Get Our Extension

Pacific oyster

From Wikipedia, in a visual modern way
Pacific oyster
Crassostrea gigas p1040847.jpg
Scientific classification edit
Kingdom: Animalia
Phylum: Mollusca
Class: Bivalvia
Order: Ostreida
Family: Ostreidae
Genus: Magallana
Species:
M. gigas
Binomial name
Magallana gigas
(Thunberg, 1793)
Synonyms

Crassostrea gigas

Video of an adult exemplar as it responds to stimulation by light

The Pacific oyster, Japanese oyster, or Miyagi oyster (Magallana gigas[1]), is an oyster native to the Pacific coast of Asia. It has become an introduced species in North America, Australia, Europe, and New Zealand.

Discover more about Pacific oyster related topics

Oyster

Oyster

Oyster is the common name for a number of different families of salt-water bivalve molluscs that live in marine or brackish habitats. In some species, the valves are highly calcified, and many are somewhat irregular in shape. Many, but not all oysters are in the superfamily Ostreoidea.

Asia

Asia

Asia is the largest continent in the world by both land area and population. It covers an area of more than 44 million square kilometers, about 30% of Earth's total land area and 8% of Earth's total surface area. The continent, which has long been home to the majority of the human population, was the site of many of the first civilizations. Its 4.7 billion people constitute roughly 60% of the world's population, having more people than all other continents combined.

Introduced species

Introduced species

An introduced species, alien species, exotic species, adventive species, immigrant species, foreign species, non-indigenous species, or non-native species is a species living outside its native distributional range, but which has arrived there by human activity, directly or indirectly, and either deliberately or accidentally. Non-native species can have various effects on the local ecosystem. Introduced species that become established and spread beyond the place of introduction are considered naturalized. The process of human-caused introduction is distinguished from biological colonization, in which species spread to new areas through "natural" (non-human) means such as storms and rafting. The Latin expression neobiota captures the characteristic that these species are new biota to their environment in terms of established biological network relationships. Neobiota can further be divided into neozoa and neophyta (plants).

North America

North America

North America is a continent in the Northern Hemisphere and almost entirely within the Western Hemisphere. It is bordered to the north by the Arctic Ocean, to the east by the Atlantic Ocean, to the southeast by South America and the Caribbean Sea, and to the west and south by the Pacific Ocean. Because it is on the North American Tectonic Plate, Greenland is included as a part of North America geographically.

Australia

Australia

Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania, and numerous smaller islands. With an area of 7,617,930 square kilometres (2,941,300 sq mi), Australia is the largest country by area in Oceania and the world's sixth-largest country. Australia is the oldest, flattest, and driest inhabited continent, with the least fertile soils. It is a megadiverse country, and its size gives it a wide variety of landscapes and climates, with deserts in the centre, tropical rainforests in the north-east, and mountain ranges in the south-east.

Europe

Europe

Europe is a continent comprising the westernmost peninsulas of Eurasia, located entirely in the Northern Hemisphere and mostly in the Eastern Hemisphere. It shares the continental landmass of Afro-Eurasia with both Africa and Asia. It is bordered by the Arctic Ocean to the north, the Atlantic Ocean to the west, the Mediterranean Sea to the south, and Asia to the east. Europe is commonly considered to be separated from Asia by the watershed of the Ural Mountains, the Ural River, the Caspian Sea, the Greater Caucasus, the Black Sea and the waterways of the Turkish Straits.

New Zealand

New Zealand

New Zealand is an island country in the southwestern Pacific Ocean. It consists of two main landmasses—the North Island and the South Island —and over 700 smaller islands. It is the sixth-largest island country by area, covering 268,021 square kilometres (103,500 sq mi). New Zealand is about 2,000 kilometres (1,200 mi) east of Australia across the Tasman Sea and 1,000 kilometres (600 mi) south of the islands of New Caledonia, Fiji, and Tonga. The country's varied topography and sharp mountain peaks, including the Southern Alps, owe much to tectonic uplift and volcanic eruptions. New Zealand's capital city is Wellington, and its most populous city is Auckland.

