suspension parts to move freely, for example, when traveling over a large bump, while minimizing transmission of noise and small vibrations through to the chassis of the vehicle. A rubber bushing may also be described as a flexible mounting or antivibration mounting.

Torque

Torque

In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force. It represents the capability of a force to produce change in the rotational motion of the body. The concept originated with the studies by Archimedes of the usage of levers, which is reflected in his famous quote: "Give me a lever and a place to stand and I will move the Earth". Just as a linear force is a push or a pull, a torque can be thought of as a twist to an object around a specific axis. Torque is defined as the product of the magnitude of the perpendicular component of the force and the distance of the line of action of a force from the point around which it is being determined. The law of conservation of energy can also be used to understand torque. The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.

Friction

Friction

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:Dry friction is a force that opposes the relative lateral motion of two solid surfaces in contact. Dry friction is subdivided into static friction ("stiction") between non-moving surfaces, and kinetic friction between moving surfaces. With the exception of atomic or molecular friction, dry friction generally arises from the interaction of surface features, known as asperities. Fluid friction describes the friction between layers of a viscous fluid that are moving relative to each other.Lubricated friction is a case of fluid friction where a lubricant fluid separates two solid surfaces.Skin friction is a component of drag, the force resisting the motion of a fluid across the surface of a body. Internal friction is the force resisting motion between the elements making up a solid material while it undergoes deformation.

Interference fit

Interference fit

An interference fit, also known as a pressed fit or friction fit is a form of fastening between two tight fitting mating parts that produces a joint which is held together by friction after the parts are pushed together.

Yacht

Yacht

A yacht is a sailing or power vessel used for pleasure, cruising, or racing. There is no standard definition, though the term generally applies to vessels with a cabin intended for overnight use. To be termed a yacht, as opposed to a boat, such a pleasure vessel is likely to be at least 33 feet (10 m) in length and may have been judged to have good aesthetic qualities.

Barge

Barge

Barge nowadays generally refers to a flat-bottomed inland waterway vessel which does not have its own means of mechanical propulsion. The first modern barges were pulled by tugs, but nowadays most are pushed by pusher boats, or other vessels. The term barge has a rich history, and therefore there are many other types of barges.

Launch (boat)

Launch (boat)

Launch is a name given to several different types of boat. The wide range of usage of the name extends from utilitarian craft through to pleasure boats built to a very high standard.

Narrowboat

Narrowboat

A narrowboat is a particular type of canal boat, built to fit the narrow locks of the United Kingdom. The UK's canal system provided a nationwide transport network during the Industrial Revolution, but with the advent of the railways, commercial canal traffic gradually diminished and the last regular long-distance transportation of goods by canal had virtually disappeared by 1970. However, some commercial traffic continued. From the 1970s onward narrowboats were gradually being converted into permanent residences or as holiday lettings. Currently, about 8580 narrowboats are registered as 'permanent homes' on Britain's waterway system and represent a growing alternative community living on semi-permanent moorings or continuously cruising.

Propeller variations

A cleaver is a type of propeller design especially used for boat racing. Its leading edge is formed round, while the trailing edge is cut straight. It provides little bow lift, so that it can be used on boats that do not need much bow lift, for instance hydroplanes, that naturally have enough hydrodynamic bow lift. To compensate for the lack of bow lift, a hydrofoil may be installed on the lower unit. Hydrofoils reduce bow lift and help to get a boat out of the hole and onto plane.

