Get Our Extension

Predation

From Wikipedia, in a visual modern way
Solitary predator: a polar bear feeds on a bearded seal it has killed.
Solitary predator: a polar bear feeds on a bearded seal it has killed.
Social predators: meat ants cooperate to feed on a cicada far larger than themselves.
Social predators: meat ants cooperate to feed on a cicada far larger than themselves.

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill the host) and parasitoidism (which always does, eventually). It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

Predators may actively search for or pursue prey or wait for it, often concealed. When prey is detected, the predator assesses whether to attack it. This may involve ambush or pursuit predation, sometimes after stalking the prey. If the attack is successful, the predator kills the prey, removes any inedible parts like the shell or spines, and eats it.

Predators are adapted and often highly specialized for hunting, with acute senses such as vision, hearing, or smell. Many predatory animals, both vertebrate and invertebrate, have sharp claws or jaws to grip, kill, and cut up their prey. Other adaptations include stealth and aggressive mimicry that improve hunting efficiency.

Predation has a powerful selective effect on prey, and the prey develop antipredator adaptations such as warning coloration, alarm calls and other signals, camouflage, mimicry of well-defended species, and defensive spines and chemicals. Sometimes predator and prey find themselves in an evolutionary arms race, a cycle of adaptations and counter-adaptations. Predation has been a major driver of evolution since at least the Cambrian period.

Discover more about Predation related topics

Biological interaction

Biological interaction

In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species, or of different species. These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship.

Host (biology)

Host (biology)

In biology and medicine, a host is a larger organism that harbours a smaller organism; whether a parasitic, a mutualistic, or a commensalist guest (symbiont). The guest is typically provided with nourishment and shelter. Examples include animals playing host to parasitic worms, cells harbouring pathogenic (disease-causing) viruses, a bean plant hosting mutualistic (helpful) nitrogen-fixing bacteria. More specifically in botany, a host plant supplies food resources to micropredators, which have an evolutionarily stable relationship with their hosts similar to ectoparasitism. The host range is the collection of hosts that an organism can use as a partner.

Frugivore

Frugivore

A frugivore is an animal that thrives mostly on raw fruits or succulent fruit-like produce of plants such as roots, shoots, nuts and seeds. Approximately 20% of mammalian herbivores eat fruit. Frugivores are highly dependent on the abundance and nutritional composition of fruits. Frugivores can benefit or hinder fruit-producing plants by either dispersing or destroying their seeds through digestion. When both the fruit-producing plant and the frugivore benefit by fruit-eating behavior the interaction is a form of mutualism.

Eye

Eye

Eyes are organs of the visual system. They provide living organisms with vision, the ability to receive and process visual detail, as well as enabling several photo response functions that are independent of vision. Eyes detect light and convert it into electro-chemical impulses in neurons (neurones). In higher organisms, the eye is a complex optical system which collects light from the surrounding environment, regulates its intensity through a diaphragm, focuses it through an adjustable assembly of lenses to form an image, converts this image into a set of electrical signals, and transmits these signals to the brain through complex neural pathways that connect the eye via the optic nerve to the visual cortex and other areas of the brain. Eyes with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in molluscs, chordates and arthropods.

Hearing

Hearing

Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory science.

Animal

Animal

Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres (0.00033 in) to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology.

Claw

Claw

A claw is a curved, pointed appendage found at the end of a toe or finger in most amniotes. Some invertebrates such as beetles and spiders have somewhat similar fine, hooked structures at the end of the leg or tarsus for gripping a surface as they walk. The pincers of crabs, lobsters and scorpions, more formally known as their chelae, are sometimes called claws.

Aggressive mimicry

Aggressive mimicry

Aggressive mimicry is a form of mimicry in which predators, parasites, or parasitoids share similar signals, using a harmless model, allowing them to avoid being correctly identified by their prey or host. Zoologists have repeatedly compared this strategy to a wolf in sheep's clothing. In its broadest sense, aggressive mimicry could include various types of exploitation, as when an orchid exploits a male insect by mimicking a sexually receptive female, but will here be restricted to forms of exploitation involving feeding. For example, indigenous Australians who dress up as and imitate kangaroos when hunting would not be considered aggressive mimics, nor would a human angler, though they are undoubtedly practising self-decoration camouflage. Treated separately is molecular mimicry, which shares some similarity; for instance a virus may mimic the molecular properties of its host, allowing it access to its cells. An alternative term, Peckhamian mimicry, has been suggested, but it is seldom used.

Camouflage

Camouflage

Camouflage is the use of any combination of materials, coloration, or illumination for concealment, either by making animals or objects hard to see, or by disguising them as something else. Examples include the leopard's spotted coat, the battledress of a modern soldier, and the leaf-mimic katydid's wings. A third approach, motion dazzle, confuses the observer with a conspicuous pattern, making the object visible but momentarily harder to locate, as well as making general aiming easier. The majority of camouflage methods aim for crypsis, often through a general resemblance to the background, high contrast disruptive coloration, eliminating shadow, and countershading. In the open ocean, where there is no background, the principal methods of camouflage are transparency, silvering, and countershading, while the ability to produce light is among other things used for counter-illumination on the undersides of cephalopods such as squid. Some animals, such as chameleons and octopuses, are capable of actively changing their skin pattern and colours, whether for camouflage or for signalling. It is possible that some plants use camouflage to evade being eaten by herbivores.

Evolutionary arms race

Evolutionary arms race

In evolutionary biology, an evolutionary arms race is an ongoing struggle between competing sets of co-evolving genes, phenotypic and behavioral traits that develop escalating adaptations and counter-adaptations against each other, resembling an arms race. These are often described as examples of positive feedback. The co-evolving gene sets may be in different species, as in an evolutionary arms race between a predator species and its prey, or a parasite and its host. Alternatively, the arms race may be between members of the same species, as in the manipulation/sales resistance model of communication or as in runaway evolution or Red Queen effects. One example of an evolutionary arms race is in sexual conflict between the sexes, often described with the term Fisherian runaway. Thierry Lodé emphasized the role of such antagonistic interactions in evolution leading to character displacements and antagonistic coevolution.

Evolution

Evolution

In biology, evolution is the change in heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation tends to exist within any given population as a result of genetic mutation and recombination. Evolution occurs when evolutionary processes such as natural selection and genetic drift act on this variation, resulting in certain characteristics becoming more common or more rare within a population. The evolutionary pressures that determine whether a characteristic is common or rare within a population constantly change, resulting in a change in heritable characteristics arising over successive generations. It is this process of evolution that has given rise to biodiversity at every level of biological organisation.

Cambrian

Cambrian

The Cambrian Period is the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million years ago (mya) to the beginning of the Ordovician Period 485.4 mya. Its subdivisions, and its base, are somewhat in flux. The period was established as "Cambrian series" by Adam Sedgwick, who named it after Cambria, the Latin name for 'Cymru' (Wales), where Britain's Cambrian rocks are best exposed. Sedgwick identified the layer as part of his task, along with Roderick Murchison, to subdivide the large "Transition Series", although the two geologists disagreed for a while on the appropriate categorization. The Cambrian is unique in its unusually high proportion of lagerstätte sedimentary deposits, sites of exceptional preservation where "soft" parts of organisms are preserved as well as their more resistant shells. As a result, our understanding of the Cambrian biology surpasses that of some later periods.

Definition

Spider wasps paralyse and eventually kill their hosts, but are considered parasitoids, not predators.
Spider wasps paralyse and eventually kill their hosts, but are considered parasitoids, not predators.

At the most basic level, predators kill and eat other organisms. However, the concept of predation is broad, defined differently in different contexts, and includes a wide variety of feeding methods; and some relationships that result in the prey's death are not generally called predation. A parasitoid, such as an ichneumon wasp, lays its eggs in or on its host; the eggs hatch into larvae, which eat the host, and it inevitably dies. Zoologists generally call this a form of parasitism, though conventionally parasites are thought not to kill their hosts. A predator can be defined to differ from a parasitoid in that it has many prey, captured over its lifetime, where a parasitoid's larva has just one, or at least has its food supply provisioned for it on just one occasion.[1][2]

Relation of predation to other feeding strategies
Relation of predation to other feeding strategies

There are other difficult and borderline cases. Micropredators are small animals that, like predators, feed entirely on other organisms; they include fleas and mosquitoes that consume blood from living animals, and aphids that consume sap from living plants. However, since they typically do not kill their hosts, they are now often thought of as parasites.[3][4] Animals that graze on phytoplankton or mats of microbes are predators, as they consume and kill their food organisms; but herbivores that browse leaves are not, as their food plants usually survive the assault.[5] When animals eat seeds (seed predation or granivory) or eggs (egg predation), they are consuming entire living organisms, which by definition makes them predators.[6][7][8]

Scavengers, organisms that only eat organisms found already dead, are not predators, but many predators such as the jackal and the hyena scavenge when the opportunity arises.[9][10][5] Among invertebrates, social wasps (yellowjackets) are both hunters and scavengers of other insects.[11]

Discover more about Definition related topics

Parasitoid

Parasitoid

In evolutionary ecology, a parasitoid is an organism that lives in close association with its host at the host's expense, eventually resulting in the death of the host. Parasitoidism is one of six major evolutionary strategies within parasitism, distinguished by the fatal prognosis for the host, which makes the strategy close to predation.

Parasitism

Parasitism

Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson has characterised parasites as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.

Flea

Flea

Flea, the common name for the order Siphonaptera, includes 2,500 species of small flightless insects that live as external parasites of mammals and birds. Fleas live by ingesting the blood of their hosts. Adult fleas grow to about 3 millimetres long, are usually brown, and have bodies that are "flattened" sideways or narrow, enabling them to move through their hosts' fur or feathers. They lack wings; their hind legs are extremely well adapted for jumping. Their claws keep them from being dislodged, and their mouthparts are adapted for piercing skin and sucking blood. They can leap 50 times their body length, a feat second only to jumps made by another group of insects, the superfamily of froghoppers. Flea larvae are worm-like, with no limbs; they have chewing mouthparts and feed on organic debris left on their hosts' skin.

Mosquito

Mosquito

Mosquitoes are approximately 3,600 species of small flies comprising the family Culicidae. The word "mosquito" is Spanish for "little fly". Mosquitoes have a slender segmented body, one pair of wings, one pair of halteres, three pairs of long hair-like legs, and elongated mouthparts.

Aphid

Aphid

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

Grazing

Grazing

In agriculture, grazing is a method of animal husbandry whereby domestic livestock are allowed outdoors to roam around and consume wild vegetations in order to convert the otherwise indigestible cellulose within grass and other forages into meat, milk, wool and other animal products, often on land unsuitable for arable farming.

Phytoplankton

Phytoplankton

Phytoplankton are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words φυτόν, meaning 'plant', and πλαγκτός, meaning 'wanderer' or 'drifter'.

Seed predation

Seed predation

Seed predation, often referred to as granivory, is a type of plant-animal interaction in which granivores feed on the seeds of plants as a main or exclusive food source, in many cases leaving the seeds damaged and not viable. Granivores are found across many families of vertebrates as well as invertebrates ; thus, seed predation occurs in virtually all terrestrial ecosystems. Seed predation is commonly divided into two distinctive temporal categories, pre-dispersal and post-dispersal predation, which affect the fitness of the parental plant and the dispersed offspring, respectively. Mitigating pre- and post-dispersal predation may involve different strategies. To counter seed predation, plants have evolved both physical defenses and chemical defenses. However, as plants have evolved seed defenses, seed predators have adapted to plant defenses. Thus, many interesting examples of coevolution arise from this dynamic relationship.

Egg predation

Egg predation

Egg predation is a feeding strategy in many groups of animals (ovivores) in which they consume eggs. Since an egg represents a complete organism at one stage of its life cycle, eating an egg is a form of predation, the killing of another organism for food.

Scavenger

Scavenger

Scavengers are animals that consume dead organisms that have died from causes other than predation or have been killed by other predators. While scavenging generally refers to carnivores feeding on carrion, it is also a herbivorous feeding behavior. Scavengers play an important role in the ecosystem by consuming dead animal and plant material. Decomposers and detritivores complete this process, by consuming the remains left by scavengers.

Jackal

Jackal

Jackals are medium-sized canids native to Africa and Eurasia. While the word "jackal" has historically been used for many canines of the subtribe canina, in modern use it most commonly refers to three species: the closely related black-backed jackal and side-striped jackal of sub-Saharan-Africa, and the golden jackal of south-central Europe and Asia. The African golden wolf was also formerly considered as a jackal.

Hyena

Hyena

Hyenas, or hyaenas, are feliform carnivoran mammals of the family Hyaenidae. With just four extant species, it is the fifth-smallest family in the Carnivora and one of the smallest in the class Mammalia. Despite their low diversity, hyenas are unique and vital components of most African ecosystems.

Taxonomic range

Carnivorous plant: sundew engulfing an insectSeed predation: mouse eating seeds
Carnivorous plant: sundew engulfing an insect
Carnivorous plant: sundew engulfing an insectSeed predation: mouse eating seeds
Seed predation: mouse eating seeds

While examples of predators among mammals and birds are well known,[12] predators can be found in a broad range of taxa including arthropods. They are common among insects, including mantids, dragonflies, lacewings and scorpionflies. In some species such as the alderfly, only the larvae are predatory (the adults do not eat). Spiders are predatory, as well as other terrestrial invertebrates such as scorpions; centipedes; some mites, snails and slugs; nematodes; and planarian worms.[13] In marine environments, most cnidarians (e.g., jellyfish, hydroids), ctenophora (comb jellies), echinoderms (e.g., sea stars, sea urchins, sand dollars, and sea cucumbers) and flatworms are predatory.[14] Among crustaceans, lobsters, crabs, shrimps and barnacles are predators,[15] and in turn crustaceans are preyed on by nearly all cephalopods (including octopuses, squid and cuttlefish).[16]

Paramecium, a predatory ciliate, feeding on bacteria
Paramecium, a predatory ciliate, feeding on bacteria

Seed predation is restricted to mammals, birds, and insects but is found in almost all terrestrial ecosystems.[8][6] Egg predation includes both specialist egg predators such as some colubrid snakes and generalists such as foxes and badgers that opportunistically take eggs when they find them.[17][18][19]

Some plants, like the pitcher plant, the Venus fly trap and the sundew, are carnivorous and consume insects.[12] Methods of predation by plants varies greatly but often involves a food trap, mechanical stimulation, and electrical impulses to eventually catch and consume its prey.[20] Some carnivorous fungi catch nematodes using either active traps in the form of constricting rings, or passive traps with adhesive structures.[21]

Many species of protozoa (eukaryotes) and bacteria (prokaryotes) prey on other microorganisms; the feeding mode is evidently ancient, and evolved many times in both groups.[22][12][23] Among freshwater and marine zooplankton, whether single-celled or multi-cellular, predatory grazing on phytoplankton and smaller zooplankton is common, and found in many species of nanoflagellates, dinoflagellates, ciliates, rotifers, a diverse range of meroplankton animal larvae, and two groups of crustaceans, namely copepods and cladocerans.[24]

Discover more about Taxonomic range related topics

Carnivorous plant

Carnivorous plant

Carnivorous plants are plants that derive some or most of their nutrients from trapping and consuming animals or protozoans, typically insects and other arthropods. Carnivorous plants still generate some of their energy from photosynthesis. Carnivorous plants have adapted to grow in places where the soil is thin or poor in nutrients, especially nitrogen, such as acidic bogs. They can be found on all continents except Antarctica, as well as many Pacific islands. In 1875, Charles Darwin published Insectivorous Plants, the first treatise to recognize the significance of carnivory in plants, describing years of painstaking research.