Description

The shell of M. gigas varies widely with the environment where it is attached. Its large, rounded, radial folds are often extremely rough and sharp. The two valves of the shell are slightly different in size and shape, the right valve being moderately concave. Shell colour is variable, usually pale white or off-white. Mature specimens can vary from 80 to 400 mm long.

Right and left valve of the same specimen:

Ecology

Habitat

M. gigas is an estuarine species, but can also be found in intertidal and subtidal zones. They prefer to attach to hard or rocky surfaces in shallow or sheltered waters up to 40 m deep, but have been known to attach to muddy or sandy areas when the preferred habitat is scarce. The Pacific oyster can also be found on the shells of other animals. Larvae often settle on the shell of adults, and great masses of oysters can grow together to form oyster reefs. The optimum salinity for Pacific oysters is between 20 and 35 parts per thousand (ppt), and they can tolerate salinities as high as 38 ppt; at this level, however, reproduction is unlikely to occur.[8] The Pacific oyster is also a very temperature tolerant species, as it can withstand a range from −1.8 to 35 °C.[8]

Biology

Sexuality

The Pacific oyster has separate sexes, but hermaphrodites sometimes do exist.[9] Their sex can be determined by examining the gonads, and it can change from year to year, normally during the winter.[9] In certain environmental conditions, one sex is favoured over the other.[9] Protandry is favoured in areas of high food abundance and protogyny occurs in areas of low food abundance.[9] In habitats with a high food supply, the sex ratio in the adult population tends to favour females, and areas with low food abundances tend to have a larger proportion of male adults.[9]

Spawning

Spawning in the Pacific oyster occurs at 20 °C.[9] This species is very fecund, with females releasing about 50–200 million eggs in regular intervals (with a rate at 5–10 times a minute) in a single spawning.[9] Once released from the gonads, the eggs move through the suprabranchial chambers (gills), are then pushed through the gill ostia into the mantle chamber, and finally are released in the water, forming a small cloud.[9] In males, the sperm is released at the opposite end of the oyster, along with the normal exhalent stream of water.[9] A rise in water temperature is thought to be the main cue in the initiation of spawning, as the onset of higher water temperatures in the summer results in earlier spawning in the Pacific oyster.[10]

Life cycle

The larvae of the Pacific oyster are planktotrophic, and are about 70 µm at the prodissoconch 1 stage.[8] The larvae move through the water column via the use of a larval foot to find suitable settlement locations.[8] They can spend several weeks at this phase, which is dependent on water temperature, salinity, and food supply.[8] Over these weeks, larvae can disperse great distances by water currents before they metamorphose and settle as small spat.[8] Similar to other oyster species, once a Pacific oyster larva finds a suitable habitat, it attaches to it permanently using cement secreted from a gland in its foot.[8] After settlement, the larva metamorphoses into a juvenile spat.[8] The growth rate is very rapid in optimum environmental conditions, and market size can be achieved in 18 to 30 months.[8] Unharvested Pacific oysters can live up to 30 years.

Genetics

The genome of M. gigas has been sequenced, revealing an extensive set of genes that enables it to cope with environmental stresses.[11] The expression of genes such as arginine kinase and cavortin is particularly important in regulating the metabolic response of this species to stress events including the reduction of seawater pH, as observed under ocean acidification. [12]

Discover more about Biology related topics

Hermaphrodite

Hermaphrodite

In reproductive biology, a hermaphrodite is an organism that has both kinds of reproductive organs and can produce both gametes associated with male and female sexes.

Gonad

Gonad

A gonad, sex gland, or reproductive gland is a mixed gland that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces sperm in the form of spermatozoa. The female gonad, the ovary, produces egg cells. Both of these gametes are haploid cells. Some hermaphroditic animals have a type of gonad called an ovotestis.

Sex ratio

Sex ratio

A sex ratio is the ratio of males to females in a population. As explained by Fisher's principle, for evolutionary reasons this is typically about 1:1 in species which reproduce sexually. However, many species deviate from an even sex ratio, either periodically or permanently. Examples include parthenogenic species, periodically mating organisms such as aphids, some eusocial wasps, bees, ants, and termites.