Source: "Propeller", Wikipedia, Wikimedia Foundation, (2023, March 17th), https://en.wikipedia.org/wiki/Propeller.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also

Propeller characteristics

Propeller phenomena

  • Propeller walk – Tendency of a propeller to yaw a vessel during acceleration
  • Cavitation – Low-pressure voids formed in liquids

Other

Materials and manufacture

  • Balancing machine – measuring tool used for balancing rotating machine parts
  • Composite materials – Material made from a combination of three or more unlike substances
Notes
  1. ^ On many boats, the prop shaft is not horizontal but dips towards the stern. Although this is often forced upon the designer by hull shape, it gives a small benefit by helping to counter any squat effect.
  2. ^ In the case of Francis B. Ogden, Symonds was correct. Ericsson had made the mistake of placing the rudder forward of the propellers, which made the rudder ineffective. Symonds believed that Ericsson tried to disguise the problem by towing a barge during the test.
  3. ^ The emphasis here is on ship. There were a number of successful propeller-driven vessels prior to Archimedes, including Smith's own Francis Smith and Ericsson's Francis B. Ogden and Robert F. Stockton. However, these vessels were boats – designed for service on inland waterways – as opposed to ships, built for seagoing service.
Citations
  1. ^ "Propeller". Encyclopedia Britannica. Retrieved 2019-12-04.
  2. ^ "Propeller Propulsion". NASA. May 5, 2015.
  3. ^ Carlton, John (2012), Marine Propellers and Propulsion, Butterworth-Heinemann, p. 363.
  4. ^ a b Carlton 2012, p. 1.
  5. ^ Bourne, John (April 10, 1855). "A Treatise on the Screw Propeller: With Various Suggestions of Improvement". Longman, Brown, Green, & Longmans – via Google Books.
  6. ^ "Patents for Inventions: Abridgments of Specifications : Class…". Patent Office. April 10, 1857 – via Google Books.
  7. ^ Murihead, James Patrick, The Life of James Watt, with Selections from His Correspondence… With Portraits and Woodcuts, London: John Murray, 1858, p. 208
  8. ^ Stein, Stephen K., 2017, The Sea in World History: Exploration, Travel, and Trade [2 volumes], Ed. Stephen K. Stein, ABC-CLIO, Vol. 1, p. 600
  9. ^ Manstan, Roy R.; Frese, Frederic J., Turtle: David Bushnell's Revolutionary Vessel, Yardley, PA: Westholme Publishing. ISBN 978-1-59416105-6. OCLC 369779489, 2010, pp. xiii, 52, 53
  10. ^ Tucker, Spencer, Almanac of American Military History, ABC-CLIO, 2013, Volume 1, p. 305
  11. ^ Mansten pp. xiii, xiv.
  12. ^ Nicholson, William, A Journal of Natural Philosophy, Chemistry and the Arts, Volume 4, G. G. & J. Robinson, 1801, p. 221
  13. ^ Manstan, p. 150
  14. ^ Carlton 2012, pp. 1–2.
  15. ^ a b Carlton, p. 2
  16. ^ Paul Augustin Normand, La Genèse de l'Hélice Propulsive [The Genesis of the Screw Propulsor]. Paris: Académie de Marine, 1962, pp. 31–50.
  17. ^ Mario Theriault, Great Maritime Inventions Goose Lane Publishing (2001) pp. 58–59
  18. ^ "Patch's Propeller", Scientific America, vol. 4, no. 5, p. 33, October 10, 1848, archived from the original on July 8, 2011, retrieved 31 January 2010 – via The Archimedes Screw
  19. ^ Smith, Edgar C. (1905). A Short history of Naval and Marine Engineering. Cambridge: University Press. pp. 66–67.
  20. ^ a b Bourne, p. 84.
  21. ^ Bourne, pp. 87–89.
  22. ^ Bourne, p. 85.
  23. ^ "The type of screw propeller that now propels the vast majority of boats and ships was patented in 1836, first by the British engineer Francis Pettit Smith, then by the Swedish engineer John Ericsson. Smith used the design in the first successful screw-driven steamship, Archimedes, which was launched in 1839." Marshall Cavendish, p. 1335.
