Get Our Extension

Metamerism (biology)

From Wikipedia, in a visual modern way
Earthworms are a classic example of biological homonymous metamery – the property of repeating body segments with distinct regions
Earthworms are a classic example of biological homonymous metamery – the property of repeating body segments with distinct regions

In biology, metamerism is the phenomenon of having a linear series of body segments fundamentally similar in structure, though not all such structures are entirely alike in any single life form because some of them perform special functions.[1] In animals, metameric segments are referred to as somites or metameres. In plants, they are referred to as metamers or, more concretely, phytomers.

Discover more about Metamerism (biology) related topics

In animals

In animals, zoologists define metamery as a mesodermal event resulting in serial repetition of unit subdivisions of ectoderm and mesoderm products.[1] Endoderm is not involved in metamery. Segmentation is not the same concept as metamerism: segmentation can be confined only to ectodermally derived tissue, e.g., in the Cestoda tapeworms. Metamerism is far more important biologically since it results in metameres - also called somites - that play a critical role in advanced locomotion.

One can divide metamerism into two main categories:

  • homonomous metamery is a strict serial succession of metameres. It can be grouped into two more classifications known as pseudometamerism and true metamerism. An example of pseudometamerism is in the class Cestoda. The tapeworm is composed of many repeating segments - primarily for reproduction and basic nutrient exchange. Each segment acts independently from the others, which is why it is not considered true metamerism. Another worm, the earthworm in phylum Annelida, can exemplify true metamerism. In each segment of the worm, a repetition of organs and muscle tissue can be found. What differentiates the Annelids from Cestoda is that the segments in the earthworm all work together for the whole organism. It is believed that segmentation evolved for many reasons, including a higher degree of motion. Taking the earthworm, for example: the segmentation of the muscular tissue allows the worm to move in an inching pattern. The circular muscles work to allow the segments to elongate one by one, and the longitudinal muscles then work to shorten the elongated segments. This pattern continues down the entirety of the worm, allowing it to inch along a surface. Each segment is allowed to work independently, but towards the movement of the whole worm.[2]
  • heteronomous metamery is the condition where metameres have grouped together to perform similar tasks. The extreme example of this is the insect head (5 metameres), thorax (3 metameres), and abdomen (11 metameres, not all discernible in all insects). The process that results in the grouping of metameres is called "tagmatization", and each grouping is called a tagma (plural: tagmata). In organisms with highly derived tagmata, such as the insects, much of the metamerism within a tagma may not be trivially distinguishable. It may have to be sought in structures that do not necessarily reflect the grouped metameric function (eg. the ladder nerve system or somites do not reflect the unitary structure of a thorax).
Segments of a crayfish exhibit metamerism
Segments of a crayfish exhibit metamerism

In addition, an animal may be classified as "pseudometameric", meaning that it has clear internal metamerism but no corresponding external metamerism - as is seen, for example, in Monoplacophora.

Humans and other chordates are conspicuous examples of organisms that have metameres intimately grouped into tagmata. In the Chordata the metameres of each tagma are fused to such an extent that few repetitive features are directly visible. Intensive investigation is necessary to discern the metamerism in the tagmata of such organisms. Examples of detectable evidence of vestigially metameric structures include branchial arches and cranial nerves.

Some schemes regard the concept of metamerism as one of the four principles of construction of the human body, common to many animals, along with general bilateral symmetry (or zygomorphism), pachymerism (or tubulation), and stratification.[3] More recent schemes also include three other concepts: segmentation (conceived as different from metamerism), polarity and endocrinosity.[4]

Discover more about In animals related topics

Mesoderm

Mesoderm

The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.

Ectoderm

Ectoderm

The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm and endoderm. It emerges and originates from the outer layer of germ cells. The word ectoderm comes from the Greek ektos meaning "outside", and derma meaning "skin".

Segmentation (biology)

Segmentation (biology)

Segmentation in biology is the division of some animal and plant body plans into a series of repetitive segments. This article focuses on the segmentation of animal body plans, specifically using the examples of the taxa Arthropoda, Chordata, and Annelida. These three groups form segments by using a "growth zone" to direct and define the segments. While all three have a generally segmented body plan and use a growth zone, they use different mechanisms for generating this patterning. Even within these groups, different organisms have different mechanisms for segmenting the body. Segmentation of the body plan is important for allowing free movement and development of certain body parts. It also allows for regeneration in specific individuals.

Terrestrial locomotion

Terrestrial locomotion

Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity.

Cestoda

Cestoda

Cestoda is a class of parasitic worms in the flatworm phylum (Platyhelminthes). Most of the species—and the best-known—are those in the subclass Eucestoda; they are ribbon-like worms as adults, known as tapeworms. Their bodies consist of many similar units known as proglottids—essentially packages of eggs which are regularly shed into the environment to infect other organisms. Species of the other subclass, Cestodaria, are mainly fish infecting parasites.