Nematophagous fungus

Nematophagous fungus

Nematophagous fungi are carnivorous fungi specialized in trapping and digesting nematodes. Around 160 species are known. There exist both species that live inside the nematodes from the beginning and others that catch them, mostly with glue traps or in rings, some of which constrict on contact. Some species possess both types of traps. Another technique is to stun the nematodes using toxins, which is a method employed by Coprinus comatus, Stropharia rugosoannulata, and the family Pleurotaceae. The habit of feeding on nematodes has arisen many times among fungi, as is demonstrated by the fact that nematophagous species are found in all major fungal groups. Nematophagous fungi can be useful in controlling those nematodes that eat crops. Purpureocillium, for example, can be used as a bio-nematicide.

Egg predation

Egg predation

Egg predation is a feeding strategy in many groups of animals (ovivores) in which they consume eggs. Since an egg represents a complete organism at one stage of its life cycle, eating an egg is a form of predation, the killing of another organism for food.

African pygmy mouse

African pygmy mouse

The African pygmy mouse is one of the smallest rodents. It is widespread within sub-Saharan Africa, and is kept as a pet in other parts of the world. Like the common house mouse, it is a member of the enormous superfamily Muroidea, which includes about 1000 different species.

Dragonfly

Dragonfly

A dragonfly is a flying insect belonging to the infraorder Anisoptera below the order Odonata. About 3,000 extant species of true dragonflies are known. Most are tropical, with fewer species in temperate regions. Loss of wetland habitat threatens dragonfly populations around the world. Adult dragonflies are characterized by a pair of large, multifaceted, compound eyes, two pairs of strong, transparent wings, sometimes with coloured patches, and an elongated body. Many dragonflies have brilliant iridescent or metallic colours produced by structural colouration, making them conspicuous in flight. An adult dragonfly's compound eyes have nearly 24,000 ommatidia each.

Neuroptera

Neuroptera

The insect order Neuroptera, or net-winged insects, includes the lacewings, mantidflies, antlions, and their relatives. The order consists of some 6,000 species. Neuroptera is grouped together with the Megaloptera and Raphidioptera (snakeflies) in the unranked taxon Neuropterida.

Mecoptera

Mecoptera

Mecoptera is an order of insects in the superorder Endopterygota with about six hundred species in nine families worldwide. Mecopterans are sometimes called scorpionflies after their largest family, Panorpidae, in which the males have enlarged genitals raised over the body that look similar to the stingers of scorpions, and long beaklike rostra. The Bittacidae, or hangingflies, are another prominent family and are known for their elaborate mating rituals, in which females choose mates based on the quality of gift prey offered to them by the males. A smaller group is the snow scorpionflies, family Boreidae, adults of which are sometimes seen walking on snowfields. In contrast, the majority of species in the order inhabit moist environments in tropical locations.

Alderfly

Alderfly

Alderflies are megalopteran insects of the family Sialidae. They are closely related to the dobsonflies and fishflies as well as to the prehistoric Euchauliodidae. All living alderflies – about 66 species all together – are part of the subfamily Sialinae, which contains between one and seven extant genera according to different scientists' views.

Centipede

Centipede

Centipedes are predatory arthropods belonging to the class Chilopoda of the subphylum Myriapoda, an arthropod group which includes millipedes and other multi-legged animals. Centipedes are elongated segmented (metameric) creatures with one pair of legs per body segment. All centipedes are venomous and can inflict painful bites, injecting their venom through pincer-like appendages known as forcipules. Despite the name, no centipede has exactly 100 pairs of legs; they can have a varying number of legs, ranging from 30 to 382. Like spiders and scorpions, centipedes are predominantly carnivorous.

Mite

Mite

Mites are small arachnids. Mites span two large orders of arachnids, the Acariformes and the Parasitiformes, which were historically grouped together in the subclass Acari, but genetic analysis does not show clear evidence of a close relationship.

Nematode

Nematode

The nematodes or roundworms constitute the phylum Nematoda, with plant-parasitic nematodes also known as eelworms. They are a diverse animal phylum inhabiting a broad range of environments. Less formally, they are categorized as helminths, but are taxonomically classified along with arthropods, tardigrades and other moulting animals in the clade Ecdysozoa, and unlike flatworms, have tubular digestive systems with openings at both ends. Like tardigrades, they have a reduced number of Hox genes, but their sister phylum Nematomorpha has kept the ancestral protostome Hox genotype, which shows that the reduction has occurred within the nematode phylum.

Cnidaria

Cnidaria

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, predominantly the latter.

Foraging

A basic foraging cycle for a predator, with some variations indicated[25]
A basic foraging cycle for a predator, with some variations indicated[25]

To feed, a predator must search for, pursue and kill its prey. These actions form a foraging cycle.[26][27] The predator must decide where to look for prey based on its geographical distribution; and once it has located prey, it must assess whether to pursue it or to wait for a better choice. If it chooses pursuit, its physical capabilities determine the mode of pursuit (e.g., ambush or chase).[28][29] Having captured the prey, it may also need to expend energy handling it (e.g., killing it, removing any shell or spines, and ingesting it).[25][26]

Search

Predators have a choice of search modes ranging from sit-and-wait to active or widely foraging.[30][25][31][32] The sit-and-wait method is most suitable if the prey are dense and mobile, and the predator has low energy requirements.[30] Wide foraging expends more energy, and is used when prey is sedentary or sparsely distributed.[28][30] There is a continuum of search modes with intervals between periods of movement ranging from seconds to months. Sharks, sunfish, Insectivorous birds and shrews are almost always moving while web-building spiders, aquatic invertebrates, praying mantises and kestrels rarely move. In between, plovers and other shorebirds, freshwater fish including crappies, and the larvae of coccinellid beetles (ladybirds), alternate between actively searching and scanning the environment.[30]

The black-browed albatross regularly flies hundreds of kilometres across the nearly empty ocean to find patches of food.
The black-browed albatross regularly flies hundreds of kilometres across the nearly empty ocean to find patches of food.

Prey distributions are often clumped, and predators respond by looking for patches where prey is dense and then searching within patches.[25] Where food is found in patches, such as rare shoals of fish in a nearly empty ocean, the search stage requires the predator to travel for a substantial time, and to expend a significant amount of energy, to locate each food patch.[33] For example, the black-browed albatross regularly makes foraging flights to a range of around 700 kilometres (430 miles), up to a maximum foraging range of 3,000 kilometres (1,860 miles) for breeding birds gathering food for their young.[a][34] With static prey, some predators can learn suitable patch locations and return to them at intervals to feed.[33] The optimal foraging strategy for search has been modelled using the marginal value theorem.[35]

Search patterns often appear random. One such is the Lévy walk, that tends to involve clusters of short steps with occasional long steps. It is a good fit to the behaviour of a wide variety of organisms including bacteria, honeybees, sharks and human hunter-gatherers.[36][37]

Assessment

Seven-spot ladybirds select plants of good quality for their aphid prey.
Seven-spot ladybirds select plants of good quality for their aphid prey.

Having found prey, a predator must decide whether to pursue it or keep searching. The decision depends on the costs and benefits involved. A bird foraging for insects spends a lot of time searching but capturing and eating them is quick and easy, so the efficient strategy for the bird is to eat every palatable insect it finds. By contrast, a predator such as a lion or falcon finds its prey easily but capturing it requires a lot of effort. In that case, the predator is more selective.[28]

One of the factors to consider is size. Prey that is too small may not be worth the trouble for the amount of energy it provides. Too large, and it may be too difficult to capture. For example, a mantid captures prey with its forelegs and they are optimized for grabbing prey of a certain size. Mantids are reluctant to attack prey that is far from that size. There is a positive correlation between the size of a predator and its prey.[28]

A predator may also assess a patch and decide whether to spend time searching for prey in it.[25] This may involve some knowledge of the preferences of the prey; for example, ladybirds can choose a patch of vegetation suitable for their aphid prey.[38]

Capture

To capture prey, predators have a spectrum of pursuit modes that range from overt chase (pursuit predation) to a sudden strike on nearby prey (ambush predation).[25][39][12] Another strategy in between ambush and pursuit is ballistic interception, where a predator observes and predicts a prey's motion and then launches its attack accordingly.[40]

Ambush

Western green lizard ambushes its grasshopper prey.A trapdoor spider waiting in its burrow to ambush its prey
A trapdoor spider waiting in its burrow to ambush its prey

Ambush or sit-and-wait predators are carnivorous animals that capture prey by stealth or surprise. In animals, ambush predation is characterized by the predator's scanning the environment from a concealed position until a prey is spotted, and then rapidly executing a fixed surprise attack.[41][40] Vertebrate ambush predators include frogs, fish such as the angel shark, the northern pike and the eastern frogfish.[40][42][43][44] Among the many invertebrate ambush predators are trapdoor spiders and Australian Crab spiders on land and mantis shrimps in the sea.[41][45][46] Ambush predators often construct a burrow in which to hide, improving concealment at the cost of reducing their field of vision. Some ambush predators also use lures to attract prey within striking range.[40] The capturing movement has to be rapid to trap the prey, given that the attack is not modifiable once launched.[40]

Ballistic interception

The chameleon attacks prey by shooting out its tongue.
The chameleon attacks prey by shooting out its tongue.

Ballistic interception is the strategy where a predator observes the movement of a prey, predicts its motion, works out an interception path, and then attacks the prey on that path. This differs from ambush predation in that the predator adjusts its attack according to how the prey is moving.[40] Ballistic interception involves a brief period for planning, giving the prey an opportunity to escape. Some frogs wait until snakes have begun their strike before jumping, reducing the time available to the snake to recalibrate its attack, and maximising the angular adjustment that the snake would need to make to intercept the frog in real time.[40] Ballistic predators include insects such as dragonflies, and vertebrates such as archerfish (attacking with a jet of water), chameleons (attacking with their tongues), and some colubrid snakes.[40]

Pursuit

Humpback whales are lunge feeders, filtering thousands of krill from seawater and swallowing them alive.Dragonflies, like this common clubtail with captured prey, are invertebrate pursuit predators.
Humpback whales are lunge feeders, filtering thousands of krill from seawater and swallowing them alive.
Humpback whales are lunge feeders, filtering thousands of krill from seawater and swallowing them alive.Dragonflies, like this common clubtail with captured prey, are invertebrate pursuit predators.
Dragonflies, like this common clubtail with captured prey, are invertebrate pursuit predators.

In pursuit predation, predators chase fleeing prey. If the prey flees in a straight line, capture depends only on the predator's being faster than the prey.[40] If the prey manoeuvres by turning as it flees, the predator must react in real time to calculate and follow a new intercept path, such as by parallel navigation, as it closes on the prey.[40] Many pursuit predators use camouflage to approach the prey as close as possible unobserved (stalking) before starting the pursuit.[40] Pursuit predators include terrestrial mammals such as humans, African wild dogs, spotted hyenas and wolves; marine predators such as dolphins, orcas and many predatory fishes, such as tuna;[47][48] predatory birds (raptors) such as falcons; and insects such as dragonflies.[49]

An extreme form of pursuit is endurance or persistence hunting, in which the predator tires out the prey by following it over a long distance, sometimes for hours at a time. The method is used by human hunter-gatherers and by canids such as African wild dogs and domestic hounds. The African wild dog is an extreme persistence predator, tiring out individual prey by following them for many miles at relatively low speed.[50]

A specialised form of pursuit predation is the lunge feeding of baleen whales. These very large marine predators feed on plankton, especially krill, diving and actively swimming into concentrations of plankton, and then taking a huge gulp of water and filtering it through their feathery baleen plates.[51][52]

Pursuit predators may be social, like the lion and wolf that hunt in groups, or solitary.[2]

Handling

Catfish has sharp dorsal and pectoral spines which it holds erect to discourage predators such as herons which swallow prey whole.Osprey tears its fish prey apart, avoiding dangers such as sharp spines.
Catfish has sharp dorsal and pectoral spines which it holds erect to discourage predators such as herons which swallow prey whole.
Catfish has sharp dorsal and pectoral spines which it holds erect to discourage predators such as herons which swallow prey whole.Osprey tears its fish prey apart, avoiding dangers such as sharp spines.
Osprey tears its fish prey apart, avoiding dangers such as sharp spines.

Once the predator has captured the prey, it has to handle it: very carefully if the prey is dangerous to eat, such as if it possesses sharp or poisonous spines, as in many prey fish. Some catfish such as the Ictaluridae have spines on the back (dorsal) and belly (pectoral) which lock in the erect position; as the catfish thrashes about when captured, these could pierce the predator's mouth, possibly fatally. Some fish-eating birds like the osprey avoid the danger of spines by tearing up their prey before eating it.[53]

Solitary versus social predation

In social predation, a group of predators cooperates to kill prey. This makes it possible to kill creatures larger than those they could overpower singly; for example, hyenas, and wolves collaborate to catch and kill herbivores as large as buffalo, and lions even hunt elephants.[54][55][56] It can also make prey more readily available through strategies like flushing of prey and herding it into a smaller area. For example, when mixed flocks of birds forage, the birds in front flush out insects that are caught by the birds behind. Spinner dolphins form a circle around a school of fish and move inwards, concentrating the fish by a factor of 200.[57] By hunting socially chimpanzees can catch colobus monkeys that would readily escape an individual hunter, while cooperating Harris hawks can trap rabbits.[54][58]

Wolves, social predators, cooperate to hunt and kill bison.
Wolves, social predators, cooperate to hunt and kill bison.

Predators of different species sometimes cooperate to catch prey. In coral reefs, when fish such as the grouper and coral trout spot prey that is inaccessible to them, they signal to giant moray eels, Napoleon wrasses or octopuses. These predators are able to access small crevices and flush out the prey.[59][60] Killer whales have been known to help whalers hunt baleen whales.[61]

Social hunting allows predators to tackle a wider range of prey, but at the risk of competition for the captured food. Solitary predators have more chance of eating what they catch, at the price of increased expenditure of energy to catch it, and increased risk that the prey will escape.[62][63] Ambush predators are often solitary to reduce the risk of becoming prey themselves.[64] Of 245 terrestrial members of the Carnivora (the group that includes the cats, dogs, and bears), 177 are solitary; and 35 of the 37 wild cats are solitary,[65] including the cougar and cheetah.[62][2] However, the solitary cougar does allow other cougars to share in a kill,[66] and the coyote can be either solitary or social.[67] Other solitary predators include the northern pike,[68] wolf spiders and all the thousands of species of solitary wasps among arthropods,[69][70] and many microorganisms and zooplankton.[22][71]

Discover more about Foraging related topics

Foraging

Foraging

Foraging is searching for wild food resources. It affects an animal's fitness because it plays an important role in an animal's ability to survive and reproduce. Foraging theory is a branch of behavioral ecology that studies the foraging behavior of animals in response to the environment where the animal lives.