Spawn (biology)

Spawn (biology)

Spawn is the eggs and sperm released or deposited into water by aquatic animals. As a verb, to spawn refers to the process of releasing the eggs and sperm, and the act of both sexes is called spawning. Most aquatic animals, except for aquatic mammals and reptiles, reproduce through the process of spawning.

Fecundity

Fecundity

Fecundity is defined in two ways; in human demography, it is the potential for reproduction of a recorded population as opposed to a sole organism, while in population biology, it is considered similar to fertility, the natural capability to produce offspring, measured by the number of gametes (eggs), seed set, or asexual propagules.

Gill

Gill

A gill is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are kept moist. The microscopic structure of a gill presents a large surface area to the external environment. Branchia is the zoologists' name for gills.

Marine larval ecology

Marine larval ecology

Marine larval ecology is the study of the factors influencing dispersing larvae, which many marine invertebrates and fishes have. Marine animals with a larva typically release many larvae into the water column, where the larvae develop before metamorphosing into adults.

Apex (mollusc)

Apex (mollusc)

In anatomy, an apex is part of the shell of a mollusk. The apex is the pointed tip of the shell of a gastropod, scaphopod, or cephalopod.

Metamorphosis

Metamorphosis

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

Oyster

Oyster

Oyster is the common name for a number of different families of salt-water bivalve molluscs that live in marine or brackish habitats. In some species, the valves are highly calcified, and many are somewhat irregular in shape. Many, but not all oysters are in the superfamily Ostreoidea.

Species

Species

In biology, a species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.

Habitat

Habitat

In ecology, the term habitat summarises the array of resources, physical and biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species habitat can be seen as the physical manifestation of its ecological niche. Thus "habitat" is a species-specific term, fundamentally different from concepts such as environment or vegetation assemblages, for which the term "habitat-type" is more appropriate.

Aquaculture

Pacific oysters prepared for eating
Pacific oysters prepared for eating

Historical background

M. gigas was originally described by the Swedish naturalist Carl Peter Thunberg in 1795.[8] It is native to the Northwest Pacific, and occurs primarily in temperate waters between 30° N and 48° N.[13] It is now the most widely farmed and commercially important oyster in the world, as it is very easy to grow, environmentally tolerant, and easily spread from one area to another.[8] The most significant introductions were to the Pacific Coast of the United States in the 1920s and to France in 1966.[8] In most places, the Pacific oyster was introduced to replace the native oyster stocks which were seriously dwindling due to overfishing or disease.[8] In addition, this species was introduced to create an industry that was previously not available at all in that area.[8] In addition to intentional introductions, the Pacific oyster has spread through accidental introductions either through larvae in ballast water or on the hulls of ships.[8] In some places in the world, though, it is considered by biosecurity, primary industry, and conservation departments and ministries to be an invasive species, where it is outcompeting native species, such as the Olympia oyster in Puget Sound, Washington; the rock oyster, Saccostrea commercialis, in the North Island of New Zealand; and the blue mussel, Mytilus edulis, in the Wadden Sea.

Production techniques

Numerous methods are used in the production of Pacific oysters. These techniques depend on factors such as the seed supply resources, the environmental conditions in the region, and the market product, i.e., whether the oysters are sold in a half shell, or shelled for meat extraction.[8] Production can either be entirely sea-based or rely on hatcheries for seed supply.[8]

Seed supply

Most of the global Pacific oyster spat supply comes from the wild, but some is now produced by hatchery methods.[8] The seed from the wild can either be collected by the removal of seaweed from beaches or by hanging shell (cultch) in suspension from long lines in the open water.[8] The movement towards hatchery-reared spat is important, as wild seed is susceptible to changeable environmental conditions, such as toxic algal blooms, which can halt the supply of seed from that region. In addition, several pests have been noted as considerable dangers to oyster seed.[9] The Japanese oyster drill (Ocenebra inornata), flatworm (Koinostylochus ostreophagus), and parasitic copepod (Mytilicola orientalis) have been introduced accidentally to aquaculture areas, and have had serious impacts on oyster production, particularly in British Columbia and Europe.[9]

