Get Our Extension

Plasmid preparation

From Wikipedia, in a visual modern way

Suza W, Lee D (15 October 2021). "11. Recombinant DNA Technology; Ligase enzyme and gene cloning". Genetics, Agriculture, and Biotechnology. Iowa State University.

Plasmid miniprep. 0.8% agarose gel ethidium bromide-stained.
Plasmid miniprep. 0.8% agarose gel ethidium bromide-stained.

A plasmid preparation is a method of DNA extraction and purification for plasmid DNA, it is an important step in many molecular biology experiments and is essential for the successful use of plasmids in research and biotechnology.[1][2] Many methods have been developed to purify plasmid DNA from bacteria.[1][3]

These methods invariably involve three steps:[4]

  • Growth of the bacterial culture
  • Harvesting and lysis of the bacteria
  • Purification of plasmid DNA

Discover more about Plasmid preparation related topics

DNA extraction

DNA extraction

The first isolation of deoxyribonucleic acid (DNA) was done in 1869 by Friedrich Miescher. DNA extraction is the process of isolating DNA from the cells of an organism isolated from a sample, typically a biological sample such as blood, saliva, or tissue. It involves breaking open the cells, removing proteins and other contaminants, and purifying the DNA so that it is free of other cellular components. The purified DNA can then be used for downstream applications such as PCR, sequencing, or cloning. Currently, it is a routine procedure in molecular biology or forensic analyses.

Plasmid

Plasmid

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.

Molecular biology

Molecular biology

Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physical structure of biological macromolecules is known as molecular biology.

Biotechnology

Biotechnology

Biotechnology is the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services. The term biotechnology was first used by Károly Ereky in 1919, meaning the production of products from raw materials with the aid of living organisms.

DNA

DNA

Deoxyribonucleic acid is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

Bacteria

Bacteria

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria are vital in many stages of the nutrient cycle by recycling nutrients such as the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

Growth of the bacterial culture

Plasmids are almost always purified from liquid bacteria cultures, usually E. coli, which have been transformed and isolated.[5][6] Virtually all plasmid vectors in common use encode one or more antibiotic resistance genes as a selectable marker, for example a gene encoding ampicillin or kanamycin resistance, which allows bacteria that have been successfully transformed to multiply uninhibited.[7][8][9] Bacteria that have not taken up the plasmid vector are assumed to lack the resistance gene, and thus only colonies representing successful transformations are expected to grow.[5][9][10] Bacteria are grown under favourable conditions.

Discover more about Growth of the bacterial culture related topics

Microbiological culture

Microbiological culture

A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as a research tool in molecular biology.

Escherichia coli

Escherichia coli

Escherichia coli, also known as E. coli, is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes (EPEC, ETEC etc.) can cause serious food poisoning in their hosts, and are occasionally responsible for food contamination incidents that prompt product recalls. Most strains do not cause disease in humans and are part of the normal microbiota of the gut; such strains are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones). For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship — where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh faecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

Transformation (genetics)

Transformation (genetics)

In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.

Selectable marker

Selectable marker

A selectable marker is a gene introduced into a cell, especially a bacterium or to cells in culture, that confers a trait suitable for artificial selection. They are a type of reporter gene used in laboratory microbiology, molecular biology, and genetic engineering to indicate the success of a transfection or other procedure meant to introduce foreign DNA into a cell. Selectable markers are often antibiotic resistance genes. Bacteria that have been subjected to a procedure to introduce foreign DNA are grown on a medium containing an antibiotic, and those bacterial colonies that can grow have successfully taken up and expressed the introduced genetic material. Normally the genes encoding resistance to antibiotics such as ampicillin, chloramphenicol, tetracycline or kanamycin, etc., are considered useful selectable markers for E. coli.

Harvesting and lysis of the bacteria

There are several methods for cell lysis, including alkaline lysis, mechanical lysis, and enzymatic lysis.[11][12][13][14]

Alkaline lysis

The most common method is alkaline lysis, which involves the use of a high concentration of a basic solution, such as sodium hydroxide, to lyse the bacterial cells.[15][16][17] When bacteria are lysed under alkaline conditions (pH 12.0–12.5) both chromosomal DNA and protein are denatured; the plasmid DNA however, remains stable.[16][17] Some scientists reduce the concentration of NaOH used to 0.1M in order to reduce the occurrence of ssDNA. After the addition of acetate-containing neutralization buffer to lower the pH to around 7, the large and less supercoiled chromosomal DNA and proteins form large complexes and precipitate; but the small bacterial DNA plasmids stay in solution.[17][14]