Molidae

Molidae

The Molidae comprise the family of the molas or ocean sunfishes, unusual fish whose bodies come to an end just behind the dorsal and anal fins, giving them a "half-fish" appearance. They are also the largest of the ray-finned bony fish, with the southern sunfish, Mola alexandrini, recorded at 4.6 m (15 ft) in length and 2,744 kg (6,049 lb) in weight.

Kestrel

Kestrel

The term kestrel is the common name given to several species of predatory birds from the falcon genus Falco. Kestrels are most easily distinguished by their typical hunting behaviour which is to hover at a height of around 10–20 metres (35–65 ft) over open country and swoop down on ground prey, usually small mammals, lizards or large insects, while other falcons are more adapted for active hunting during flight. Kestrels are notable for usually having mostly brown in their plumage.

Plover

Plover

Plovers are a widely distributed group of wading birds belonging to the subfamily Charadriinae.

Crappie

Crappie

Crappies are two species of North American freshwater fish of the genus Pomoxis in the family Centrarchidae (sunfishes). Both species of crappies are popular game fish among recreational anglers.

Coccinellidae

Coccinellidae

Coccinellidae is a widespread family of small beetles. They are commonly known as ladybugs in North America and ladybirds in Great Britain. Entomologists prefer the names ladybird beetles or lady beetles to avoid confusion with true bugs. Many of the species have conspicuous aposematic colours and patterns, such as red with black spots, that warn potential predators that they are distasteful.

Black-browed albatross

Black-browed albatross

The black-browed albatross, also known as the black-browed mollymawk, is a large seabird of the albatross family Diomedeidae; it is the most widespread and common member of its family.

Optimal foraging theory

Optimal foraging theory

Optimal foraging theory (OFT) is a behavioral ecology model that helps predict how an animal behaves when searching for food. Although obtaining food provides the animal with energy, searching for and capturing the food require both energy and time. To maximize fitness, an animal adopts a foraging strategy that provides the most benefit (energy) for the lowest cost, maximizing the net energy gained. OFT helps predict the best strategy that an animal can use to achieve this goal.

Marginal value theorem

Marginal value theorem

The marginal value theorem (MVT) is an optimality model that usually describes the behavior of an optimally foraging individual in a system where resources are located in discrete patches separated by areas with no resources. Due to the resource-free space, animals must spend time traveling between patches. The MVT can also be applied to other situations in which organisms face diminishing returns.

Lévy flight

Lévy flight

A Lévy flight is a random walk in which the step-lengths have a stable distribution, a probability distribution that is heavy-tailed. When defined as a walk in a space of dimension greater than one, the steps made are in isotropic random directions. Later researchers have extended the use of the term "Lévy flight" to also include cases where the random walk takes place on a discrete grid rather than on a continuous space.

Lévy flight foraging hypothesis

Lévy flight foraging hypothesis

The Lévy flight foraging hypothesis is a hypothesis in the field of biology that may be stated as follows:Since Lévy flights and walks can optimize search efficiencies, therefore natural selection should have led to adaptations for Lévy flight foraging.

Aphid

Aphid

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

Specialization

Physical adaptations

Under the pressure of natural selection, predators have evolved a variety of physical adaptations for detecting, catching, killing, and digesting prey. These include speed, agility, stealth, sharp senses, claws, teeth, filters, and suitable digestive systems.[72]

For detecting prey, predators have well-developed vision, smell, or hearing.[12] Predators as diverse as owls and jumping spiders have forward-facing eyes, providing accurate binocular vision over a relatively narrow field of view, whereas prey animals often have less acute all-round vision. Animals such as foxes can smell their prey even when it is concealed under 2 feet (60 cm) of snow or earth. Many predators have acute hearing, and some such as echolocating bats hunt exclusively by active or passive use of sound.[73]

Predators including big cats, birds of prey, and ants share powerful jaws, sharp teeth, or claws which they use to seize and kill their prey. Some predators such as snakes and fish-eating birds like herons and cormorants swallow their prey whole; some snakes can unhinge their jaws to allow them to swallow large prey, while fish-eating birds have long spear-like beaks that they use to stab and grip fast-moving and slippery prey.[73] Fish and other predators have developed the ability to crush or open the armoured shells of molluscs.[74]

Many predators are powerfully built and can catch and kill animals larger than themselves; this applies as much to small predators such as ants and shrews as to big and visibly muscular carnivores like the cougar and lion.[73][2][75]

Diet and behaviour

Platydemus manokwari, a specialist flatworm predator of land snails, attacking a snailSize-selective predation: a lioness attacking a Cape buffalo, over twice her weight. Lions can attack much larger prey, including elephants, but do so much less often.
Platydemus manokwari, a specialist flatworm predator of land snails, attacking a snail
Platydemus manokwari, a specialist flatworm predator of land snails, attacking a snailSize-selective predation: a lioness attacking a Cape buffalo, over twice her weight. Lions can attack much larger prey, including elephants, but do so much less often.
Size-selective predation: a lioness attacking a Cape buffalo, over twice her weight. Lions can attack much larger prey, including elephants, but do so much less often.

Predators are often highly specialized in their diet and hunting behaviour; for example, the Eurasian lynx only hunts small ungulates.[76] Others such as leopards are more opportunistic generalists, preying on at least 100 species.[77][78] The specialists may be highly adapted to capturing their preferred prey, whereas generalists may be better able to switch to other prey when a preferred target is scarce. When prey have a clumped (uneven) distribution, the optimal strategy for the predator is predicted to be more specialized as the prey are more conspicuous and can be found more quickly;[79] this appears to be correct for predators of immobile prey, but is doubtful with mobile prey.[80]

In size-selective predation, predators select prey of a certain size.[81] Large prey may prove troublesome for a predator, while small prey might prove hard to find and in any case provide less of a reward. This has led to a correlation between the size of predators and their prey. Size may also act as a refuge for large prey. For example, adult elephants are relatively safe from predation by lions, but juveniles are vulnerable.[82]

Camouflage and mimicry

A camouflaged predator: snow leopard in LadakhStriated frogfish uses camouflage and aggressive mimicry in the form of a fishing rod-like lure on its head to attract prey.
Striated frogfish uses camouflage and aggressive mimicry in the form of a fishing rod-like lure on its head to attract prey.

Members of the cat family such as the snow leopard (treeless highlands), tiger (grassy plains, reed swamps), ocelot (forest), fishing cat (waterside thickets), and lion (open plains) are camouflaged with coloration and disruptive patterns suiting their habitats.[83]

In aggressive mimicry, certain predators, including insects and fishes, make use of coloration and behaviour to attract prey. Female Photuris fireflies, for example, copy the light signals of other species, thereby attracting male fireflies, which they capture and eat.[84] Flower mantises are ambush predators; camouflaged as flowers, such as orchids, they attract prey and seize it when it is close enough.[85] Frogfishes are extremely well camouflaged, and actively lure their prey to approach using an esca, a bait on the end of a rod-like appendage on the head, which they wave gently to mimic a small animal, gulping the prey in an extremely rapid movement when it is within range.[86]

Venom

Many smaller predators such as the box jellyfish use venom to subdue their prey,[87] and venom can also aid in digestion (as is the case for rattlesnakes and some spiders).[88][89] The marbled sea snake that has adapted to egg predation has atrophied venom glands, and the gene for its three finger toxin contains a mutation (the deletion of two nucleotides) that inactives it. These changes are explained by the fact that its prey does not need to be subdued.[90]

Electric fields

An electric ray (Torpediniformes) showing location of electric organ and electrocytes stacked within it
An electric ray (Torpediniformes) showing location of electric organ and electrocytes stacked within it

Several groups of predatory fish have the ability to detect, track, and sometimes, as in the electric ray, to incapacitate their prey by sensing and generating electric fields.[91][92][93] The electric organ is derived from modified nerve or muscle tissue.[94]

Physiology

Physiological adaptations to predation include the ability of predatory bacteria to digest the complex peptidoglycan polymer from the cell walls of the bacteria that they prey upon.[23] Carnivorous vertebrates of all five major classes (fishes, amphibians, reptiles, birds, and mammals) have lower relative rates of sugar to amino acid transport than either herbivores or omnivores, presumably because they acquire plenty of amino acids from the animal proteins in their diet.[95]

Discover more about Specialization related topics

Adaptation

Adaptation

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

Eye

Eye

Eyes are organs of the visual system. They provide living organisms with vision, the ability to receive and process visual detail, as well as enabling several photo response functions that are independent of vision. Eyes detect light and convert it into electro-chemical impulses in neurons (neurones). In higher organisms, the eye is a complex optical system which collects light from the surrounding environment, regulates its intensity through a diaphragm, focuses it through an adjustable assembly of lenses to form an image, converts this image into a set of electrical signals, and transmits these signals to the brain through complex neural pathways that connect the eye via the optic nerve to the visual cortex and other areas of the brain. Eyes with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in molluscs, chordates and arthropods.

Hearing

Hearing

Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is auditory science.

Jumping spider

Jumping spider

Jumping spiders are a group of spiders that constitute the family Salticidae. As of 2019, this family contained over 600 described genera and over 6,000 described species, making it the largest family of spiders at 13% of all species. Jumping spiders have some of the best vision among arthropods and use it in courtship, hunting, and navigation. Although they normally move unobtrusively and fairly slowly, most species are capable of very agile jumps, notably when hunting, but sometimes in response to sudden threats or crossing long gaps. Both their book lungs and tracheal system are well-developed, and they use both systems. Jumping spiders are generally recognized by their eye pattern. All jumping spiders have four pairs of eyes, with the anterior median pair being particularly large.

Binocular vision

Binocular vision

In biology, binocular vision is a type of vision in which an animal has two eyes capable of facing the same direction to perceive a single three-dimensional image of its surroundings. Binocular vision does not typically refer to vision where an animal has eyes on opposite sides of its head and shares no field of view between them, like in some animals.

Animal echolocation

Animal echolocation

Echolocation, also called bio sonar, is a biological sonar used by several animal species. Echolocating animals emit calls out to the environment and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for navigation, foraging, and hunting in various environments.

Bat

Bat

Bats are mammals of the order Chiroptera. With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their very long spread-out digits covered with a thin membrane or patagium. The smallest bat, and arguably the smallest extant mammal, is Kitti's hog-nosed bat, which is 29–34 millimetres in length, 150 mm (6 in) across the wings and 2–2.6 g in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox, reaching a weight of 1.6 kg and having a wingspan of 1.7 m.

Big cat

Big cat

The term "big cat" is typically used to refer to any of the five living members of the genus Panthera, namely the tiger, lion, jaguar, leopard, and snow leopard, as well as the non-pantherine cheetah and cougar.

Bird of prey

Bird of prey

Birds of prey or predatory birds, colloquially known as raptors, are hypercarnivorous bird species that actively hunt and feed on other vertebrates. In addition to speed and strength, these predators have keen eyesight for detecting prey from a distance or during flight, strong feet with sharp talons for grasping or killing prey, and powerful, curved beaks for tearing off flesh. Although predatory birds primarily hunt live prey, many species also scavenge and eat carrion.

Ant

Ant

Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants evolved from vespoid wasp ancestors in the Cretaceous period. More than 13,800 of an estimated total of 22,000 species have been classified. They are easily identified by their geniculate (elbowed) antennae and the distinctive node-like structure that forms their slender waists.

Cougar

Cougar

The cougar is a large cat native to the Americas. Its range spans from the Canadian Yukon to the southern Andes in South America and is the most widespread of any large wild terrestrial mammal in the Western Hemisphere. It is an adaptable, generalist species, occurring in most American habitat types. This wide range has brought it many common names, including puma, mountain lion, catamount and panther. It is the second-largest cat in the New World, after the jaguar. Secretive and largely solitary by nature, the cougar is properly considered both nocturnal and crepuscular, although daytime sightings do occur. Despite its size, the cougar is more closely related to smaller felines, including the domestic cat than to any species of the subfamily Pantherinae.

Lion

Lion

The lion is a large cat of the genus Panthera native to Africa and India. It has a muscular, broad-chested body; short, rounded head; round ears; and a hairy tuft at the end of its tail. It is sexually dimorphic; adult male lions are larger than females and have a prominent mane. It is a social species, forming groups called prides. A lion's pride consists of a few adult males, related females, and cubs. Groups of female lions usually hunt together, preying mostly on large ungulates. The lion is an apex and keystone predator; although some lions scavenge when opportunities occur and have been known to hunt humans, lions typically do not actively seek out and prey on humans.

Antipredator adaptations

Dead leaf mantis's camouflage makes it less visible to both predators and prey.Syrphid hoverfly misdirects predators by mimicking a wasp, but has no sting.
Dead leaf mantis's camouflage makes it less visible to both predators and prey.
Dead leaf mantis's camouflage makes it less visible to both predators and prey.Syrphid hoverfly misdirects predators by mimicking a wasp, but has no sting.
Syrphid hoverfly misdirects predators by mimicking a wasp, but has no sting.

To counter predation, prey have evolved defences for use at each stage of an attack.[96][12] They can try to avoid detection,[97] such as by using camouflage and mimicry.[98] They can detect predators[99] and warn others of their presence.[100][101] If detected, they can try to avoid being the target of an attack, for example, by signalling that they are toxic or unpalatable,[102][103][104] by signalling that a chase would be unprofitable,[105][106] or by forming groups.[107][108] If they become a target, they can try to fend off the attack with defences such as armour, quills, unpalatability, or mobbing;[109][110][111] and they can often escape an attack in progress by startling the predator,[112][113][114] playing dead, shedding body parts such as tails, or simply fleeing.[115][116]

Discover more about Antipredator adaptations related topics

Dead leaf mantis

Dead leaf mantis

Dead leaf mantis is a common name given to various species of praying mantis that mimic dead leaves. It is most often used in reference to species within genus Deroplatys because of their popularity as exotic pets. Examples include D. desiccata, D. lobata, and D. philippinica. Other species to which the term may apply include Acanthops falcataria, A. falcata, and Phyllocrania paradoxa.

Camouflage

Camouflage

Camouflage is the use of any combination of materials, coloration, or illumination for concealment, either by making animals or objects hard to see, or by disguising them as something else. Examples include the leopard's spotted coat, the battledress of a modern soldier, and the leaf-mimic katydid's wings. A third approach, motion dazzle, confuses the observer with a conspicuous pattern, making the object visible but momentarily harder to locate, as well as making general aiming easier. The majority of camouflage methods aim for crypsis, often through a general resemblance to the background, high contrast disruptive coloration, eliminating shadow, and countershading. In the open ocean, where there is no background, the principal methods of camouflage are transparency, silvering, and countershading, while the ability to produce light is among other things used for counter-illumination on the undersides of cephalopods such as squid. Some animals, such as chameleons and octopuses, are capable of actively changing their skin pattern and colours, whether for camouflage or for signalling. It is possible that some plants use camouflage to evade being eaten by herbivores.