Broodstock

Pacific oyster broodstocks in hatcheries are kept in optimum conditions so the production of large amounts of high quality eggs and sperm can be achieved.[8] Pacific oyster females are very fecund, and individuals of 70–100 g live weight can produce 50–80 million eggs in a single spawn.[8] Broodstock adults are held in tanks at 20–22 °C, supplied with cultured algae and with salinities of 25–32 ppt.[8] These individuals can be induced to spawn by thermal shock treatment.[8] Yet, the eggs from a small sample of females (about six) are more commonly stripped from the gonads using Pasteur pipettes and fertilized by sperm from a similar number of males.[8]

Larval and postlarval culture

Pacific oysters have a pelagic veliger larval stage which lasts from 14–18 days.[8] In the hatcheries, they are kept at temperatures of 25–28 °C with an optimum salinity between 20 and 25%.[8] Early-stage veligers (flagellated algal species (Isochrysis galbana or Pavlova lutherii) along with diatom species (either Chaetoceros calcitrans or Thalassiosira pseudonana).[8] The larvae are close to a settlement stage when dark eye spots and a foot develop.[8] During this time, settlement materials (cultch), such as roughed PVC sheets, fluted PVC pipes, or shells, are placed into the tanks to encourage the larvae to attach and settle.[8] However, particularly on the US West Coast, mature larvae are commonly packed and shipped to oyster farms, where the farmers set the oysters themselves.[8]

Nursery

Pacific oyster spat can be grown in nurseries by sea-based or land-based upwelling systems. Nursery culture reduces mortality in small spat, thus increasing the farm's efficiency.[8] Sea-based nursery systems are often located in estuarine areas where the spat are mounted on barges or rafts.[8] Land-based nursery systems have spat mounted on barges in large saltwater tanks, which either have a natural algae supply or are enriched with nutrients from fertilizers.[8]

Ongrowing techniques

Pacific oysters in Yerseke, Netherlands, are kept alive in large oyster pits after "harvesting", until they are sold. Seawater is pumped in and out, simulating the tide.
Pacific oysters in Yerseke, Netherlands, are kept alive in large oyster pits after "harvesting", until they are sold. Seawater is pumped in and out, simulating the tide.

This stage of oyster culture is almost completely sea-based.[8] A range of bottom, off-bottom, suspended, and floating cultures are used.[8] The technique used depends on site-specific conditions, such as tidal range, shelter, water depth, current flow, and nature of substrate.[8] Pacific oysters take 18–30 months to develop to the market size of 70–100 g live weight (shell on). Growth from spat to adults in this species is very rapid at temperatures of 15–25 °C and at salinities of 25 to 32 ppt.[8]

General production

In 2000, the Pacific oysters accounted for 98% of the world's cultured oyster production, and are produced in countries all over the world.[14]

Production statistics

Global production has increased from about 150 thousand tonnes in 1950 to 1.2 million tonnes in 1990.[15] By 2003, global production had increased to 4.38 million tonnes.[15] The majority was in China, which produced 84% of the global production.[15] Japan, France and the Republic of Korea also contributed, producing 261 000, 238 000 and 115 000 tonnes, respectively.[15] The other two major producers are the United States (43 000 tonnes) and Taiwan (23 000 tonnes).[15] In 2003, global Pacific oyster production was worth $ 3.69 billion.[15]

Current issues

Virus management

Pacific oysters are nonspecific filter feeders, which means they ingest any particulate matter in the water column.[16] This presents major issues for virus management of open-water shellfish farms, as shellfish like the Pacific oyster have been found to contain norovirus strains which can be harmful to humans.[16] Globally, noroviruses are the most common cause of nonbacterial gastroenteritis, and are introduced into the water column by faecal matter, either from sewage discharge or land runoff from nearby farmland.[16]

Heavy metal pollution

Pacific oysters, like other shellfish, are able to remove heavy metals, such as zinc and copper, as well as biotoxins (microscopic toxic phytoplankton), from the surrounding water.[9] These can accumulate in the tissues of the animal and leave it unharmed (bioaccumulation).[9] However, when the concentrations of the metals or biotoxins are high enough, shellfish poisoning can result when they are consumed by humans. Most countries have strict water regulations and legislation to minimise the occurrence of such poisoning cases.[17][18][19]