Mechanical lysis

Mechanical lysis involves the use of physical force, such as grinding or sonication, to break down bacterial cells and release the plasmid DNA. There are several different mechanical lysis methods that can be used, including French press, bead-beating, and ultrasonication.[11][12][13][14]

Enzymatic lysis

Enzymatic lysis, also called Lysozyme lysis, involves the use of enzymes to digest the cell wall and release the plasmid DNA.[11] The most commonly used enzyme for this purpose is lysozyme, which breaks down the peptidoglycan in the cell wall of Gram-positive bacteria. Lysozyme is usually added to the bacterial culture, followed by heating and/or shaking the culture to release the plasmid DNA.[11][12][13][14]

Discover more about Harvesting and lysis of the bacteria related topics

Sodium hydroxide

Sodium hydroxide

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−.

Acetate

Acetate

An acetate is a salt formed by the combination of acetic acid with a base. "Acetate" also describes the conjugate base or ion typically found in aqueous solution and written with the chemical formula C2H3O−2. The neutral molecules formed by the combination of the acetate ion and a positive ion are also commonly called "acetates". The simplest of these is hydrogen acetate with corresponding salts, esters, and the polyatomic anion CH3CO−2, or CH3COO−.

Buffer solution

Buffer solution

A buffer solution is an acid or a base aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. In nature, there are many living systems that use buffering for pH regulation. For example, the bicarbonate buffering system is used to regulate the pH of blood, and bicarbonate also acts as a buffer in the ocean.

Sonication

Sonication

Sonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, microalgae and seaweeds. Ultrasonic frequencies (> 20 kHz) are usually used, leading to the process also being known as ultrasonication or ultra-sonication.

French pressure cell press

French pressure cell press

The French pressure cell press, or French press, is an apparatus used in biological experimentation to disrupt the plasma membrane of cells by passing them through a narrow valve under high pressure. The French Press can also be used for disintegration of chloroplasts, homogenates of animal tissue, and other biological particles. It is capable of disrupting cell walls while leaving the cell nucleus undisturbed. The French press was invented by Charles Stacy French of the Carnegie Institution of Washington. The press uses an external hydraulic pump to drive a piston within a larger cylinder that contains the liquid sample. The highly pressurized sample is then squeezed past a needle valve. As the sample passes through the valve, the fluid experiences shear stress and decompression, causing cellular disruption. The major components of a French press are made of stainless steel to prevent sample contamination.

Lysozyme

Lysozyme

Lysozyme is an antimicrobial enzyme produced by animals that forms part of the innate immune system. It is a glycoside hydrolase that catalyzes the following process:Hydrolysis of (1→4)-β-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins

Enzyme

Enzyme

Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

Peptidoglycan

Peptidoglycan

Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like peptidoglycan layer outside the plasma membrane, the rigid cell wall characteristic of most bacteria. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

Gram-positive bacteria

Gram-positive bacteria

In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.

Preparations by size

Plasmid preparation can be divided into five main categories based on the scale of the preparation: minipreparation, midipreparation, maxipreparation, megapreparation, and gigapreparation. The choice of which method to use will depend on the amount of plasmid DNA required, as well as the specific application for which it will be used.[18][19]

Kits are available from varying manufacturers to purify plasmid DNA, which are named by size of bacterial culture and corresponding plasmid yield. In increasing order they are: miniprep, midiprep, maxiprep, megaprep, and gigaprep. The plasmid DNA yield will vary depending on the plasmid copy number, type and size, the bacterial strain, the growth conditions, and the kit.[2]

Minipreparation

Minipreparation of plasmid DNA is a rapid, small-scale isolation of plasmid DNA from bacteria.[20][21] Commonly used miniprep methods include alkaline lysis and spin-column based kits. [3][22] It is based on the alkaline lysis method. The extracted plasmid DNA resulting from performing a miniprep is itself often called a "miniprep". Minipreps are used in the process of molecular cloning to analyze bacterial clones. A typical plasmid DNA yield of a miniprep is 5 to 50 µg depending on the cell strain. Miniprep of a large number of plasmids can also be done conveniently on filter paper by lysing the cell and eluting the plasmid on to filter paper.[21]

Midipreparation

The starting E. coli culture volume is 15-25 mL of Lysogeny broth (LB) and the expected DNA yield is 100-350 µg.

Maxipreparation

The starting E. coli culture volume is 100-200 mL of LB and the expected DNA yield is 500-850 µg.

Megapreparation

The starting E. coli culture volume is 500 mL – 2.5 L of LB and the expected DNA yield is 1.5-2.5 mg.