Head

Head

A head is the part of an organism which usually includes the ears, brain, forehead, cheeks, chin, eyes, nose, and mouth, each of which aid in various sensory functions such as sight, hearing, smell, and taste. Some very simple animals may not have a head, but many bilaterally symmetric forms do, regardless of size.

Abdomen

Abdomen

The abdomen is the part of the body between the thorax (chest) and pelvis, in humans and in other vertebrates. The abdomen is the front part of the abdominal segment of the torso. The area occupied by the abdomen is called the abdominal cavity. In arthropods it is the posterior tagma of the body; it follows the thorax or cephalothorax.

Tagma (biology)

Tagma (biology)

In biology, a tagma is a specialized grouping of multiple segments or metameres into a coherently functional morphological unit. Familiar examples are the head, the thorax, and the abdomen of insects. The segments within a tagma may be either fused or so jointed as to be independently moveable.

Somite

Somite

The somites are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryonic stage of somitogenesis, along the head-to-tail axis in segmented animals. In vertebrates, somites subdivide into the dermatomes, myotomes, sclerotomes and syndetomes that give rise to the vertebrae of the vertebral column, rib cage, part of the occipital bone, skeletal muscle, cartilage, tendons, and skin.

Monoplacophora

Monoplacophora

Monoplacophora, meaning "bearing one plate", is a polyphyletic superclass of molluscs with a cap-like shell inhabiting deep sea environments. Extant representatives were not recognized as such until 1952; previously they were known only from the fossil record, and were thought to have become extinct 375 million years ago.

Chordate

Chordate

A chordate is an animal of the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five synapomorphies, or primary physical characteristics, that distinguish them from all the other taxa. These five synapomorphies include a notochord, dorsal hollow nerve cord, endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name “chordate” comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate structure and movement. Chordates are also bilaterally symmetric, have a coelom, possess a circulatory system, and exhibit metameric segmentation.

Branchial arch

Branchial arch

Branchial arches, or gill arches, are a series of bony "loops" present in fish, which support the gills. As gills are the primitive condition of vertebrates, all vertebrate embryos develop pharyngeal arches, though the eventual fate of these arches varies between taxa. In jawed fish, the first arch develops into the jaws. The second gill arch develops into the hyomandibular complex, which support the back of the jaw and the front of the gill series. The remaining posterior arches support the gills. In amphibians and reptiles, many elements are lost including the gill arches, resulting in only the oral jaws and a hyoid apparatus remaining. In mammals and birds, the hyoid is simplified further.

In plants

A metamer is one of several segments that share in the construction of a shoot, or into which a shoot may be conceptually (at least) resolved.[5] In the metameristic model, a plant consists of a series of 'phytons' or phytomers, each consisting of an internode and its upper node with the attached leaf. As Asa Gray (1850) wrote:[6]

The branch, or simple stem itself, is manifestly an assemblage of similar parts, placed one above another in a continuous series, developed one from another in successive generations. Each one of these joints of stem, bearing its leaf at the apex, is a plant element; or as we term it a phyton,—a potential plant, having all the organs of vegetation, namely, stem, leaf, and in its downward development even a root, or its equivalent. This view of the composition of the plant, though by no means a new one, has not been duly appreciated. I deem it essential to a correct philosophical understanding of the plant.

Some plants, particularly grasses, demonstrate a rather clear metameric construction, but many others either lack discrete modules or their presence is more arguable.[5] Phyton theory has been criticized as an over-ingenious, academic conception which bears little relation to reality.[7] Eames (1961) concluded that "concepts of the shoot as consisting of a series of structural units have been obscured by the dominance of the stem- and leaf-theory. Anatomical units like these do not exist: the shoot is the basic unit."[8] Even so, others still consider comparative study along the length of the metameric organism to be a fundamental aspect of plant morphology.[9]

Metameric conceptions generally segment the vegetative axis into repeating units along its length, but constructs based on other divisions are possible.[5] The pipe model theory conceives of the plant (especially trees) as made up of unit pipes ('metamers'), each supporting a unit amount of photosynthetic tissue.[10] Vertical metamers are also suggested in some desert shrubs in which the stem is modified into isolated strips of xylem, each having continuity from root to shoot.[5] This may enable the plant to abscise a large part of its shoot system in response to drought, without damaging the remaining part.

In vascular plants, the shoot system differs fundamentally from the root system in that the former shows a metameric construction (repeated units of organs; stem, leaf, and inflorescence), while the latter does not. The plant embryo represents the first metamer of the shoot in spermatophytes or seed plants.

Plants (especially trees) are considered to have a 'modular construction,' a module being an axis in which the entire sequence of aerial differentiation is carried out from the initiation of the meristem to the onset of sexuality (e.g. flower or cone development) which completes its development.[5] These modules are considered to be developmental units, not necessarily structural.