Mimicry

Mimicry

In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect a species from predators, making it an anti-predator adaptation. Mimicry evolves if a receiver perceives the similarity between a mimic and a model and as a result changes its behaviour in a way that provides a selective advantage to the mimic. The resemblances that evolve in mimicry can be visual, acoustic, chemical, tactile, or electric, or combinations of these sensory modalities. Mimicry may be to the advantage of both organisms that share a resemblance, in which case it is a form of mutualism; or mimicry can be to the detriment of one, making it parasitic or competitive. The evolutionary convergence between groups is driven by the selective action of a signal-receiver or dupe. Birds, for example, use sight to identify palatable insects and butterflies, whilst avoiding the noxious ones. Over time, palatable insects may evolve to resemble noxious ones, making them mimics and the noxious ones models. In the case of mutualism, sometimes both groups are referred to as "co-mimics". It is often thought that models must be more abundant than mimics, but this is not so. Mimicry may involve numerous species; many harmless species such as hoverflies are Batesian mimics of strongly defended species such as wasps, while many such well-defended species form Müllerian mimicry rings, all resembling each other. Mimicry between prey species and their predators often involves three or more species.

Wasp

Wasp

A wasp is any insect of the narrow-waisted suborder Apocrita of the order Hymenoptera which is neither a bee nor an ant; this excludes the broad-waisted sawflies (Symphyta), which look somewhat like wasps, but are in a separate suborder. The wasps do not constitute a clade, a complete natural group with a single ancestor, as bees and ants are deeply nested within the wasps, having evolved from wasp ancestors. Wasps that are members of the clade Aculeata can sting their prey.

Stinger

Stinger

A stinger is a sharp organ found in various animals capable of injecting venom, usually by piercing the epidermis of another animal.

Aposematism

Aposematism

Aposematism is the advertising by an animal to potential predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the prey difficult to kill and eat, such as toxicity, venom, foul taste or smell, sharp spines, or aggressive nature. These advertising signals may take the form of conspicuous coloration, sounds, odours, or other perceivable characteristics. Aposematic signals are beneficial for both predator and prey, since both avoid potential harm.

Spine (zoology)

Spine (zoology)

In a zoological context, spines are hard, needle-like anatomical structures found in both vertebrate and invertebrate species. The spines of most spiny mammals are modified hairs, with a spongy center covered in a thick, hard layer of keratin and a sharp, sometimes barbed tip.

Deimatic behaviour

Deimatic behaviour

Deimatic behaviour or startle display means any pattern of bluffing behaviour in an animal that lacks strong defences, such as suddenly displaying conspicuous eyespots, to scare off or momentarily distract a predator, thus giving the prey animal an opportunity to escape. The term deimatic or dymantic originates from the Greek δειματόω (deimatóo), meaning "to frighten".

Coevolution

Bats use echolocation to hunt moths at night.
Bats use echolocation to hunt moths at night.

Predators and prey are natural enemies, and many of their adaptations seem designed to counter each other. For example, bats have sophisticated echolocation systems to detect insects and other prey, and insects have developed a variety of defences including the ability to hear the echolocation calls.[117][118] Many pursuit predators that run on land, such as wolves, have evolved long limbs in response to the increased speed of their prey.[119] Their adaptations have been characterized as an evolutionary arms race, an example of the coevolution of two species.[120] In a gene centered view of evolution, the genes of predator and prey can be thought of as competing for the prey's body.[120] However, the "life-dinner" principle of Dawkins and Krebs predicts that this arms race is asymmetric: if a predator fails to catch its prey, it loses its dinner, while if it succeeds, the prey loses its life.[120]

Eastern coral snake, itself a predator, is venomous enough to kill predators that attack it, so when they avoid it, this behaviour must be inherited, not learnt.
Eastern coral snake, itself a predator, is venomous enough to kill predators that attack it, so when they avoid it, this behaviour must be inherited, not learnt.

The metaphor of an arms race implies ever-escalating advances in attack and defence. However, these adaptations come with a cost; for instance, longer legs have an increased risk of breaking,[121] while the specialized tongue of the chameleon, with its ability to act like a projectile, is useless for lapping water, so the chameleon must drink dew off vegetation.[122]

The "life-dinner" principle has been criticized on multiple grounds. The extent of the asymmetry in natural selection depends in part on the heritability of the adaptive traits.[122] Also, if a predator loses enough dinners, it too will lose its life.[121][122] On the other hand, the fitness cost of a given lost dinner is unpredictable, as the predator may quickly find better prey. In addition, most predators are generalists, which reduces the impact of a given prey adaption on a predator. Since specialization is caused by predator-prey coevolution, the rarity of specialists may imply that predator-prey arms races are rare.[122]

It is difficult to determine whether given adaptations are truly the result of coevolution, where a prey adaptation gives rise to a predator adaptation that is countered by further adaptation in the prey. An alternative explanation is escalation, where predators are adapting to competitors, their own predators or dangerous prey.[123] Apparent adaptations to predation may also have arisen for other reasons and then been co-opted for attack or defence. In some of the insects preyed on by bats, hearing evolved before bats appeared and was used to hear signals used for territorial defence and mating.[124] Their hearing evolved in response to bat predation, but the only clear example of reciprocal adaptation in bats is stealth echolocation.[125]

A more symmetric arms race may occur when the prey are dangerous, having spines, quills, toxins or venom that can harm the predator. The predator can respond with avoidance, which in turn drives the evolution of mimicry. Avoidance is not necessarily an evolutionary response as it is generally learned from bad experiences with prey. However, when the prey is capable of killing the predator (as can a coral snake with its venom), there is no opportunity for learning and avoidance must be inherited. Predators can also respond to dangerous prey with counter-adaptations. In western North America, the common garter snake has developed a resistance to the toxin in the skin of the rough-skinned newt.[122]

Discover more about Coevolution related topics

Coevolution

Coevolution

In biology, coevolution occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well as gene-culture coevolution.

Animal echolocation

Animal echolocation

Echolocation, also called bio sonar, is a biological sonar used by several animal species. Echolocating animals emit calls out to the environment and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for navigation, foraging, and hunting in various environments.

Evolutionary arms race

Evolutionary arms race

In evolutionary biology, an evolutionary arms race is an ongoing struggle between competing sets of co-evolving genes, phenotypic and behavioral traits that develop escalating adaptations and counter-adaptations against each other, resembling an arms race. These are often described as examples of positive feedback. The co-evolving gene sets may be in different species, as in an evolutionary arms race between a predator species and its prey, or a parasite and its host. Alternatively, the arms race may be between members of the same species, as in the manipulation/sales resistance model of communication or as in runaway evolution or Red Queen effects. One example of an evolutionary arms race is in sexual conflict between the sexes, often described with the term Fisherian runaway. Thierry Lodé emphasized the role of such antagonistic interactions in evolution leading to character displacements and antagonistic coevolution.

Competition (biology)

Competition (biology)

Competition is an interaction between organisms or species in which both require a resource that is in limited supply. Competition lowers the fitness of both organisms involved since the presence of one of the organisms always reduces the amount of the resource available to the other.

Micrurus fulvius

Micrurus fulvius

Micrurus fulvius, commonly known as the eastern coral snake, common coral snake, American cobra, and more, is a species of highly venomous coral snake in the family Elapidae. The species is endemic to the southeastern United States. It should not be confused with the scarlet snake or scarlet kingsnake, which are harmless mimics. No subspecies are currently recognized.

Coral snake

Coral snake

Coral snakes are a large group of elapid snakes that can be divided into two distinct groups, the Old World coral snakes and New World coral snakes. There are 16 species of Old World coral snakes, in three genera, and over 65 recognized species of New World coral snakes, in two genera. Genetic studies have found that the most basal lineages have origins in Asia, suggesting that the group originated in the Old World. While new world species of both genera are venomous, their bites are seldom lethal; only two confirmed fatalities have been documented in the past 100 years from the genus Micrurus. Meanwhile, snakes of the genus Micruroides have never caused a medically-significant bite.

Common garter snake

Common garter snake

The common garter snake is a species of snake in the subfamily Natricinae of the family Colubridae. The species is indigenous to North America and found widely across the continent. There are several recognized subspecies. Most common garter snakes have a pattern of yellow stripes on a black, brown or green background, and their average total length is about 55 cm (22 in), with a maximum total length of about 137 cm (54 in). The average body mass is 150 g (5.3 oz). The common garter snake is the state reptile of Massachusetts.

Rough-skinned newt

Rough-skinned newt

The rough-skinned newt or roughskin newt is a North American newt known for the strong toxin exuded from its skin.

Role in ecosystems

Predators affect their ecosystems not only directly by eating their own prey, but by indirect means such as reducing predation by other species, or altering the foraging behaviour of a herbivore, as with the biodiversity effect of wolves on riverside vegetation or sea otters on kelp forests. This may explain population dynamics effects such as the cycles observed in lynx and snowshoe hares.[126][127][128]

Trophic level

One way of classifying predators is by trophic level. Carnivores that feed on herbivores are secondary consumers; their predators are tertiary consumers, and so forth.[129] At the top of this food chain are apex predators such as lions.[130] Many predators however eat from multiple levels of the food chain; a carnivore may eat both secondary and tertiary consumers.[131] This means that many predators must contend with intraguild predation, where other predators kill and eat them. For example, coyotes compete with and sometimes kill gray foxes and bobcats.[132]

Trophic transfer

Trophic transfer within an ecosystem refers to the transport of energy and nutrients as a result of predation. Energy passes from one trophic level to the next as predators consume organic matter from another organism’s body. Within each transfer, while there are uses of energy, there are also losses of energy.

Marine trophic levels vary depending on locality and the size of the primary producers. There are generally up to six trophic levels in the open ocean, four over continental shelves, and around  three in upwelling zones.[133] For example, a marine habitat with five trophic levels could be represented as follows: Herbivores (feed primarily on phytoplankton); Carnivores (feed primarily on other zooplankton/animals); Detritivores (feed primarily on dead organic matter/detritus; Omnivores (feed on a mixed diet of phyto- and zooplankton and detritus); and Mixotrophs which combine autotrophy (using light energy to grow without intake of any additional organic compounds or nutrients) with heterotrophy (feeding on other plants and animals for energy and nutrients—herbivores, omnivores and carnivores, and detritivores).

Trophic transfer efficiency measures how effectively energy is transferred or passed up through higher trophic levels of the marine food web. As energy moves up the trophic levels, it decreases due to heat, waste, and the natural metabolic processes that occur as predators consume their prey. The result is that only about 10% of the energy at any trophic level is transferred to the next level. This is often referred to as “the 10% rule” which limits the number of trophic levels that an individual ecosystem is capable of supporting.[134]

Biodiversity maintained by apex predation

Predators may increase the biodiversity of communities by preventing a single species from becoming dominant. Such predators are known as keystone species and may have a profound influence on the balance of organisms in a particular ecosystem.[135] Introduction or removal of this predator, or changes in its population density, can have drastic cascading effects on the equilibrium of many other populations in the ecosystem. For example, grazers of a grassland may prevent a single dominant species from taking over.[136]

Riparian willow recovery at Blacktail Creek, Yellowstone National Park, after reintroduction of wolves, the local keystone species and apex predator.[137] Left, in 2002; right, in 2015
Riparian willow recovery at Blacktail Creek, Yellowstone National Park, after reintroduction of wolves, the local keystone species and apex predator.[137] Left, in 2002; right, in 2015

The elimination of wolves from Yellowstone National Park had profound impacts on the trophic pyramid. In that area, wolves are both keystone species and apex predators. Without predation, herbivores began to over-graze many woody browse species, affecting the area's plant populations. In addition, wolves often kept animals from grazing near streams, protecting the beavers' food sources. The removal of wolves had a direct effect on the beaver population, as their habitat became territory for grazing. Increased browsing on willows and conifers along Blacktail Creek due to a lack of predation caused channel incision because the reduced beaver population was no longer able to slow the water down and keep the soil in place. The predators were thus demonstrated to be of vital importance in the ecosystem.[137]

Population dynamics

Numbers of snowshoe hare (Lepus americanus) (yellow background) and Canada lynx (black line, foreground) furs sold to the Hudson's Bay Company from 1845 to 1935
Numbers of snowshoe hare (Lepus americanus) (yellow background) and Canada lynx (black line, foreground) furs sold to the Hudson's Bay Company from 1845 to 1935

In the absence of predators, the population of a species can grow exponentially until it approaches the carrying capacity of the environment.[138] Predators limit the growth of prey both by consuming them and by changing their behavior.[139] Increases or decreases in the prey population can also lead to increases or decreases in the number of predators, for example, through an increase in the number of young they bear.

Cyclical fluctuations have been seen in populations of predator and prey, often with offsets between the predator and prey cycles. A well-known example is that of the snowshoe hare and lynx. Over a broad span of boreal forests in Alaska and Canada, the hare populations fluctuate in near synchrony with a 10-year period, and the lynx populations fluctuate in response. This was first seen in historical records of animals caught by fur hunters for the Hudson Bay Company over more than a century.[140][128][141][142]

Predator-prey population cycles in a Lotka–Volterra model
Predator-prey population cycles in a Lotka–Volterra model

A simple model of a system with one species each of predator and prey, the Lotka–Volterra equations, predicts population cycles.[143] However, attempts to reproduce the predictions of this model in the laboratory have often failed; for example, when the protozoan Didinium nasutum is added to a culture containing its prey, Paramecium caudatum, the latter is often driven to extinction.[144]

The Lotka–Volterra equations rely on several simplifying assumptions, and they are structurally unstable, meaning that any change in the equations can stabilize or destabilize the dynamics.[145][146] For example, one assumption is that predators have a linear functional response to prey: the rate of kills increases in proportion to the rate of encounters. If this rate is limited by time spent handling each catch, then prey populations can reach densities above which predators cannot control them.[144] Another assumption is that all prey individuals are identical. In reality, predators tend to select young, weak, and ill individuals, leaving prey populations able to regrow.[147]

Many factors can stabilize predator and prey populations.[148] One example is the presence of multiple predators, particularly generalists that are attracted to a given prey species if it is abundant and look elsewhere if it is not.[149] As a result, population cycles tend to be found in northern temperate and subarctic ecosystems because the food webs are simpler.[150] The snowshoe hare-lynx system is subarctic, but even this involves other predators, including coyotes, goshawks and great horned owls, and the cycle is reinforced by variations in the food available to the hares.[151]

A range of mathematical models have been developed by relaxing the assumptions made in the Lotka–Volterra model; these variously allow animals to have geographic distributions, or to migrate; to have differences between individuals, such as sexes and an age structure, so that only some individuals reproduce; to live in a varying environment, such as with changing seasons;[152][153] and analysing the interactions of more than just two species at once. Such models predict widely differing and often chaotic predator-prey population dynamics.[152][154] The presence of refuge areas, where prey are safe from predators, may enable prey to maintain larger populations but may also destabilize the dynamics.[155][156][157][158]

Discover more about Role in ecosystems related topics

Apex predator

Apex predator

An apex predator, also known as a top predator, is a predator at the top of a food chain, without natural predators of its own.