Gigapreparation

The starting E. coli culture volume is 2.5-5 L of LB and the expected DNA yield is 7.5–10 mg.

Discover more about Preparations by size related topics

Plasmid

Plasmid

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.

DNA

DNA

Deoxyribonucleic acid is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

Bacteria

Bacteria

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria are vital in many stages of the nutrient cycle by recycling nutrients such as the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

Alkaline lysis

Alkaline lysis

Alkaline lysis or alkaline extraction is a method used in molecular biology to isolate plasmid DNA from bacteria.

Spin column-based nucleic acid purification

Spin column-based nucleic acid purification

Spin column-based nucleic acid purification is a solid phase extraction method to quickly purify nucleic acids. This method relies on the fact that nucleic acid will bind to the solid phase of silica under certain conditions.

Molecular cloning

Molecular cloning

Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

Cloning

Cloning

Cloning is the process of producing individual organisms with identical or virtually identical DNA, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction. In the field of biotechnology, cloning is the process of creating cloned organisms (copies) of cells and of DNA fragments.

Lysogeny broth

Lysogeny broth

Lysogeny broth (LB) is a nutritionally rich medium primarily used for the growth of bacteria. Its creator, Giuseppe Bertani, intended LB to stand for lysogeny broth, but LB has also come to colloquially mean Luria broth, Lennox broth, life broth or Luria–Bertani medium. The formula of the LB medium was published in 1951 in the first paper of Bertani on lysogeny. In this article he described the modified single-burst experiment and the isolation of the phages P1, P2, and P3. He had developed the LB medium to optimize Shigella growth and plaque formation.

Purification of plasmid DNA

It is important to consider the downstream applications of the plasmid DNA when choosing a purification method. For example, if the plasmid is to be used for transfection or electroporation, a purification method that results in high purity and low endotoxin levels is desirable. Similarly, if the plasmid is to be used for sequencing or PCR, a purification method that results in high yield and minimal contaminants is desirable.[2] However, multiple methods of nucleic acid purification exist.[23][24][25] All work on the principle of generating conditions where either only the nucleic acid precipitates, or only other biomolecules precipitate, allowing the nucleic acid to be separated. [15][23]

Ethanol precipitation

Ethanol precipitation is a widely used method for purifying and concentrating nucleic acids, including plasmid DNA.[26] The basic principle of this method is that nucleic acids are insoluble in ethanol or isopropanol but soluble in water. Therefor, it works by using ethanol as an antisolvent of DNA, causing it to precipitate out of solution and then it can be collected by centrifugation. The soluble fraction is discarded to remove other biomolecules.[27]

Spin column

Spin column-based nucleic acid purification is a method of purifying DNA, RNA or plasmid from a sample using a spin column filter.[25] The method is based on the principle of selectively binding nucleic acids to a solid matrix in the spin column, while other contaminants, such as proteins and salts, are washed away. The conditions are then changed to elute the purified nucleic acid off the column using a suitable elution buffer.[25]

Phenol–chloroform extraction

The basic principle of the phenol-chloroform extraction is that DNA and RNA are relatively insoluble in phenol and chloroform, while other cellular components are relatively soluble in these solvents. The addition of a phenol/chloroform mixture will dissolve protein and lipid contaminants, leaving the nucleic acids in the aqueous phase. It also denatures proteins, like DNase, which is especially important if the plasmids are to be used for enzyme digestion. Otherwise, smearing may occur in enzyme restricted form of plasmid DNA.[24]

Beads-based extraction

In beads-based extraction, addition of a mixture containing magnetic beads commonly made of iron ions binds to plasmid DNA, separating them from unwanted compounds by a magnetic rod or stand. [25] The plasmid-bound beads are then released by removal of the magnetic field and extracted in an elution solution for down-stream experiments such as transformation or restriction digestion. This form of miniprep can also be automated, which increases the conveniency while reducing mechanical error.

Discover more about Purification of plasmid DNA related topics

Electroporation

Electroporation

Electroporation, or electropermeabilization, is a microbiology technique in which an electrical field is applied to cells in order to increase the permeability of the cell membrane, allowing chemicals, drugs, electrode arrays or DNA to be introduced into the cell. In microbiology, the process of electroporation is often used to transform bacteria, yeast, or plant protoplasts by introducing new coding DNA. If bacteria and plasmids are mixed together, the plasmids can be transferred into the bacteria after electroporation, though depending on what is being transferred, cell-penetrating peptides or CellSqueeze could also be used. Electroporation works by passing thousands of volts across suspended cells in an electroporation cuvette. Afterwards, the cells have to be handled carefully until they have had a chance to divide, producing new cells that contain reproduced plasmids. This process is approximately ten times more effective in increasing cell membrane's permeability than chemical transformation.