Diseases

Various diseases are known to affect Pacific oyster:

Disease Agent Type Measures Reference
Denman Island disease Mikrocytos mackini Protozoan parasite Restricted modified culture practices [15]
Nocardiosis Nocardia crassostreae Bacterium Modified culture practices [15]
Oyster velar virus disease (OVVD) Unknown Virus None known [15]
Herpes-type virus disease of C. gigas larvae Unknown Virus Potential selective breeding [20]
Viral gametocytic hypertrophy Papova-like virus Virus [21]

Predators

Numerous predators are known to damage Pacific oyster stocks.[22] Several crab species (Metacarcinus magister, Cancer productus, Metacarcinus gracilis), oyster drills, and starfish species (Pisater ochraceus, Pisater brevispinus, Evasterias troschelii, and Pycnopodia helianthoides) can cause severe impacts to oyster culture.[22]

Competition with other uses of the seashore

Increasing numbers of frames for oysters to grow on has led to claims that the character of the beach is changed and that other users may be endangered.[23]

In the preparations for the Tokyo 2020/2021 Summer Olympics, equipment for the canoeing and rowing was found to be contaminated with 14 metric tons (15 short tons) of M. gigas, necessitating US$1,280,000/£930,000 in removal expenditures.[24]

Ocean acidification

Ocean acidification due to increasing atmospheric carbon dioxide impacts shellfish such as oysters. The increasing acidity of the ocean reduces oyster reproduction, lowers the survival rate of juvenile oysters, and causes delayed sexual maturation. Overall, these effects combine to lower recruitment to oyster populations, reduce the maximum sustainable yield that can be harvested, and reduce the profitability of oyster farms. It is unknown if acidification alters the flavor of shellfish or other qualities that make them desirable for human consumption.[25]

Productivity

Productivity of the Pacific oyster can be described as the amount of meat produced in relation to the amount of seed planted on cultch.[9] The productivity of a farm also depends on the interaction of biotic factors, such as mortality, growth, and oyster size, as well as the quality of the seed and the growing technique used (off bottom, bottom, suspended or floating culture).[9] The main causes of mortality in the Pacific oysters are natural mortality (age), predators, disease, environmental conditions (ice, freak winds), competition for space (crowding of cultch), silting (sediment runoff from land), and cluster separation (process of breaking up clusters of oysters into as many individual oysters as possible).

Aquaculture in New Zealand

In New Zealand, the Pacific oyster was unintentionally introduced in the 1950s, most likely through ballast water and from the hulls of ships.[26] Aquaculture farmers at the time noticed the Pacific oyster outcompeted the endemic species, the Sydney rock oyster (Saccostrea glomerata), which naturally occurs in intertidal areas in the North Island.[27] Early experiments in rock oyster cultivation procedures attached spat to cement-covered sticks and laid them down in racks.[27] The farmers noticed, however, the Pacific oyster outgrew the endemic species in most areas, and constantly was attaching to the rock oyster collection sticks. A few years later, Pacific oysters were the dominant species in the farms, as it grew three times faster than the rock oyster, produced a reliable and constant supply of spat, and had an already established market overseas. In 1977, the Pacific oyster was accidentally introduced to the Marlborough Sounds, and farming began there in the 1990s. Marlborough farmers developed a different method of cultivation in comparison to the North Island method of racks; they instead suspended their oysters on longlines.

Production status

The Pacific oyster is one of the three main aquaculture species in New Zealand along with king salmon and the greenshell mussels.[28] Pacific oyster aquaculture production has grown from an export value of $11 million in 1986 to $32 million in 2006.[28] In 2006, the 23 Pacific oyster farms throughout New Zealand covered a total of 750 hectares of marine space and produced 2,800 tonnes of product per year.[26] Annual production is now between about 3,300 and 4,000 tonnes.[27] In 2005, the value of New Zealand's Pacific oyster production was $12 million domestically, and $16.9 million for export.[29] New Zealand's main export markets are Japan, Korea, the US, the EU and Australia.[29] However, research has demonstrated that changes in global ocean temperature and the advent of ocean acidification may alter the growth, reproduction, and development of this species with variable responses [12]

Discover more about Aquaculture related topics

Carl Peter Thunberg

Carl Peter Thunberg

Carl Peter Thunberg, also known as Karl Peter von Thunberg, Carl Pehr Thunberg, or Carl Per Thunberg, was a Swedish naturalist and an "apostle" of Carl Linnaeus. After studying under Linnaeus at Uppsala University, he spent seven years travelling in southern Africa and Asia, collecting and describing many plants and animals new to European science, and observing local cultures. He has been called "the father of South African botany", "pioneer of Occidental Medicine in Japan", and the "Japanese Linnaeus".