Carnivore

Carnivore

A carnivore, or meat-eater, is an animal or plant whose food and energy requirements derive from animal tissues whether through hunting or scavenging.

Herbivore

Herbivore

A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthparts adapted to rasping or grinding. Horses and other herbivores have wide flat teeth that are adapted to grinding grass, tree bark, and other tough plant material.

Food chain

Food chain

A food chain is a linear network of links in a food web starting from producer organisms and ending at an apex predator species, detritivores, or decomposer species. A food chain also shows how organisms are related to each other by the food they eat. Each level of a food chain represents a different trophic level. A food chain differs from a food web because the complex network of different animals' feeding relations are aggregated and the chain only follows a direct, linear pathway of one animal at a time. Natural interconnections between food chains make it a food web.

Lion

Lion

The lion is a large cat of the genus Panthera native to Africa and India. It has a muscular, broad-chested body; short, rounded head; round ears; and a hairy tuft at the end of its tail. It is sexually dimorphic; adult male lions are larger than females and have a prominent mane. It is a social species, forming groups called prides. A lion's pride consists of a few adult males, related females, and cubs. Groups of female lions usually hunt together, preying mostly on large ungulates. The lion is an apex and keystone predator; although some lions scavenge when opportunities occur and have been known to hunt humans, lions typically do not actively seek out and prey on humans.

Intraguild predation

Intraguild predation

Intraguild predation, or IGP, is the killing and sometimes eating of a potential competitor of a different species. This interaction represents a combination of predation and competition, because both species rely on the same prey resources and also benefit from preying upon one another. Intraguild predation is common in nature and can be asymmetrical, in which one species feeds upon the other, or symmetrical, in which both species prey upon each other. Because the dominant intraguild predator gains the dual benefits of feeding and eliminating a potential competitor, IGP interactions can have considerable effects on the structure of ecological communities.

Coyote

Coyote

The coyote is a species of canine native to North America. It is smaller than its close relative, the wolf, and slightly smaller than the closely related eastern wolf and red wolf. It fills much of the same ecological niche as the golden jackal does in Eurasia. The coyote is larger and more predatory and was once referred to as the American jackal by a behavioral ecologist. Other historical names for the species include the prairie wolf and the brush wolf.

Gray fox

Gray fox

The gray fox, or grey fox, is an omnivorous mammal of the family Canidae, widespread throughout North America and Central America. This species and its only congener, the diminutive island fox of the California Channel Islands, are the only living members of the genus Urocyon, which is considered to be genetically basal to all other living canids. Its species name cinereoargenteus means "ashen silver".

Bobcat

Bobcat

The bobcat, also known as the red lynx, is a medium-sized cat native to North America. It ranges from southern Canada through most of the contiguous United States to Oaxaca in Mexico. It is listed as Least Concern on the IUCN Red List since 2002, due to its wide distribution and large population. Although it has been hunted extensively both for sport and fur, populations have proven stable, though declining in some areas.

Energy flow (ecology)

Energy flow (ecology)

Energy flow is the flow of energy through living things within an ecosystem. All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain. Each of the levels within the food chain is a trophic level. In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. The arrows in the food chain show that the energy flow is unidirectional, with the head of an arrow indicating the direction of energy flow; energy is lost as heat at each step along the way.

Nutrient

Nutrient

A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excreted by cells to create non-cellular structures, such as hair, scales, feathers, or exoskeletons. Some nutrients can be metabolically converted to smaller molecules in the process of releasing energy, such as for carbohydrates, lipids, proteins, and fermentation products, leading to end-products of water and carbon dioxide. All organisms require water. Essential nutrients for animals are the energy sources, some of the amino acids that are combined to create proteins, a subset of fatty acids, vitamins and certain minerals. Plants require more diverse minerals absorbed through roots, plus carbon dioxide and oxygen absorbed through leaves. Fungi live on dead or living organic matter and meet nutrient needs from their host.

Organic matter

Organic matter

Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. Organic matter is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.

Evolutionary history

Predation dates from before the rise of commonly recognized carnivores by hundreds of millions (perhaps billions) of years. Predation has evolved repeatedly in different groups of organisms.[5][159] The rise of eukaryotic cells at around 2.7 Gya, the rise of multicellular organisms at about 2 Gya, and the rise of mobile predators (around 600 Mya - 2 Gya, probably around 1 Gya) have all been attributed to early predatory behavior, and many very early remains show evidence of boreholes or other markings attributed to small predator species.[5] It likely triggered major evolutionary transitions including the arrival of cells, eukaryotes, sexual reproduction, multicellularity, increased size, mobility (including insect flight[160]) and armoured shells and exoskeletons.[5]

The earliest predators were microbial organisms, which engulfed or grazed on others. Because the fossil record is poor, these first predators could date back anywhere between 1 and over 2.7 Gya (billion years ago).[5] Predation visibly became important shortly before the Cambrian period—around 550 million years ago—as evidenced by the almost simultaneous development of calcification in animals and algae,[161] and predation-avoiding burrowing. However, predators had been grazing on micro-organisms since at least 1,000 million years ago,[5][162][163] with evidence of selective (rather than random) predation from a similar time.[164]

Auroralumina attenboroughii is an Ediacaran crown-group cnidarian (557–562 mya, some 20 million years before the Cambrian explosion) from Charnwood Forest, England. It is thought to be one of the earliest predatory animals, catching small prey with its nematocysts as modern cnidarians do.[165]

The fossil record demonstrates a long history of interactions between predators and their prey from the Cambrian period onwards, showing for example that some predators drilled through the shells of bivalve and gastropod molluscs, while others ate these organisms by breaking their shells.[166] Among the Cambrian predators were invertebrates like the anomalocaridids with appendages suitable for grabbing prey, large compound eyes and jaws made of a hard material like that in the exoskeleton of an insect.[167] Some of the first fish to have jaws were the armoured and mainly predatory placoderms of the Silurian to Devonian periods, one of which, the 6 m (20 ft) Dunkleosteus, is considered the world's first vertebrate "superpredator", preying upon other predators.[168][169] Insects developed the ability to fly in the Early Carboniferous or Late Devonian, enabling them among other things to escape from predators.[160] Among the largest predators that have ever lived were the theropod dinosaurs such as Tyrannosaurus from the Cretaceous period. They preyed upon herbivorous dinosaurs such as hadrosaurs, ceratopsians and ankylosaurs.[170]

Discover more about Evolutionary history related topics

History of life

History of life

The history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to present day. Earth formed about 4.5 billion years ago and evidence suggests that life emerged prior to 3.7 Ga. Although there is some evidence of life as early as 4.1 to 4.28 Ga, it remains controversial due to the possible non-biological formation of the purported fossils.

Cell (biology)

Cell (biology)

The cell is the basic structural and functional unit of life forms. Every cell consists of a cytoplasm enclosed within a membrane, and contains many biomolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and metabolites. The term comes from the Latin word cellula meaning 'small room'.

Eukaryote

Eukaryote

Eukaryota, whose members are known as eukaryotes, is a diverse domain of organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacteria and Archaea make up the other two domains.

Sexual reproduction

Sexual reproduction

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

Insect flight

Insect flight

Insects are the only group of invertebrates that have evolved wings and flight. Insects first flew in the Carboniferous, some 350 to 400 million years ago, making them the first animals to evolve flight. Wings may have evolved from appendages on the sides of existing limbs, which already had nerves, joints, and muscles used for other purposes. These may initially have been used for sailing on water, or to slow the rate of descent when gliding.

Cambrian

Cambrian

The Cambrian Period is the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million years ago (mya) to the beginning of the Ordovician Period 485.4 mya. Its subdivisions, and its base, are somewhat in flux. The period was established as "Cambrian series" by Adam Sedgwick, who named it after Cambria, the Latin name for 'Cymru' (Wales), where Britain's Cambrian rocks are best exposed. Sedgwick identified the layer as part of his task, along with Roderick Murchison, to subdivide the large "Transition Series", although the two geologists disagreed for a while on the appropriate categorization. The Cambrian is unique in its unusually high proportion of lagerstätte sedimentary deposits, sites of exceptional preservation where "soft" parts of organisms are preserved as well as their more resistant shells. As a result, our understanding of the Cambrian biology surpasses that of some later periods.

Calcification

Calcification

Calcification is the accumulation of calcium salts in a body tissue. It normally occurs in the formation of bone, but calcium can be deposited abnormally in soft tissue, causing it to harden. Calcifications may be classified on whether there is mineral balance or not, and the location of the calcification. Calcification may also refer to the processes of normal mineral deposition in biological systems, such as the formation of stromatolites or mollusc shells.

Burrow

Burrow

A burrow is a hole or tunnel excavated into the ground by an animal to construct a space suitable for habitation or temporary refuge, or as a byproduct of locomotion. Burrows provide a form of shelter against predation and exposure to the elements, and can be found in nearly every biome and among various biological interactions. Many animal species are known to form burrows. These species range from small invertebrates, such as the Corophium arenarium, to very large vertebrate species such as the polar bear. Burrows can be constructed into a wide variety of substrates and can range in complexity from a simple tube a few centimeters long to a complex network of interconnecting tunnels and chambers hundreds or thousands of meters in total length; an example of the latter level of complexity, a well-developed burrow, would be a rabbit warren.

Cnidaria

Cnidaria

Cnidaria is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, predominantly the latter.

Charnwood Forest

Charnwood Forest

Charnwood Forest is a hilly tract in north-western Leicestershire, England, bounded by Leicester, Loughborough and Coalville. The area is undulating, rocky and picturesque, with barren areas. It also has some extensive tracts of woodland; its elevation is generally 600 feet (180 m) and upwards, the area exceeding this height being about 6,100 acres (25 km2). The highest point, Bardon Hill, is 912 feet (278 m). On its western flank lies an abandoned coalfield, with Coalville and other former mining villages, now being regenerated and replanted as part of the National Forest. The M1 motorway, between junctions 22 and 23, cuts through Charnwood Forest.

Exoskeleton

Exoskeleton

An exoskeleton is an external skeleton that supports and protects an animal's body, in contrast to an internal skeleton (endoskeleton) in for example, a human. In usage, some of the larger kinds of exoskeletons are known as "shells". Examples of exoskeletons within animals include the arthropod exoskeleton shared by chelicerates, myriapods, crustaceans, and insects, as well as the shell of certain sponges and the mollusc shell shared by snails, clams, tusk shells, chitons and nautilus. Some animals, such as the turtle, have both an endoskeleton and an exoskeleton.

In human society

San hunter, Botswana
San hunter, Botswana

Practical uses

Humans, as omnivores, are to some extent predatory,[171] using weapons and tools to fish,[172] hunt and trap animals.[173] They also use other predatory species such as dogs, cormorants,[174] and falcons to catch prey for food or for sport.[175] Two mid-sized predators, dogs and cats, are the animals most often kept as pets in western societies.[176][177] Human hunters, including the San of southern Africa, use persistence hunting, a form of pursuit predation where the pursuer may be slower than prey such as a kudu antelope over short distances, but follows it in the midday heat until it is exhausted, a pursuit that can take up to five hours.[178][179]

In biological pest control, predators (and parasitoids) from a pest's natural range are introduced to control populations, at the risk of causing unforeseen problems. Natural predators, provided they do no harm to non-pest species, are an environmentally friendly and sustainable way of reducing damage to crops and an alternative to the use of chemical agents such as pesticides.[180]

Symbolic uses

The Capitoline Wolf suckling Romulus and Remus, the mythical founders of Rome
The Capitoline Wolf suckling Romulus and Remus, the mythical founders of Rome

In film, the idea of the predator as a dangerous if humanoid enemy is used in the 1987 science fiction horror action film Predator and its three sequels.[181][182] A terrifying predator, a gigantic man-eating great white shark, is central, too, to Steven Spielberg's 1974 thriller Jaws.[183]

Among poetry on the theme of predation, a predator's consciousness might be explored, such as in Ted Hughes's Pike.[184] The phrase "Nature, red in tooth and claw" from Alfred, Lord Tennyson's 1849 poem "In Memoriam A.H.H." has been interpreted as referring to the struggle between predators and prey.[185]

In mythology and folk fable, predators such as the fox and wolf have mixed reputations.[186] The fox was a symbol of fertility in ancient Greece, but a weather demon in northern Europe, and a creature of the devil in early Christianity; the fox is presented as sly, greedy, and cunning in fables from Aesop onwards.[186] The big bad wolf is known to children in tales such as Little Red Riding Hood, but is a demonic figure in the Icelandic Edda sagas, where the wolf Fenrir appears in the apocalyptic ending of the world.[186] In the Middle Ages, belief spread in werewolves, men transformed into wolves.[186] In ancient Rome, and in ancient Egypt, the wolf was worshipped, the she-wolf appearing in the founding myth of Rome, suckling Romulus and Remus.[186] More recently, in Rudyard Kipling's 1894 The Jungle Book, Mowgli is raised by the wolf pack.[186] Attitudes to large predators in North America, such as wolf, grizzly bear and cougar, have shifted from hostility or ambivalence, accompanied by active persecution, towards positive and protective in the second half of the 20th century.[187]

Discover more about In human society related topics

Human uses of animals

Human uses of animals

Human uses of animals include both practical uses, such as the production of food and clothing, and symbolic uses, such as in art, literature, mythology, and religion. All of these are elements of culture, broadly understood. Animals used in these ways include fish, crustaceans, insects, molluscs, mammals and birds.

Omnivore

Omnivore

An omnivore is an animal that has the ability to eat and survive on both plant and animal matter. Obtaining energy and nutrients from plant and animal matter, omnivores digest carbohydrates, protein, fat, and fiber, and metabolize the nutrients and energy of the sources absorbed. Often, they have the ability to incorporate food sources such as algae, fungi, and bacteria into their diet.

Fishing

Fishing

Fishing is the activity of trying to catch fish. Fish are often caught as wildlife from the natural environment, but may also be caught from stocked bodies of water such as ponds, canals, park wetlands and reservoirs. Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping, as well as more destructive and often illegal techniques such as electrocution, blasting and poisoning.

Hunting

Hunting

Hunting is the human practice of seeking, pursuing, capturing, or killing wildlife or feral animals. The most common reasons for humans to hunt are to exploit the animal's body for food and useful animal products, for recreation/taxidermy, although it may also be done for non-exploitative reasons such as removing predators dangerous to humans or domestic animals, to eliminate pests and nuisance animals that damage crops/livestock/poultry or spread diseases, for trade/tourism, or for ecological conservation against overpopulation and invasive species.

Hunting dog

Hunting dog

A hunting dog is a canine that hunts with or for hunters. There are several different types of hunting dog developed for various tasks and purposes. The major categories of hunting dog include hounds, terriers, dachshunds, cur type dogs, and gun dogs. Further distinctions within these categories can be made, based upon the dog's skills and capabilities. They are usually larger and have a more sensitive smell than normal dogs.