Biomolecule

Biomolecule

A biomolecule or biological molecule is a loosely used term for molecules present in organisms that are essential to one or more typically biological processes, such as cell division, morphogenesis, or development. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids, and nucleic acids, as well as small molecules such as primary metabolites, secondary metabolites and natural products. A more general name for this class of material is biological materials. Biomolecules are an important element of living organisms, those biomolecules are often endogenous, produced within the organism but organisms usually need exogenous biomolecules, for example certain nutrients, to survive.

Ethanol precipitation

Ethanol precipitation

Ethanol precipitation is a method used to purify and/or concentrate RNA, DNA, and polysaccharides such as pectin and xyloglucan from aqueous solutions by adding ethanol as an antisolvent.

Nucleic acid

Nucleic acid

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is the ribose derivative deoxyribose, the polymer is DNA.

Ethanol

Ethanol

Ethanol is an organic compound. It is an alcohol with the chemical formula C2H6O. Its formula can also be written as CH3−CH2−OH or C2H5OH. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like odor and pungent taste. It is a psychoactive recreational drug, and the active ingredient in alcoholic drinks.

Centrifugation

Centrifugation

Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate away from the axis of the centrifuge, while the less dense components of the mixture migrate towards the axis. Chemists and biologists may increase the effective gravitational force of the test tube so that the precipitate (pellet) will travel quickly and fully to the bottom of the tube. The remaining liquid that lies above the precipitate is called a supernatant or supernate.

Protein

Protein

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

Phenol–chloroform extraction

Phenol–chloroform extraction

Phenol–chloroform extraction is a liquid-liquid extraction technique in molecular biology used to separate nucleic acids from proteins and lipids.

Phenol

Phenol

Phenol is an aromatic organic compound with the molecular formula C6H5OH. It is a white crystalline solid that is volatile. The molecule consists of a phenyl group bonded to a hydroxy group. Mildly acidic, it requires careful handling because it can cause chemical burns.

Chloroform

Chloroform

Chloroform, or trichloromethane (often abbreviated as TCM), is an organic compound with the formula CHCl3 and a common organic solvent. It is a very volatile, colorless, strong-smelling, dense liquid produced on a large scale as a precursor to PTFE and refrigerants and is a trihalomethane that serves as a powerful anesthetic, euphoriant, anxiolytic, and sedative when inhaled or ingested. It is also part of a wider class of substances known as volatile organic compounds.

Enzyme

Enzyme

Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

Iron

Iron

Iron is a chemical element with symbol Fe and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, just ahead of oxygen, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust, being mainly deposited by meteorites in its metallic state, with its ores also being found there.

Source: "Plasmid preparation", Wikipedia, Wikimedia Foundation, (2023, February 16th), https://en.wikipedia.org/wiki/Plasmid_preparation.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