Pacific Ocean

Pacific Ocean

The Pacific Ocean is the largest and deepest of Earth's five oceanic divisions. It extends from the Arctic Ocean in the north to the Southern Ocean in the south, and is bounded by the continents of Asia and Oceania in the west and the Americas in the east.

Oyster

Oyster

Oyster is the common name for a number of different families of salt-water bivalve molluscs that live in marine or brackish habitats. In some species, the valves are highly calcified, and many are somewhat irregular in shape. Many, but not all oysters are in the superfamily Ostreoidea.

France

France

France, officially the French Republic, is a country located primarily in Western Europe. It also includes overseas regions and territories in the Americas and the Atlantic, Pacific and Indian Oceans, giving it one of the largest discontiguous exclusive economic zones in the world. Its metropolitan area extends from the Rhine to the Atlantic Ocean and from the Mediterranean Sea to the English Channel and the North Sea; overseas territories include French Guiana in South America, Saint Pierre and Miquelon in the North Atlantic, the French West Indies, and many islands in Oceania and the Indian Ocean. Its eighteen integral regions span a combined area of 643,801 km2 (248,573 sq mi) and had a total population of over 68 million as of January 2023. France is a unitary semi-presidential republic with its capital in Paris, the country's largest city and main cultural and commercial centre; other major urban areas include Marseille, Lyon, Toulouse, Lille, Bordeaux, and Nice.

Invasive species

Invasive species

An invasive or alien species is an introduced species to an environment that becomes overpopulated and harms its new environment. Invasive species adversely affect habitats and bioregions, causing ecological, environmental, and/or economic damage. The term can also be used for native species that become harmful to their native environment after human alterations to its food web – for example the purple sea urchin which has decimated kelp forests along the northern California coast due to overharvesting of its natural predator, the California sea otter. Since the 20th century, invasive species have become a serious economic, social, and environmental threat.

Puget Sound

Puget Sound

Puget Sound is a sound of the Pacific Northwest, an inlet of the Pacific Ocean, and part of the Salish Sea. It is located along the northwestern coast of the U.S. state of Washington. It is a complex estuarine system of interconnected marine waterways and basins, with one major and two minor connections to the open Pacific Ocean via the Strait of Juan de Fuca—Admiralty Inlet being the major connection and Deception Pass and Swinomish Channel being the minor.

New Zealand

New Zealand

New Zealand is an island country in the southwestern Pacific Ocean. It consists of two main landmasses—the North Island and the South Island —and over 700 smaller islands. It is the sixth-largest island country by area, covering 268,021 square kilometres (103,500 sq mi). New Zealand is about 2,000 kilometres (1,200 mi) east of Australia across the Tasman Sea and 1,000 kilometres (600 mi) south of the islands of New Caledonia, Fiji, and Tonga. The country's varied topography and sharp mountain peaks, including the Southern Alps, owe much to tectonic uplift and volcanic eruptions. New Zealand's capital city is Wellington, and its most populous city is Auckland.

Hatchery

Hatchery

A hatchery is a facility where eggs are hatched under artificial conditions, especially those of fish, poultry or even turtles. It may be used for ex-situ conservation purposes, i.e. to breed rare or endangered species under controlled conditions; alternatively, it may be for economic reasons.

Oyster farming

Oyster farming

Oyster farming is an aquaculture practice in which oysters are bred and raised mainly for their pearls, shells and inner organ tissue, which is eaten. Oyster farming was practiced by the ancient Romans as early as the 1st century BC on the Italian peninsula and later in Britain for export to Rome. The French oyster industry has relied on aquacultured oysters since the late 18th century.