  24. ^ "The propeller was invented in 1836 by Francis Pettit Smith in Britain and John Ericsson in the United States. It first powered a seagoing ship, appropriately called Archimedes, in 1839." Macauley and Ardley, p. 378.
  25. ^ "In 1839, the Messrs. Rennie constructed the engines, machinery and propeller, for the celebrated Archimedes, from which may be said to date the introduction of the screw system of propulsion…" Mechanics Magazine, p. 220.
  26. ^ "It was not until 1839 that the principle of propelling steamships by a screw blade was fairly brought before the world, and for this we are indebted, as almost every adult will remember, to Mr. F. P. Smith of London. He was the man who first made the screw propeller practically useful. Aided by spirited capitalists, he built a large steamer named the "Archimedes", and the results obtained from her at once arrested public attention." MacFarlane, p. 109.
  27. ^ Propeller versus Paddle: The Tug of War between HMS Rattler and the Alecto, Bow Creek to Anatahan.
  28. ^ Ash, Robert L., Colin P. Britcher and Kenneth W. Hyde. "Wrights: How two brothers from Dayton added a new twist to airplane propulsion." Mechanical Engineering: 100 years of Flight, 3 July 2007.
  29. ^ Pilot's Handbook of Aeronautical Knowledge. Oklahoma City: U.S. Federal Aviation Administration. 2008. pp. 2–7. FAA-8083-25A.
  30. ^ How propellers work - https://www.deepblueyachtsupply.com/boat-propeller-theory
  31. ^ a b Todd, F.H. (1967). "VII: Resistance and Propulsion". In Comstock, John P. (ed.). Principles of Naval Architecture (Revised ed.). Society of Naval Architects and Marine Engineers. pp. 397–462.
  32. ^ "Silent propellers". France helices. JMC Web Creation & Co. 2009. Archived from the original on September 26, 2007. Retrieved July 21, 2017.
  33. ^ About Propellers, UK: GSI Tek props
  34. ^ Godske, Bjørn. "Energy saving propeller" (in Danish) Ingeniøren, 23 April 2012. Accessed: 15 March 2014. English translation
  35. ^ Godske, Bjørn. "Kappel-propellers pave the way for success at MAN" (in Danish) Ingeniøren, 15 March 2014. Accessed: 15 March 2014. English translation
  36. ^ "Kappel agreement secures access to major market", Man diesel turbo, 30 August 2013.
  37. ^ "Kapriccio Project Archived 2014-03-15 at the Wayback Machine" European Union. Accessed: 15 March 2014.
  38. ^ "Industry Pays Tribute to Innovation Awards Winners" Marine link, 3 October 2002. Accessed: 15 March 2014. Quote: "Winner: the energy-saving Kappel propeller concept from the European Commission-funded Kapriccio propulsion research project. Blades curved towards the tips on the suction side reduce energy losses, fuel consumption, noise and vibration"
  39. ^ Smrcka, Karel (March 18, 2005). "A new start for marine propellers". Engineering News. Retrieved July 21, 2017.
  40. ^ "Are rim-driven propulsors the future?". www.rina.org.uk. July 2017. Retrieved 2023-01-29.
  41. ^ Blain, Loz (2023-01-27). "Toroidal propellers: A noise-killing game changer in air and water". New Atlas. Retrieved 2023-01-29.
  42. ^ US US10,836,466B2, Sebastian, Thomas, "TOROIDALPROPELLER", published 2020 
  43. ^ Getchell, David (1994), The Outboard Boater's Handbook, ISBN 978-0-07023053-8
  44. ^ Admiralty Manual of Seamanship, Great Britain: Ministry of Defence (Navy), 1995, ISBN 978-0-11772696-3
  45. ^ US 5484264, Karls, Michael & Lindgren, Daniel, "Torsionally twisting propeller drive sleeve and adapter", published 1994-03-08, issued January 16, 1996 
  46. ^ Yachting World rope cutter test, Yatching monthly
  47. ^ Simple disc cutters, ASAP Supplies
  48. ^ Spurs scissor-action rope cutter, Spurs marine
  49. ^ "Stripper scissor-action rope cutter", Rope stripper
  50. ^ "Gator cissor-action rope cutter", Prop protect
  51. ^ "Images of rope cutters", Bing (search), Microsoft
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.