References
  1. ^ a b Li JF, Li L, Sheen J (January 2010). "Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology". Plant Methods. 6 (1): 1. doi:10.1186/1746-4811-6-1. PMC 2829548. PMID 20180960.
  2. ^ a b c Prazeres DM, Monteiro GA (December 2014). Tolmasky ME, Alonso JC (eds.). "Plasmid Biopharmaceuticals". Microbiology Spectrum. 2 (6): 2.6.02. doi:10.1128/microbiolspec.PLAS-0022-2014. PMID 26104457.
  3. ^ a b Lezin G, Kosaka Y, Yost HJ, Kuehn MR, Brunelli L (2011). "A one-step miniprep for the isolation of plasmid DNA and lambda phage particles". PLOS ONE. 6 (8): e23457. Bibcode:2011PLoSO...623457L. doi:10.1371/journal.pone.0023457. PMC 3156146. PMID 21858126.
  4. ^ Bouchard R, et al. (2010). Laboratory Methods in Microbiology. Universal Scientific. pp. 119–126.
  5. ^ a b Suza W, Lee D (15 October 2021). "11. Recombinant DNA Technology; Ligase enzyme and gene cloning". Genetics, Agriculture, and Biotechnology. Iowa State University.
  6. ^ Ismail R, Allaudin ZN, Lila MA (September 2012). "Scaling-up recombinant plasmid DNA for clinical trial: current concern, solution and status". Vaccine. 30 (41): 5914–5920. doi:10.1016/j.vaccine.2012.02.061. PMID 22406276.
  7. ^ "Plasmid". Genome.gov. Retrieved 2022-12-10.
  8. ^ Batree L, Shriner W, Creech C (2017). "Biotechnology". Principles of biology. Open Oregon Educational Resources.
  9. ^ a b Bennett PM (March 2008). "Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria". British Journal of Pharmacology. 153 (Suppl 1): S347–S357. doi:10.1038/sj.bjp.0707607. PMC 2268074. PMID 18193080.
  10. ^ Smalla K, Jechalke S, Top EM (February 2015). "Plasmid Detection, Characterization, and Ecology". Microbiology Spectrum. 3 (1): PLAS–0038–2014. doi:10.1128/microbiolspec.PLAS-0038-2014. PMC 4480600. PMID 26104560.
  11. ^ a b c d Rahman MM, Hosano N, Hosano H (April 2022). "Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies". Molecules. 27 (9): 2786. doi:10.3390/molecules27092786. PMC 9104913. PMID 35566139.
  12. ^ a b c Weber S, Grande PM, Blank LM, Klose H (2022). "Insights into cell wall disintegration of Chlorella vulgaris". PLOS ONE. 17 (1): e0262500. Bibcode:2022PLoSO..1762500W. doi:10.1371/journal.pone.0262500. PMC 8759652. PMID 35030225.
  13. ^ a b c Wang D, Li Y, Hu X, Su W, Zhong M (April 2015). "Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans". International Journal of Molecular Sciences. 16 (4): 7707–7722. doi:10.3390/ijms16047707. PMC 4425044. PMID 25853267.
  14. ^ a b c d Borchers A, Pieler T (November 2010). "Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs". Genes. 1 (3): 413–426. doi:10.3390/mi8030083. PMC 6190294. PMID 24710095.
  15. ^ a b Williams JA (June 2013). "Vector Design for Improved DNA Vaccine Efficacy, Safety and Production". Vaccines. 1 (3): 225–249. doi:10.3390/vaccines1030225. PMC 4494225. PMID 26344110.
  16. ^ a b Zazilek G (2010-04-12). "Alkaline Lysis". askabiologist.asu.edu. Retrieved 2023-01-02.
  17. ^ a b c Birnboim HC, Doly J (November 1979). "A rapid alkaline extraction procedure for screening recombinant plasmid DNA". Nucleic Acids Research. 7 (6): 1513–1523. doi:10.1093/nar/7.6.1513. PMC 342324. PMID 388356.
  18. ^ Serghini MA, Ritzenthaler C, Pinck L (May 1989). "A rapid and efficient 'miniprep' for isolation of plasmid DNA". Nucleic Acids Research. 17 (9): 3604. doi:10.1093/nar/17.9.3604. PMC 317816. PMID 2726501.
  19. ^ Kovalenko SA, Tanaka M, Ozawa T (December 1994). "Simple methods for preparation of plasmid DNA yielding long and accurate sequence data". Nucleic Acids Research. 22 (25): 5771–5772. doi:10.1093/nar/22.25.5771. PMC 310149. PMID 7838738.
  20. ^ Chowdhury K (May 1991). "One step 'miniprep' method for the isolation of plasmid DNA". Nucleic Acids Research. 19 (10): 2792. doi:10.1093/nar/19.10.2792. PMC 328215. PMID 2041760.
  21. ^ a b "Plasmid Mini-Prep | College of Biological Sciences". cbs.umn.edu. Retrieved 2023-01-10.
  22. ^ Zhang S, Cahalan MD (2007-07-29). "Purifying plasmid DNA from bacterial colonies using the QIAGEN Miniprep Kit". Journal of Visualized Experiments (6): 247. doi:10.3791/247. PMC 2557117. PMID 18997895.
  23. ^ a b Tan SC, Yiap BC (2009). "DNA, RNA, and protein extraction: the past and the present". Journal of Biomedicine & Biotechnology. 2009: 574398. doi:10.1155/2009/574398. PMC 2789530. PMID 20011662.
  24. ^ a b "Phenol-Chloroform Extraction | Herman Lab | Nebraska". hermanlab.unl.edu. Retrieved 2023-01-10.
  25. ^ a b c d Ali N, Rampazzo RC, Costa AD, Krieger MA (2017). "Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics". BioMed Research International. 2017: 9306564. doi:10.1155/2017/9306564. PMC 5529626. PMID 28785592.
  26. ^ Zeugin JA, Hartley JL (1985). "Ethanol Precipitation of DNA" (PDF). Focus. 7 (4): 1–2. Retrieved 2008-09-10.
  27. ^ "Barrick Lab :: ProtocolsEthanolPrecipitation". barricklab.org. Retrieved 2023-01-10.
Further reading

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.