Ocenebra inornata

Ocenebra inornata

Ocenebra inornata common names the "Asian drill", the "Asian oyster drill", the "Japanese oyster drill" and the "Japanese oyster borer", is a species of small predatory sea snail, a marine gastropod mollusk in the family Muricidae, the murex snails or rock snails.

Mytilicola orientalis

Mytilicola orientalis

Mytilicola orentalis is an intestinal copepod parasite of bivalves with a direct life cycle. It is native to the waters around Japan and was first described in the Japanese Sea and was introduced to Europe in the 1960s and 70's with oyster imports. Since then it has also been observed in the Wadden and the Baltic Sea. It has a wide range of host species in both its native range and in Europe.

Aquaculture

Aquaculture

Aquaculture, also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants. Aquaculture involves cultivating freshwater, brackish water and saltwater populations under controlled or semi-natural conditions, and can be contrasted with commercial fishing, which is the harvesting of wild fish. Mariculture, commonly known as marine farming, refers specifically to aquaculture practiced in seawater habitats and lagoons, as opposed to freshwater aquaculture. Pisciculture is a type of aquaculture that consists of fish farming to obtain fish products as food.

Source: "Pacific oyster", Wikipedia, Wikimedia Foundation, (2023, February 16th), https://en.wikipedia.org/wiki/Pacific_oyster.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ a b Salvi, D; Macali, A; Mariottini, P (2014). "Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree". PLOS ONE. 9 (9): e108696. Bibcode:2014PLoSO...9j8696S. doi:10.1371/journal.pone.0108696. PMC 4177229. PMID 25250663.
  2. ^ Definition of giga at dictionary.com.
  3. ^ Definition of crass at dictionary.com.
  4. ^ Definition of ostrea Archived 2010-07-09 at the Wayback Machine at dictionary.com.
  5. ^ Bayne, B. L.; Ahrens, M.; Allen, S. K.; D'auriac, M. Anglès; Backeljau, T.; Beninger, P.; Bohn, R.; Boudry, P.; Davis, J.; Green, T.; Guo, X.; Hedgecock, D.; Ibarra, A.; Kingsley-Smith, P.; Krause, M.; Langdon, C.; Lapègue, S.; Li, C.; Manahan, D.; Mann, R.; Perez-Paralle, L.; Powell, E. N.; Rawson, P. D.; Speiser, D.; Sanchez, J.-L.; Shumway, S.; Wang, H. (December 2017). "The proposed dropping of the genus Crassostrea for all Pacific cupped oysters and its replacement by a new genus Magallana: a dissenting view". Journal of Shellfish Research. 36 (3): 545–547. doi:10.2983/035.036.0301.
  6. ^ Bayne, B.; Anglès d'Auriac, M.; Backeljau, T.; Beninger, P.; Boudry, P.; Carnegie, R.; Davis, J.; Guo, X.; Hedgecock, D.; Krause, M.; Langdon, C.; Lapègue, S.; Manahan, D.; Mann, R.; Powell, E.; Shumway, S. (January 2019). "A scientific name for Pacific oysters" (PDF). Aquaculture. 499: 373. doi:10.1016/j.aquaculture.2018.08.048. S2CID 91311410.
  7. ^ "Crassostrea gigas (Thunberg, 1793)". World Register of Marine Species.
  8. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak Pacific Oyster factsheet, Food and Agriculture Organization of the United Nations (FAO)
  9. ^ a b c d e f g h i j k l m n o Quayle, D.B (1969). Pacific oyster culture in British Columbia, p. 23. First Edition. Ottawa: The Queen’s Printer.
  10. ^ Grangeré, K.; et al. (2009). "Modelling the influence of environmental factors on the physiological status of the Pacific oyster Crassostrea gigas in an estuarine embayment; The Baie des Veys (France)" (PDF). Journal of Sea Research. 62 (2–3): 147–158. Bibcode:2009JSR....62..147G. doi:10.1016/j.seares.2009.02.002.