Cormorant

Cormorant

Phalacrocoracidae is a family of approximately 40 species of aquatic birds commonly known as cormorants and shags. Several different classifications of the family have been proposed, but in 2021 the IOU adopted a consensus taxonomy of seven genera. The great cormorant and the common shag are the only two species of the family commonly encountered in Britain and Ireland and "cormorant" and "shag" appellations have been later assigned to different species in the family somewhat haphazardly.

Falcon

Falcon

Falcons are birds of prey in the genus Falco, which includes about 40 species. Falcons are widely distributed on all continents of the world except Antarctica, though closely related raptors did occur there in the Eocene.

Kudu

Kudu

The kudus are two species of antelope of the genus Tragelaphus:Lesser kudu, Tragelaphus imberbis, of eastern Africa Greater kudu, Tragelaphus strepsiceros, of eastern and southern Africa

Biological pest control

Biological pest control

Biological control or biocontrol is a method of controlling pests, such as insects, mites, weeds, and plant diseases, using other organisms. It relies on predation, parasitism, herbivory, or other natural mechanisms, but typically also involves an active human management role. It can be an important component of integrated pest management (IPM) programs.

Capitoline Wolf

Capitoline Wolf

The Capitoline Wolf is a bronze sculpture depicting a scene from the legend of the founding of Rome. The sculpture shows a she-wolf suckling the mythical twin founders of Rome, Romulus and Remus. According to the legend, when King Numitor, grandfather of the twins, was overthrown by his brother Amulius in Alba Longa, the usurper ordered them to be cast into the Tiber River. They were rescued by a she-wolf that cared for them until a herdsman, Faustulus, found and raised them.

Ancient Rome

Ancient Rome

In modern historiography, Ancient Rome refers to Roman civilisation from the founding of the Italian city of Rome in the 8th century BC to the collapse of the Western Roman Empire in the 5th century AD. It encompasses the Roman Kingdom, Roman Republic and Roman Empire until the fall of the western empire.

Humanoid

Humanoid

A humanoid is a non-human entity with human form or characteristics. The earliest recorded use of the term, in 1870, referred to indigenous peoples in areas colonized by Europeans. By the 20th century, the term came to describe fossils which were morphologically similar, but not identical, to those of the human skeleton.

Source: "Predation", Wikipedia, Wikimedia Foundation, (2023, March 6th), https://en.wikipedia.org/wiki/Predation.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