Discover more about In plants related topics

Shoot

Shoot

In botany, a plant shoot consists of any plant stem together with its appendages, leaves and lateral buds, flowering stems, and flower buds. The new growth from seed germination that grows upward is a shoot where leaves will develop. In the spring, perennial plant shoots are the new growth that grows from the ground in herbaceous plants or the new stem or flower growth that grows on woody plants.

Phytomer

Phytomer

Phytomers are functional units of a plant, continually produced by root and shoot meristems throughout a plant's vegetative life-cycle.. Increases in a phytomer can be measured using the rate of phyllochron. Related to the phyllochron is the plastochron, which is the rate of leaf primordia initiation. Since many more leaf primordia are initiated than leaves develop, the plastochron develops at a much faster rate as the phyllochron.

Asa Gray

Asa Gray

Asa Gray is considered the most important American botanist of the 19th century. His Darwiniana was considered an important explanation of how religion and science were not necessarily mutually exclusive. Gray was adamant that a genetic connection must exist between all members of a species. He was also strongly opposed to the ideas of hybridization within one generation and special creation in the sense of its not allowing for evolution. He was a strong supporter of Darwin, although Gray's theistic evolution was guided by a Creator.

Plant morphology

Plant morphology

Phytomorphology is the study of the physical form and external structure of plants. This is usually considered distinct from plant anatomy, which is the study of the internal structure of plants, especially at the microscopic level. Plant morphology is useful in the visual identification of plants. Recent studies in molecular biology started to investigate the molecular processes involved in determining the conservation and diversification of plant morphologies. In these studies transcriptome conservation patterns were found to mark crucial ontogenetic transitions during the plant life cycle which may result in evolutionary constraints limiting diversification.

Xylem

Xylem

Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word xylem is derived from the Ancient Greek word ξύλον (xylon), meaning "wood"; the best-known xylem tissue is wood, though it is found throughout a plant. The term was introduced by Carl Nägeli in 1858.

Vascular plant

Vascular plant

Vascular plants, also called tracheophytes or collectively Tracheophyta, form a large group of land plants that have lignified tissues for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue to conduct products of photosynthesis. Vascular plants include the clubmosses, horsetails, ferns, gymnosperms, and angiosperms. Scientific names for the group include Tracheophyta, Tracheobionta and Equisetopsida sensu lato. Some early land plants had less developed vascular tissue; the term eutracheophyte has been used for all other vascular plants, including all living ones.

Spermatophyte

Spermatophyte

A spermatophyte, also known as phanerogam or phaenogam, is any plant that produces seeds, hence the alternative name seed plant. Spermatophytes are a subset of the embryophytes or land plants. They include most familiar types of plants, including all flowers and most trees, but exclude some other types of plants such as ferns, mosses, algae.

Modularity

Modularity

Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a system into varying degrees of interdependence and independence across and "hide the complexity of each part behind an abstraction and interface". However, the concept of modularity can be extended to multiple disciplines, each with their own nuances. Despite these nuances, consistent themes concerning modular systems can be identified.

Source: "Metamerism (biology)", Wikipedia, Wikimedia Foundation, (2022, January 9th), https://en.wikipedia.org/wiki/Metamerism_(biology).

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ a b Shull, Franklin; George Roger Larue; Alexander Grant Ruthven (1920). Principles of Animal Biology. McGraw-Hill book company. p. 108.
  2. ^ Chandra, Dr. Girish. "Metamerism". http://www.iaszoology.com/metamerism/
  3. ^ DiDio, L.J.A. Synopsis of Anatomy. Saint Louis, C.V.Mosby, 1970.
  4. ^ DiDio, L.J.A. (1989). Anatomico-surgical segmentation as a principle of construction of the human body and its clinical applications. Anat. Anz. (Suppl.) 164:737–743.
  5. ^ a b c d e White, J. 1979. The plant as a metapopulation. Annual Review of Ecology and Systematics 10:109–145.
  6. ^ Gray, A. 1850. On the composition of the plant by phytons, and some applications of phyllotaxis. Proceedings of the American Association for the Advancement of Science 2:438–444.
  7. ^ Arber, A. 1930. Root and shoot in the angiosperms: a study of morphological categories. New Phytologist 29(5):297–315.
  8. ^ Eames, A.J.Chutiya 1961. Morphology of the Angiosperms. McGraw-Hill, New York.
  9. ^ Kaplan, D.R. 2001. The science of plant morphology: Definition, history, and role in modern biology. American Journal of Botany 88(10):1711–1741.
  10. ^ Shinozaki, I., Yoda, K. Hozumi, K., and Kira, T. 1964. A quantitative analysis of plant form —the pipe model theory. I. basic analyses. Japanese Journal of Ecology 14:97–105.

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.