  11. ^ Zhang, G.; Fang, X.; Guo, X.; Li, L.; Luo, R.; Xu, F.; Yang, P.; Zhang, L.; Wang, X.; Qi, H.; Xiong, Z.; Que, H.; Xie, Y.; Holland, P. W. H.; Paps, J.; Zhu, Y.; Wu, F.; Chen, Y.; Wang, J.; Peng, C.; Meng, J.; Yang, L.; Liu, J.; Wen, B.; Zhang, N.; Huang, Z.; Zhu, Q.; Feng, Y.; Mount, A.; Hedgecock, D. (2012). "The oyster genome reveals stress adaptation and complexity of shell formation". Nature. 490 (7418): 49–54. Bibcode:2012Natur.490...49Z. doi:10.1038/nature11413. PMID 22992520.
  12. ^ a b Ducker, J.; Falkenberg, L.J (2020). "How the Pacific Oyster Responds to Ocean Acidification: Development and Application of a Meta-Analysis Based Adverse Outcome Pathway". Frontiers in Marine Science. 7 (1): 898. doi:10.3389/fmars.2020.597441.
  13. ^ Herbert, Roger J. H.; Humphreys, John; Davies, Clare. J.; Roberts, Caroline; Fletcher, Steve; Crowe, Tasman. P. (2016-12-01). "Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe". Biodiversity and Conservation. 25 (14): 2835–2865. doi:10.1007/s10531-016-1209-4. ISSN 1572-9710.
  14. ^ "Industry Groups Pacific Oysters". Australian Aquaculture Portal. Archived from the original on 2005-02-09.
  15. ^ a b c d e f g h i "Cultured Aquatic Species Information Programme | Crassostrea gigas". FAO Fisheries & Aquaculture. Retrieved 2019-01-26.
  16. ^ a b c Greening, Gail E.; McCoubrey, Dorothy-Jean (12 June 2010). "Enteric viruses and management of shellfish production in New Zealand". Food and Environmental Virology. 2 (3): 167–175. doi:10.1007/s12560-010-9041-6. S2CID 22696341.
  17. ^ "Defra, UK - Environmental Protection - Water - Water Quality - Shellfish Waters Directive". Archived from the original on 2010-08-18. Retrieved 2010-09-07. Scottish water quality regulations
  18. ^ [1] Archived 2010-11-24 at the Wayback Machine Irish water quality regulations
  19. ^ [2] American water quality regulations
  20. ^ Mitta, Guillaume; Gueguen, Yannick; Destoumieux-Garzόn, Delphine; Roux, Frédérique Le; Boudry, Pierre; Alunno-Bruscia, Marianne; Morga, Benjamin; Régler, Denis; Pérignon, Adeline (2018-10-11). "Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters". Nature Communications. 9 (1): 4215. Bibcode:2018NatCo...9.4215D. doi:10.1038/s41467-018-06659-3. ISSN 2041-1723. PMC 6182001. PMID 30310074.
  21. ^ Gosling, Elizabeth (2015). Marine Bivalve Molluscs (2nd ed.). Wiley. p. 430. ISBN 9780470674949.
  22. ^ a b [3] Nonindigenous aquatic species of concern for Alaska: Pacific oyster fact sheet
  23. ^ Doward, Jamie (9 March 2019). "Trouble in Oysteropolis: Whitstable in uproar over booming fisheries trade". Retrieved 22 March 2019 – via www.theguardian.com.
  24. ^ "Tokyo Olympics: 'Plague of oysters' threatens key venue". BBC News. 2021-07-19. Retrieved 2021-07-24.
  25. ^ Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. (2020). "The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities". Annual Review of Environment and Resources. 45: 83–112. doi:10.1146/annurev-environ-012320-083019.
  26. ^ a b "Aquaculture | MPI – Ministry for Primary Industries. A New Zealand Government Department". Archived from the original on 2011-07-24. Retrieved 2010-09-07. Aquaculture.govt.nz
  27. ^ a b c [4] TeAra: The encyclopaedia of New Zealand
  28. ^ a b [5] Aquaculture.govt.nz: farmed species
  29. ^ a b "Blue Horizon Program Report from Friends of Blue Hill Bay" (PDF). Archived from the original (PDF) on 2011-07-26. Retrieved 2010-09-07. New Zealand Government, Blue Horizon document
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.