Notes
  1. ^ A range of 3000 kilometres means a flight distance of at least 6000 kilometres out and back.
References
  1. ^ Gurr, Geoff M.; Wratten, Stephen D.; Snyder, William E. (2012). Biodiversity and Insect Pests: Key Issues for Sustainable Management. John Wiley & Sons. p. 105. ISBN 978-1-118-23185-2.
  2. ^ a b c d Lafferty, K. D.; Kuris, A. M. (2002). "Trophic strategies, animal diversity and body size". Trends Ecol. Evol. 17 (11): 507–513. doi:10.1016/s0169-5347(02)02615-0.
  3. ^ Poulin, Robert; Randhawa, Haseeb S. (February 2015). "Evolution of parasitism along convergent lines: from ecology to genomics". Parasitology. 142 (Suppl 1): S6–S15. doi:10.1017/S0031182013001674. PMC 4413784. PMID 24229807.
  4. ^ Poulin, Robert (2011). Rollinson, D.; Hay, S. I. (eds.). The Many Roads to Parasitism: A Tale of Convergence. Advances in Parasitology. Vol. 74. Academic Press. pp. 27–28. doi:10.1016/B978-0-12-385897-9.00001-X. ISBN 978-0-12-385897-9. PMID 21295676.
  5. ^ a b c d e f g Bengtson, S. (2002). "Origins and early evolution of predation". In Kowalewski, M.; Kelley, P. H. (eds.). The fossil record of predation. The Paleontological Society Papers 8 (PDF). The Paleontological Society. pp. 289–317.
  6. ^ a b Janzen, D. H. (1971). "Seed Predation by Animals". Annual Review of Ecology and Systematics. 2: 465–492. doi:10.1146/annurev.es.02.110171.002341.
  7. ^ Nilsson, Sven G.; Björkman, Christer; Forslund, Pär; Höglund, Jacob (1985). "Egg predation in forest bird communities on islands and mainland". Oecologia. 66 (4): 511–515. Bibcode:1985Oecol..66..511N. doi:10.1007/BF00379342. PMID 28310791. S2CID 2145031.
  8. ^ a b Hulme, P. E.; Benkman, C. W. (2002). C. M. Herrera and O. Pellmyr (ed.). Granivory. Plant animal Interactions: An Evolutionary Approach. Blackwell. pp. 132–154. ISBN 978-0-632-05267-7.
  9. ^ Kane, Adam; Healy, Kevin; Guillerme, Thomas; Ruxton, Graeme D.; Jackson, Andrew L. (2017). "A recipe for scavenging in vertebrates – the natural history of a behaviour". Ecography. 40 (2): 324–334. doi:10.1111/ecog.02817. hdl:10468/3213. S2CID 56280901.
  10. ^ Kruuk, Hans (1972). The Spotted Hyena: A Study of Predation and Social Behaviour. University of California Press. pp. 107–108. ISBN 978-0226455082.
  11. ^ Schmidt, Justin O. (2009). "Wasps". Wasps - ScienceDirect. Encyclopedia of Insects (Second ed.). pp. 1049–1052. doi:10.1016/B978-0-12-374144-8.00275-7. ISBN 9780123741448.
  12. ^ a b c d e f Stevens, Alison N. P. (2010). "Predation, Herbivory, and Parasitism". Nature Education Knowledge. 3 (10): 36.
  13. ^ "Predators, parasites and parasitoids". Australian Museum. Retrieved 19 September 2018.
  14. ^ Watanabe, James M. (2007). "Invertebrates, overview". In Denny, Mark W.; Gaines, Steven Dean (eds.). Encyclopedia of tidepools and rocky shores. University of California Press. ISBN 9780520251182.
  15. ^ Phelan, Jay (2009). What Is life? : a guide to biology (Student ed.). W.H. Freeman & Co. p. 432. ISBN 9781429223188.
  16. ^ Villanueva, Roger; Perricone, Valentina; Fiorito, Graziano (17 August 2017). "Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits". Frontiers in Physiology. 8: 598. doi:10.3389/fphys.2017.00598. PMC 5563153. PMID 28861006.
  17. ^ Hanssen, Sveinn Are; Erikstad, Kjell Einar (2012). "The long-term consequences of egg predation". Behavioral Ecology. 24 (2): 564–569. doi:10.1093/beheco/ars198.
  18. ^ Pike, David A.; Clark, Rulon W.; Manica, Andrea; Tseng, Hui-Yun; Hsu, Jung-Ya; Huang, Wen-San (26 February 2016). "Surf and turf: predation by egg-eating snakes has led to the evolution of parental care in a terrestrial lizard". Scientific Reports. 6 (1): 22207. Bibcode:2016NatSR...622207P. doi:10.1038/srep22207. PMC 4768160. PMID 26915464.
  19. ^ Ainsworth, Gill; Calladine, John; Martay, Blaise; Park, Kirsty; Redpath, Steve; Wernham, Chris; Wilson, Mark; Young, Juliette (2017). Understanding Predation: A review bringing together natural science and local knowledge of recent wild bird population changes and their drivers in Scotland. Scotland's Moorland Forum. pp. 233–234. doi:10.13140/RG.2.1.1014.6960.
  20. ^ Hedrich, Rainer; Fukushima, Kenji (20 May 2021). "On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet". Annual Review of Plant Biology. 72 (1). annurev–arplant–080620-010429. doi:10.1146/annurev-arplant-080620-010429. ISSN 1543-5008. PMID 33434053. S2CID 231595236.
  21. ^ Pramer, D. (1964). "Nematode-trapping fungi". Science. 144 (3617): 382–388. Bibcode:1964Sci...144..382P. doi:10.1126/science.144.3617.382. JSTOR 1713426. PMID 14169325.
  22. ^ a b Velicer, Gregory J.; Mendes-Soares, Helena (2007). "Bacterial predators" (PDF). Cell. 19 (2): R55–R56. doi:10.1016/j.cub.2008.10.043. PMID 19174136. S2CID 5432036.
  23. ^ a b Jurkevitch, Edouard; Davidov, Yaacov (2006). "Phylogenetic Diversity and Evolution of Predatory Prokaryotes". Predatory Prokaryotes. Springer. pp. 11–56. doi:10.1007/7171_052. ISBN 978-3-540-38577-6.
  24. ^ Hansen, Per Juel; Bjørnsen, Peter Koefoed; Hansen, Benni Winding (1997). "Zooplankton grazing and growth: Scaling within the 2-2,-μm body size range". Limnology and Oceanography. 42 (4): 687–704. Bibcode:1997LimOc..42..687H. doi:10.4319/lo.1997.42.4.0687. summarizes findings from many authors.
  25. ^ a b c d e f Kramer, Donald L. (2001). "Foraging behavior" (PDF). In Fox, C. W.; Roff, D. A.; Fairbairn, D. J. (eds.). Evolutionary Ecology: Concepts and Case Studies. Oxford University Press. pp. 232–238. ISBN 9780198030133. Archived from the original (PDF) on 12 July 2018. Retrieved 20 September 2018.
  26. ^ a b Griffiths, David (November 1980). "Foraging costs and relative prey size". The American Naturalist. 116 (5): 743–752. doi:10.1086/283666. JSTOR 2460632. S2CID 85094710.
  27. ^ Wetzel, Robert G.; Likens, Gene E. (2000). "Predator-Prey Interactions". Limnological Analyses. Springer. pp. 257–262. doi:10.1007/978-1-4757-3250-4_17. ISBN 978-1-4419-3186-3.
  28. ^ a b c d Pianka, Eric R. (2011). Evolutionary ecology (7th (eBook) ed.). Eric R. Pianka. pp. 78–83.
  29. ^ MacArthur, Robert H. (1984). "The economics of consumer choice". Geographical ecology : patterns in the distribution of species. Princeton University Press. pp. 59–76. ISBN 9780691023823.
  30. ^ a b c d Bell 2012, pp. 4–5
  31. ^ Eastman, Lucas B.; Thiel, Martin (2015). "Foraging behavior of crustacean predators and scavengers". In Thiel, Martin; Watling, Les (eds.). Lifestyles and feeding biology. Oxford University Press. pp. 535–556. ISBN 9780199797066.
  32. ^ Perry, Gad (January 1999). "The Evolution of Search Modes: Ecological versus Phylogenetic Perspectives". The American Naturalist. 153 (1): 98–109. doi:10.1086/303145. PMID 29578765. S2CID 4334462.
  33. ^ a b Bell 2012, pp. 69–188
  34. ^ Gremillet, D.; Wilson, R. P.; Wanless, S.; Chater, T. (2000). "Black-browed albatrosses, international fisheries and the Patagonian Shelf". Marine Ecology Progress Series. 195: 69–280. Bibcode:2000MEPS..195..269G. doi:10.3354/meps195269.
  35. ^ Charnov, Eric L. (1976). "Optimal foraging, the marginal value theorem" (PDF). Theoretical Population Biology. 9 (2): 129–136. doi:10.1016/0040-5809(76)90040-x. PMID 1273796.
  36. ^ Reynolds, Andy (September 2015). "Liberating Lévy walk research from the shackles of optimal foraging". Physics of Life Reviews. 14: 59–83. Bibcode:2015PhLRv..14...59R. doi:10.1016/j.plrev.2015.03.002. PMID 25835600.
  37. ^ Buchanan, Mark (5 June 2008). "Ecological modelling: The mathematical mirror to animal nature". Nature. 453 (7196): 714–716. doi:10.1038/453714a. PMID 18528368.
  38. ^ Williams, Amanda C.; Flaxman, Samuel M. (2012). "Can predators assess the quality of their prey's resource?". Animal Behaviour. 83 (4): 883–890. doi:10.1016/j.anbehav.2012.01.008. S2CID 53172079.
  39. ^ Scharf, Inon; Nulman, Einat; Ovadia, Ofer; Bouskila, Amos (September 2006). "Efficiency evaluation of two competing foraging modes under different conditions". The American Naturalist. 168 (3): 350–357. doi:10.1086/506921. PMID 16947110. S2CID 13809116.
  40. ^ a b c d e f g h i j k Moore, Talia Y.; Biewener, Andrew A. (2015). "Outrun or Outmaneuver: Predator–Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context" (PDF). Integrative and Comparative Biology. 55 (6): 1188–97. doi:10.1093/icb/icv074. PMID 26117833.
  41. ^ a b deVries, M. S.; Murphy, E. A. K.; Patek S. N. (2012). "Strike mechanics of an ambush predator: the spearing mantis shrimp". Journal of Experimental Biology. 215 (Pt 24): 4374–4384. doi:10.1242/jeb.075317. PMID 23175528.
  42. ^ "Cougar". Hinterland Who's Who. Canadian Wildlife Service and Canadian Wildlife Federation. Archived from the original on 18 May 2007. Retrieved 22 May 2007.
  43. ^ "Pikes (Esocidae)" (PDF). Indiana Division of Fish and Wildlife. Retrieved 3 September 2018.
  44. ^ Bray, Dianne. "Eastern Frogfish, Batrachomoeus dubius". Fishes of Australia. Archived from the original on 14 September 2014. Retrieved 14 September 2014.
  45. ^ "Trapdoor spiders". BBC. Retrieved 12 December 2014.
  46. ^ "Trapdoor spider". Arizona-Sonora Desert Museum. 2014. Retrieved 12 December 2014.
  47. ^ Gazda, S. K.; Connor, R. C.; Edgar, R. K.; Cox, F. (2005). "A division of labour with role specialization in group-hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida". Proceedings of the Royal Society. 272 (1559): 135–140. doi:10.1098/rspb.2004.2937. PMC 1634948. PMID 15695203.
  48. ^ Tyus, Harold M. (2011). Ecology and Conservation of Fishes. CRC Press. p. 233. ISBN 978-1-4398-9759-1.
  49. ^ Combes, S. A.; Salcedo, M. K.; Pandit, M. M.; Iwasaki, J. M. (2013). "Capture Success and Efficiency of Dragonflies Pursuing Different Types of Prey". Integrative and Comparative Biology. 53 (5): 787–798. doi:10.1093/icb/ict072. PMID 23784698.
  50. ^ Hubel, Tatjana Y.; Myatt, Julia P.; Jordan, Neil R.; Dewhirst, Oliver P.; McNutt, J. Weldon; Wilson, Alan M. (29 March 2016). "Energy cost and return for hunting in African wild dogs". Nature Communications. 7: 11034. doi:10.1038/ncomms11034. PMC 4820543. PMID 27023457. Cursorial hunting strategies range from one extreme of transient acceleration, power and speed to the other extreme of persistence and endurance with prey being fatigued to facilitate capture.Dogs and humans are considered to rely on endurance rather than outright speed and manoeuvrability for success when hunting cursorially.
  51. ^ Goldbogen, J. A.; Calambokidis, J.; Shadwick, R. E.; Oleson, E. M.; McDonald, M. A.; Hildebrand, J. A. (2006). "Kinematics of foraging dives and lunge-feeding in fin whales". Journal of Experimental Biology. 209 (7): 1231–1244. doi:10.1242/jeb.02135. PMID 16547295. S2CID 17923052.
  52. ^ Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe; Scott, Jarrod J.; Emerson, David; McCarthy, James J.; Girguis, Peter R. (2015). "Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores". Nature Communications. 6: 8285. Bibcode:2015NatCo...6.8285S. doi:10.1038/ncomms9285. PMC 4595633. PMID 26393325.
  53. ^ Forbes, L. Scott (1989). "Prey Defences and Predator Handling Behaviour: The Dangerous Prey Hypothesis". Oikos. 55 (2): 155–158. doi:10.2307/3565418. JSTOR 3565418.
  54. ^ a b Lang, Stephen D. J.; Farine, Damien R. (2017). "A multidimensional framework for studying social predation strategies". Nature Ecology & Evolution. 1 (9): 1230–1239. doi:10.1038/s41559-017-0245-0. PMID 29046557. S2CID 4214982.
  55. ^ MacNulty, Daniel R.; Tallian, Aimee; Stahler, Daniel R.; Smith, Douglas W. (12 November 2014). Sueur, Cédric (ed.). "Influence of Group Size on the Success of Wolves Hunting Bison". PLOS ONE. 9 (11): e112884. Bibcode:2014PLoSO...9k2884M. doi:10.1371/journal.pone.0112884. PMC 4229308. PMID 25389760.
  56. ^ Power, R. J.; Compion, R. X. Shem (2009). "Lion predation on elephants in the Savuti, Chobe National Park, Botswana". African Zoology. 44 (1): 36–44. doi:10.3377/004.044.0104. S2CID 86371484.
  57. ^ Beauchamp 2012, pp. 7–12
  58. ^ Dawson, James W. (1988). The cooperative breeding system of the Harris' Hawk in Arizona (Masters thesis). The University of Arizona. Retrieved 17 November 2017.
  59. ^ Vail, Alexander L.; Manica, Andrea; Bshary, Redouan (23 April 2013). "Referential gestures in fish collaborative hunting". Nature Communications. 4 (1): 1765. Bibcode:2013NatCo...4.1765V. doi:10.1038/ncomms2781. PMID 23612306.
  60. ^ Yong, Ed (24 April 2013). "Groupers Use Gestures to Recruit Morays For Hunting Team-Ups". National Geographic. Retrieved 17 September 2018.
  61. ^ Toft, Klaus (Producer) (2007). Killers in Eden (DVD documentary). Australian Broadcasting Corporation. Archived from the original on 12 August 2009. ISBN R-105732-9.
  62. ^ a b Bryce, Caleb M.; Wilmers, Christopher C.; Williams, Terrie M. (2017). "Energetics and evasion dynamics of large predators and prey: pumas vs. hounds". PeerJ. 5: e3701. doi:10.7717/peerj.3701. PMC 5563439. PMID 28828280.
  63. ^ Majer, Marija; Holm, Christina; Lubin, Yael; Bilde, Trine (2018). "Cooperative foraging expands dietary niche but does not offset intra-group competition for resources in social spiders". Scientific Reports. 8 (1): 11828. Bibcode:2018NatSR...811828M. doi:10.1038/s41598-018-30199-x. PMC 6081395. PMID 30087391.
  64. ^ "Ambush Predators". Sibley Nature Center. Retrieved 17 September 2018.
  65. ^ Elbroch, L. Mark; Quigley, Howard (10 July 2016). "Social interactions in a solitary carnivore". Current Zoology. 63 (4): 357–362. doi:10.1093/cz/zow080. PMC 5804185. PMID 29491995.
  66. ^ Quenqua, Douglas (11 October 2017). "Solitary Pumas Turn Out to Be Mountain Lions Who Lunch". The New York Times. Retrieved 17 September 2018.
  67. ^ Flores, Dan (2016). Coyote America : a natural and supernatural history. Basic Books. ISBN 978-0465052998.
  68. ^ Stow, Adam; Nyqvist, Marina J.; Gozlan, Rodolphe E.; Cucherousset, Julien; Britton, J. Robert (2012). "Behavioural Syndrome in a Solitary Predator Is Independent of Body Size and Growth Rate". PLOS ONE. 7 (2): e31619. Bibcode:2012PLoSO...731619N. doi:10.1371/journal.pone.0031619. PMC 3282768. PMID 22363687.
  69. ^ "How do Spiders Hunt?". American Museum of Natural History. 25 August 2014. Retrieved 5 September 2018.
  70. ^ Weseloh, Ronald M.; Hare, J. Daniel (2009). "Predation/Predatory Insects". Encyclopedia of Insects (Second ed.). pp. 837–839. doi:10.1016/B978-0-12-374144-8.00219-8. ISBN 9780123741448.
  71. ^ "Zooplankton". MarineBio Conservation Society. 17 June 2018. Retrieved 5 September 2018.
  72. ^ Bar-Yam. "Predator-Prey Relationships". New England Complex Systems Institute. Retrieved 7 September 2018.
  73. ^ a b c "Predator & Prey: Adaptations" (PDF). Royal Saskatchewan Museum. 2012. Archived from the original (PDF) on 3 April 2018. Retrieved 19 April 2018.
  74. ^ Vermeij, Geerat J. (1993). Evolution and Escalation: An Ecological History of Life. Princeton University Press. pp. 11 and passim. ISBN 978-0-691-00080-0.
  75. ^ Getz, W. M. (2011). "Biomass transformation webs provide a unified approach to consumer-resource modelling". Ecology Letters. 14 (2): 113–24. doi:10.1111/j.1461-0248.2010.01566.x. PMC 3032891. PMID 21199247.
  76. ^ Sidorovich, Vadim (2011). Analysis of vertebrate predator-prey community: Studies within the European Forest zone in terrains with transitional mixed forest in Belarus. Tesey. p. 426. ISBN 978-985-463-456-2.
  77. ^ Angelici, Francesco M. (2015). Problematic Wildlife: A Cross-Disciplinary Approach. Springer. p. 160. ISBN 978-3-319-22246-2.
  78. ^ Hayward, M. W.; Henschel, P.; O'Brien, J.; Hofmeyr, M.; Balme, G.; Kerley, G.I.H. (2006). "Prey preferences of the leopard (Panthera pardus)" (PDF). Journal of Zoology. 270 (2): 298–313. doi:10.1111/j.1469-7998.2006.00139.x. Archived from the original (PDF) on 29 February 2020. Retrieved 20 April 2018.
  79. ^ Pulliam, H. Ronald (1974). "On the Theory of Optimal Diets". The American Naturalist. 108 (959): 59–74. doi:10.1086/282885. S2CID 8420787.
  80. ^ Sih, Andrew; Christensen, Bent (2001). "Optimal diet theory: when does it work, and when and why does it fail?". Animal Behaviour. 61 (2): 379–390. doi:10.1006/anbe.2000.1592. S2CID 44045919.
  81. ^ Sprules, W. Gary (1972). "Effects of Size-Selective Predation and Food Competition on High Altitude Zooplankton Communities". Ecology. 53 (3): 375–386. doi:10.2307/1934223. JSTOR 1934223.
  82. ^ Owen-Smith, Norman; Mills, M. G. L. (2008). "Predator-prey size relationships in an African large-mammal food web" (PDF). Journal of Animal Ecology. 77 (1): 173–183. doi:10.1111/j.1365-2656.2007.01314.x. hdl:2263/9023. PMID 18177336.
  83. ^ Cott 1940, pp. 12–13
  84. ^ Lloyd J. E. (1965). "Aggressive Mimicry in Photuris: Firefly Femmes Fatales". Science. 149 (3684): 653–654. Bibcode:1965Sci...149..653L. doi:10.1126/science.149.3684.653. PMID 17747574. S2CID 39386614.
  85. ^ Forbes, Peter (2009). Dazzled and Deceived: Mimicry and Camouflage. Yale University Press. p. 134. ISBN 978-0-300-17896-8.
  86. ^ Bester, Cathleen (5 May 2017). "Antennarius striatus". Florida Museum. University of Florida. Retrieved 31 January 2018.
  87. ^ Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. pp. 153–154. ISBN 978-81-315-0104-7.
  88. ^ Cetaruk, Edward W. (2005). "Rattlesnakes and Other Crotalids". In Brent, Jeffrey (ed.). Critical care toxicology: diagnosis and management of the critically poisoned patient. Elsevier Health Sciences. p. 1075. ISBN 978-0-8151-4387-1.
  89. ^ Barceloux, Donald G. (2008). Medical Toxicology of Natural Substances: Foods, Fungi, Medicinal Herbs, Plants, and Venomous Animals. Wiley. p. 1028. ISBN 978-0-470-33557-4.
  90. ^ Li, Min; Fry, B.G.; Kini, R. Manjunatha (2005). "Eggs-Only Diet: Its Implications for the Toxin Profile Changes and Ecology of the Marbled Sea Snake (Aipysurus eydouxii)". Journal of Molecular Evolution. 60 (1): 81–89. Bibcode:2005JMolE..60...81L. doi:10.1007/s00239-004-0138-0. PMID 15696370. S2CID 17572816.
  91. ^ Castello, M. E.; A. Rodriguez-Cattaneo; P. A. Aguilera; L. Iribarne; A. C. Pereira; A. A. Caputi (2009). "Waveform generation in the weakly electric fish Gymnotus coropinae (Hoedeman): the electric organ and the electric organ discharge". Journal of Experimental Biology. 212 (9): 1351–1364. doi:10.1242/jeb.022566. PMID 19376956.
  92. ^ Feulner, P. G.; M. Plath; J. Engelmann; F. Kirschbaum; R. Tiedemann (2009). "Electrifying love: electric fish use species-specific discharge for mate recognition". Biology Letters. 5 (2): 225–228. doi:10.1098/rsbl.2008.0566. PMC 2665802. PMID 19033131.
  93. ^ Catania, Kenneth C. (2015). "Electric eels use high-voltage to track fast-moving prey". Nature Communications. 6 (1): 8638. Bibcode:2015NatCo...6.8638C. doi:10.1038/ncomms9638. PMC 4667699. PMID 26485580.
  94. ^ Kramer, Bernd (1996). "Electroreception and communication in fishes" (PDF). Progress in Zoology. 42.
  95. ^ Karasov, William H.; Diamond, Jared M. (1988). "Interplay between Physiology and Ecology in Digestion". BioScience. 38 (9): 602–611. doi:10.2307/1310825. JSTOR 1310825.
  96. ^ Ruxton, Sherratt & Speed 2004, pp. vii–xii
  97. ^ Caro 2005, pp. 67–114
  98. ^ Merilaita, Sami; Scott-Samuel, Nicholas E.; Cuthill, Innes C. (22 May 2017). "How camouflage works". Philosophical Transactions of the Royal Society B: Biological Sciences (Submitted manuscript). 372 (1724): 20160341. doi:10.1098/rstb.2016.0341. PMC 5444062. PMID 28533458.
  99. ^ Caro 2005, pp. 13–15
  100. ^ Bergstrom, C. T.; Lachmann, M. (2001). "Alarm calls as costly signals of antipredator vigilance: the watchful babbler game". Animal Behaviour. 61 (3): 535–543. CiteSeerX 10.1.1.28.773. doi:10.1006/anbe.2000.1636. S2CID 2295026.
  101. ^ Getty, T. (2002). "The discriminating babbler meets the optimal diet hawk". Animal Behaviour. 63 (2): 397–402. doi:10.1006/anbe.2001.1890. S2CID 53164940.
  102. ^ Cott 1940, pp. 241–307
  103. ^ Bowers, M. D.; Brown, Irene L.; Wheye, Darryl (1985). "Bird Predation as a Selective Agent in a Butterfly Population". Evolution. 39 (1): 93–103. doi:10.1111/j.1558-5646.1985.tb04082.x. PMID 28563638. S2CID 12031679.
  104. ^ Berenbaum, M. R. (3 January 1995). "The chemistry of defense: theory and practice". Proceedings of the National Academy of Sciences of the United States of America. 92 (1): 2–8. Bibcode:1995PNAS...92....2B. doi:10.1073/pnas.92.1.2. PMC 42807. PMID 7816816.
  105. ^ Ruxton, Sherratt & Speed 2004, pp. 70–81
  106. ^ Caro 2005, pp. 663–684
  107. ^ Beauchamp 2012, pp. 83–88
  108. ^ Krause, Jens; Ruxton, Graeme D. (10 October 2002). Living in groups. Oxford University Press. pp. 13–15. ISBN 9780198508182.
  109. ^ Ruxton, Sherratt & Speed 2004, pp. 54–55
  110. ^ Dominey, Wallace J. (1983). "Mobbing in Colonially Nesting Fishes, Especially the Bluegill, Lepomis macrochirus". Copeia. 1983 (4): 1086–1088. doi:10.2307/1445113. JSTOR 1445113.
  111. ^ Brodie, Edmund D. (3 November 2009). "Toxins and venoms" (PDF). Current Biology. 19 (20): R931–R935. doi:10.1016/j.cub.2009.08.011. PMID 19889364. S2CID 9744565.
  112. ^ Cott 1940, pp. 368–389
  113. ^ Merilaita, Sami; Vallin, Adrian; Kodandaramaiah, Ullasa; et al. (26 July 2011). "Number of eyespots and their intimidating effect on naïve predators in the peacock butterfly". Behavioral Ecology. 22 (6): 1326–1331. doi:10.1093/beheco/arr135.
  114. ^ Edmunds, Malcolm (2012). "Deimatic Behavior". Springer. Retrieved 31 December 2012.
  115. ^ Caro 2005, pp. v–xi, 4–5
  116. ^ Caro 2005, p. 413–414
  117. ^ Jacobs & Bastian 2017, p. 4
  118. ^ Barbosa, Pedro; Castellanos, Ignacio (2005). Ecology of predator-prey interactions. Oxford University Press. p. 78. ISBN 9780199874545.
  119. ^ Janis, C. M.; Wilhelm, P. B. (1993). "Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars". Journal of Mammalian Evolution. 1 (2): 103–125. doi:10.1007/bf01041590. S2CID 22739360.
  120. ^ a b c Dawkins, Richard; Krebs, J. R. (1979). "Arms races between and within species". Proceedings of the Royal Society B: Biological Sciences. 205 (1161): 489–511. Bibcode:1979RSPSB.205..489D. doi:10.1098/rspb.1979.0081. PMID 42057. S2CID 9695900.
  121. ^ a b Abrams, Peter A. (November 1986). "Adaptive responses of predators to prey and prey to predators: The failure of the arms-race analogy". Evolution. 40 (6): 1229–1247. doi:10.1111/j.1558-5646.1986.tb05747.x. PMID 28563514. S2CID 27317468.
  122. ^ a b c d e Brodie, Edmund D. (July 1999). "Predator-Prey Arms Races". BioScience. 49 (7): 557–568. doi:10.2307/1313476. JSTOR 1313476.
  123. ^ Vermeij, G J (November 1994). "The Evolutionary Interaction Among Species: Selection, Escalation, and Coevolution". Annual Review of Ecology and Systematics. 25 (1): 219–236. doi:10.1146/annurev.es.25.110194.001251.
  124. ^ Jacobs & Bastian 2017, p. 8
  125. ^ Jacobs & Bastian 2017, p. 107
  126. ^ Sheriff, Michael J.; Peacor, Scott D.; Hawlena, Dror; Thaker, Maria; Gaillard, Jean‐Michel (2020). "Non-Consumptive Predator Effects on Prey Population Size: A Dearth of Evidence". Journal of Animal Ecology. 89 (6): 1302–1316. doi:10.1111/1365-2656.13213. PMID 32215909.
  127. ^ Preisser, Evan L.; Bolnick, Daniel I.; Benard, Michael F. (2005). "Scared to Death? The Effects of Intimidation and Consumption in Predator–Prey Interactions". Ecology. 86 (2): 501–509. doi:10.1890/04-0719. ISSN 0012-9658.
  128. ^ a b Peckarsky, Barbara L.; Abrams, Peter A.; Bolnick, Daniel I.; Dill, Lawrence M.; Grabowski, Jonathan H.; Luttbeg, Barney; Orrock, John L.; Peacor, Scott D.; Preisser, Evan L.; Schmitz, Oswald J.; Trussell, Geoffrey C. (September 2008). "Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactions". Ecology. 89 (9): 2416–2425. doi:10.1890/07-1131.1. PMID 18831163.
  129. ^ Lindeman, Raymond L. (1942). "The Trophic-Dynamic Aspect of Ecology". Ecology. 23 (4): 399–417. doi:10.2307/1930126. JSTOR 1930126.
  130. ^ Ordiz, Andrés; Bischof, Richard; Swenson, Jon E. (2013). "Saving large carnivores, but losing the apex predator?". Biological Conservation. 168: 128–133. doi:10.1016/j.biocon.2013.09.024.
  131. ^ Pimm, S. L.; Lawton, J. H. (1978). "On feeding on more than one trophic level". Nature. 275 (5680): 542–544. Bibcode:1978Natur.275..542P. doi:10.1038/275542a0. S2CID 4161183.
  132. ^ Fedriani, J. M.; Fuller, T. K.; Sauvajot, R. M.; York, E. C. (2000). "Competition and intraguild predation among three sympatric carnivores". Oecologia. 125 (2): 258–270. Bibcode:2000Oecol.125..258F. doi:10.1007/s004420000448. hdl:10261/54628. PMID 24595837. S2CID 24289407.
  133. ^ Lalli, C. M.; Parsons, T. R. (1997). Biological Oceanography: An Introduction (2nd ed.). The Open University. p. 116.
  134. ^ "Energy transfer in ecosystems". National Geographic. 18 February 2023. Retrieved 18 February 2023.
  135. ^ Bond, W. J. (2012). "11. Keystone species". In Schulze, Ernst-Detlef; Mooney, Harold A. (eds.). Biodiversity and Ecosystem Function. Springer. p. 237. ISBN 978-3642580017.
  136. ^ Botkin, D.; Keller, E. (2003). Environmental Science: Earth as a living planet. John Wiley & Sons. p. 2. ISBN 978-0-471-38914-9.
  137. ^ a b Ripple, William J.; Beschta, Robert L. (2004). "Wolves and the Ecology of Fear: Can Predation Risk Structure Ecosystems?". BioScience. 54 (8): 755. doi:10.1641/0006-3568(2004)054[0755:WATEOF]2.0.CO;2.
  138. ^ Neal, Dick (2004). Introduction to population biology. Cambridge University Press. pp. 68–69. ISBN 9780521532235.
  139. ^ Nelson, Erik H.; Matthews, Christopher E.; Rosenheim, Jay A. (July 2004). "Predators Reduce Prey Population Growth by Inducing Changes in Prey Behavior". Ecology. 85 (7): 1853–1858. doi:10.1890/03-3109. JSTOR 3450359.
  140. ^ Krebs, Charles J.; Boonstra, Rudy; Boutin, Stan; Sinclair, A.R.E. (2001). "What Drives the 10-year Cycle of Snowshoe Hares?". BioScience. 51 (1): 25. doi:10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2.
  141. ^ Krebs, Charley; Myers, Judy (12 July 2014). "The Snowshoe Hare 10-year Cycle – A Cautionary Tale". Ecological rants. University of British Columbia. Retrieved 2 October 2018.
  142. ^ "Predators and their prey". BBC Bitesize. BBC. Retrieved 7 October 2015.
  143. ^ Goel, Narendra S.; Maitra, S. C.; Montroll, E. W. (1971). On the Volterra and Other Non-Linear Models of Interacting Populations. Academic Press. ISBN 978-0122874505.
  144. ^ a b Levin, Simon A.; Carpenter, Stephen R.; Godfray, H. Charles J.; Kinzig, Ann P.; Loreau, Michel; Losos, Jonathan B.; Walker, Brian; Wilcove, David S. (2009). The Princeton guide to ecology. Princeton University Press. pp. 204–209. ISBN 9781400833023.
  145. ^ Murdoch, William W.; Briggs, Cheryl J.; Nisbet, Roger M. (2013). Consumer-resource dynamics. Princeton University Press. p. 39. ISBN 9781400847259.
  146. ^ Nowak, Martin; May, Robert M. (2000). Virus Dynamics : Mathematical Principles of Immunology and Virology. Oxford University Press. p. 8. ISBN 9780191588518.
  147. ^ Genovart, M.; Negre, N.; Tavecchia, G.; Bistuer, A.; Parpal, L.; Oro, D. (2010). "The young, the weak and the sick: evidence of natural selection by predation". PLOS ONE. 5 (3): e9774. Bibcode:2010PLoSO...5.9774G. doi:10.1371/journal.pone.0009774. PMC 2841644. PMID 20333305.
  148. ^ Rockwood 2009, p. 281
  149. ^ Rockwood 2009, p. 246
  150. ^ Rockwood 2009, pp. 271–272
  151. ^ Rockwood 2009, p. 272–273
  152. ^ a b Cushing, J. M. (2005). "Book Reviews | Mathematics in population biology, by Horst R. Thiene" (PDF). Bulletin of the American Mathematical Society. 42 (4): 501–505. doi:10.1090/S0273-0979-05-01055-4.
  153. ^ Thieme, Horst R. (2003). Mathematics in Population Biology. Princeton University Press. ISBN 978-0-691-09291-1.
  154. ^ Kozlov, Vladimir; Vakulenko, Sergey (3 July 2013). "On chaos in Lotka–Volterra systems: an analytical approach". Nonlinearity. 26 (8): 2299–2314. Bibcode:2013Nonli..26.2299K. doi:10.1088/0951-7715/26/8/2299. S2CID 121559550.
  155. ^ Sih, Andrew (1987). "Prey refuges and predator-prey stability". Theoretical Population Biology. 31: 1–12. doi:10.1016/0040-5809(87)90019-0.
  156. ^ McNair, James N (1986). "The effects of refuges on predator-prey interactions: A reconsideration". Theoretical Population Biology. 29 (1): 38–63. doi:10.1016/0040-5809(86)90004-3. PMID 3961711.
  157. ^ Berryman, Alan A.; Hawkins, Bradford A.; Hawkins, Bradford A. (2006). "The refuge as an integrating concept in ecology and evolution". Oikos. 115 (1): 192–196. doi:10.1111/j.0030-1299.2006.15188.x.
  158. ^ Cressman, Ross; Garay, József (2009). "A predator–prey refuge system: Evolutionary stability in ecological systems". Theoretical Population Biology. 76 (4): 248–57. doi:10.1016/j.tpb.2009.08.005. PMID 19751753.
  159. ^ Abrams, P. A. (2000). "The evolution of predator-prey interactions: theory and evidence". Annual Review of Ecology and Systematics. 31: 79–105. doi:10.1146/annurev.ecolsys.31.1.79.
  160. ^ a b Grimaldi, David; Engel, Michael S. (2005). Evolution of the Insects. Cambridge University Press. pp. 155–160. ISBN 978-0-521-82149-0.
  161. ^ Grant, S. W. F.; Knoll, A. H.; Germs, G. J. B. (1991). "Probable Calcified Metaphytes in the Latest Proterozoic Nama Group, Namibia: Origin, Diagenesis, and Implications". Journal of Paleontology. 65 (1): 1–18. doi:10.1017/S002233600002014X. JSTOR 1305691. PMID 11538648. S2CID 26792772.
  162. ^ Awramik, S. M. (19 November 1971). "Precambrian columnar stromatolite diversity: Reflection of metazoan appearance". Science. 174 (4011): 825–827. Bibcode:1971Sci...174..825A. doi:10.1126/science.174.4011.825. PMID 17759393. S2CID 2302113.
  163. ^ Stanley, Steven M. (2008). "Predation defeats competition on the seafloor". Paleobiology. 34 (1): 1–21. doi:10.1666/07026.1. S2CID 83713101.
  164. ^ Loron, Corentin C.; Rainbird, Robert H.; Turner, Elizabeth C.; Wilder Greenman, J.; Javaux, Emmanuelle J. (2018). "Implications of selective predation on the macroevolution of eukaryotes: Evidence from Arctic Canada". Emerging Topics in Life Sciences. 2 (2): 247–255. doi:10.1042/ETLS20170153. PMID 32412621. S2CID 92505644.
  165. ^ a b Dunn, F. S.; Kenchington, C. G.; Parry, L. A.; Clark, J. W.; Kendall, R. S.; Wilby, P. R. (25 July 2022). "A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK". Nature Ecology & Evolution. 6 (8): 1095–1104. doi:10.1038/s41559-022-01807-x. PMC 9349040. PMID 35879540.
  166. ^ Kelley, Patricia (2003). Predator—Prey Interactions in the Fossil Record. Springer. pp. 113–139, 141–176 and passim. ISBN 978-1-4615-0161-9. OCLC 840283264.
  167. ^ Daley, Allison C. (2013). "Anomalocaridids". Current Biology. 23 (19): R860–R861. doi:10.1016/j.cub.2013.07.008. PMID 24112975.
  168. ^ Anderson, P. S. L.; Westneat, M. (2009). "A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi)". Paleobiology. 35 (2): 251–269. doi:10.1666/08011.1. S2CID 86203770.
  169. ^ Carr, Robert K. (2010). "Paleoecology of Dunkleosteus terrelli (Placodermi: Arthrodira)". Kirtlandia. 57.
  170. ^ Switeck, Brian (13 April 2012). "When Tyrannosaurus Chomped Sauropods". Journal of Vertebrate Paleontology. 25 (2): 469–472. doi:10.1671/0272-4634(2005)025[0469:TRFTUC]2.0.CO;2. S2CID 131583311. Archived from the original on 24 August 2013. Retrieved 24 August 2013.
  171. ^ Darimont, C. T.; Fox, C. H.; Bryan, H. M.; Reimchen, T. E. (20 August 2015). "The unique ecology of human predators". Science. 349 (6250): 858–860. Bibcode:2015Sci...349..858D. doi:10.1126/science.aac4249. PMID 26293961. S2CID 4985359.
  172. ^ Gabriel, Otto; von Brandt, Andres (2005). Fish catching methods of the world. Blackwell. ISBN 978-0-85238-280-6.
  173. ^ Griffin, Emma (2008). Blood Sport: Hunting in Britain Since 1066. Yale University Press. ISBN 978-0300145458.
  174. ^ King, Richard J. (1 October 2013). The Devil's Cormorant: A Natural History. University of New Hampshire Press. p. 9. ISBN 978-1-61168-225-0.
  175. ^ Glasier, Phillip (1998). Falconry and Hawking. Batsford. ISBN 978-0713484076.
  176. ^ Aegerter, James; Fouracre, David; Smith, Graham C. (2017). Olsson, I Anna S (ed.). "A first estimate of the structure and density of the populations of pet cats and dogs across Great Britain". PLOS ONE. 12 (4): e0174709. Bibcode:2017PLoSO..1274709A. doi:10.1371/journal.pone.0174709. PMC 5389805. PMID 28403172.
  177. ^ The Humane Society of the United States. "U.S. Pet Ownership Statistics". Retrieved 27 April 2012.
  178. ^ Liebenberg, Louis (2008). "The relevance of persistence hunting to human evolution". Journal of Human Evolution. 55 (6): 1156–1159. doi:10.1016/j.jhevol.2008.07.004. PMID 18760825.
  179. ^ "Food For Thought" (PDF). The Life of Mammals. British Broadcasting Corporation. 31 October 2002.
  180. ^ Flint, Maria Louise; Dreistadt, Steve H. (1998). Clark, Jack K. (ed.). Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control. University of California Press. ISBN 978-0-520-21801-7.
  181. ^ Johnston, Keith M. (2013). Science Fiction Film: A Critical Introduction. Berg Publishers. p. 98. ISBN 9780857850560.
  182. ^ Newby, Richard (13 May 2018). "Is 'Predator' Finally Getting a Worthy Sequel?". Hollywood Reporter. Retrieved 7 September 2018.
  183. ^ Schatz, Thomas. "The New Hollywood". Movie Blockbusters. p. 25. In: Stringer, Julian (2003). Movie Blockbusters. Routledge. pp. 15–44. ISBN 978-0-415-25608-7.
  184. ^ Davison, Peter (1 December 2002). "Predators and Prey | Selected Poems, 1957–1994 by Ted Hughes". The New York Times. Retrieved 5 October 2018. Hughes's earliest books contained a bewildering profusion of poems between their covers: ... fish and fowl, beasts of the field and forest, vigorous embodiments of predators and prey. Hughes as a student had taken up anthropology, not literature, and he chose to meditate his way into trancelike states of preconsciousness before committing poems to paper. His poems, early or late, enter into the relations of living creatures; they move in close to animal consciousness: The Thought-Fox, Esther's Tomcat, Pike.
  185. ^ Gould, Stephen Jay (1995). The Tooth and Claw Centennial. Dinosaur in a Haystack. Harmony Books. pp. 63–75. ISBN 978-0517703939.
  186. ^ a b c d e f Wallner, Astrid (18 July 2005). "The role of predators in Mythology". WaldWissen Information for Forest Management. Archived from the original on 5 October 2018. Retrieved 5 October 2018. translated from Wallner, A. (1998) Die Bedeutung der Raubtiere in der Mythologie: Ergebnisse einer Literaturstudie. – Inf.bl. Forsch.bereiches Landsch.ökol. 39: 4–5.
  187. ^ Kellert, Stephen R.; Black, Matthew; Rush, Colleen Reid; Bath, Alistair J. (1996). "Human Culture and Large Carnivore Conservation in North America". Conservation Biology. 10 (4): 977–990. doi:10.1046/j.1523-1739.1996.10040977.x.
Sources
External links
  • Quotations related to Predation at Wikiquote
  • Media related to Predation at Wikimedia Commons

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.