Get Our Extension

Liquid nitrogen engine

From Wikipedia, in a visual modern way

A liquid nitrogen vehicle is powered by liquid nitrogen, which is stored in a tank. Traditional nitrogen engine designs work by heating the liquid nitrogen in a heat exchanger, extracting heat from the ambient air and using the resulting pressurized gas to operate a piston or rotary motor. Vehicles propelled by liquid nitrogen have been demonstrated, but are not used commercially. One such vehicle, Liquid Air, was demonstrated in 1902.

Liquid nitrogen propulsion may also be incorporated in hybrid systems, e.g., battery electric propulsion and fuel tanks to recharge the batteries. This kind of system is called a hybrid liquid nitrogen-electric propulsion. Additionally, regenerative braking can also be used in conjunction with this system.

One advantage of the liquid nitrogen vehicle is that the exhaust gas is simply nitrogen, a component of air, and thus it produces no localized air pollution in the tailpipe emissions. This does not make it completely pollution free, since energy had been required to liquify the nitrogen in the first place, but that liquification process can be remote from the vehicle operation, and could in principle be powered by a renewable energy or clean energy source.

Discover more about Liquid nitrogen engine related topics

Liquid nitrogen

Liquid nitrogen

Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about −195.8 °C (−320 °F; 77 K). It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is widely used as a coolant.

Heat exchanger

Heat exchanger

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.

Liquid Air

Liquid Air

Liquid Air was the marque of an automobile planned by Liquid Air Power and Automobile Co. of Boston and New York City in 1899.

Regenerative braking

Regenerative braking

Regenerative braking is an energy recovery mechanism that slows down a moving vehicle or object by converting its kinetic energy into a form that can be either used immediately or stored until needed. In this mechanism, the electric traction motor uses the vehicle's momentum to recover energy that would otherwise be lost to the brake discs as heat. This method contrasts with conventional braking systems. In those systems, the excess kinetic energy is converted to unwanted and wasted heat due to friction in the brakes, or with rheostatic brakes, where the energy is recovered by using electric motors as generators but is immediately dissipated as heat in resistors. In addition to improving the overall efficiency of the vehicle, regeneration can significantly extend the life of the braking system as the mechanical parts will not wear out quickly.

Exhaust gas

Exhaust gas

Exhaust gas or flue gas is emitted as a result of the combustion of fuels such as natural gas, gasoline (petrol), diesel fuel, fuel oil, biodiesel blends, or coal. According to the type of engine, it is discharged into the atmosphere through an exhaust pipe, flue gas stack, or propelling nozzle. It often disperses downwind in a pattern called an exhaust plume.

Air pollution

Air pollution

Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of indoor or outdoor surrounding either by chemical activities, physical or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases, particulates, and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and food crops, and may damage the natural environment or built environment. Air pollution can be caused by both human activities and natural phenomena.

Renewable energy

Renewable energy

Renewable energy is energy from renewable resources that are naturally replenished on a human timescale. Renewable resources include sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy sources are sustainable, some are not. For example, some biomass sources are considered unsustainable at current rates of exploitation. Renewable energy is often used for electricity generation, heating and cooling. Renewable energy projects are typically large-scale, but they are also suited to rural and remote areas and developing countries, where energy is often crucial in human development. Renewable energy is often deployed together with further electrification, which has several benefits: electricity can move heat or objects efficiently, and is clean at the point of consumption. In addition, electrification with renewable energy is more efficient and therefore leads to significant reductions in primary energy requirements.

Sustainable energy

Sustainable energy

Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Most definitions of sustainable energy include considerations of environmental aspects such as greenhouse gas emissions and social and economic aspects such as energy poverty. Renewable energy sources such as wind, hydroelectric power, solar, and geothermal energy are generally far more sustainable than fossil fuel sources. However, some renewable energy projects, such as the clearing of forests to produce biofuels, can cause severe environmental damage. The role of non-renewable energy sources in sustainable energy has been controversial. Nuclear power is a low-carbon source whose historic mortality rates are comparable to those of wind and solar, but its sustainability has been debated because of concerns about radioactive waste, nuclear proliferation, and accidents. Switching from coal to natural gas has environmental benefits, including a lower climate impact, but may lead to a delay in switching to more sustainable options. Carbon capture and storage can be built into power plants to remove their carbon dioxide emissions, but this technology is expensive and has rarely been implemented.

Description

Liquid nitrogen is generated by cryogenic or reversed Stirling engine[1][2][3] coolers that liquefy the main component of air, nitrogen (N2). The cooler can be powered by electricity or through direct mechanical work from hydro or wind turbines. Liquid nitrogen is distributed and stored in insulated containers. The insulation reduces heat flow into the stored nitrogen; this is necessary because heat from the surrounding environment boils the liquid, which then transitions to a gaseous state. Reducing inflowing heat reduces the loss of liquid nitrogen in storage. The requirements of storage prevent the use of pipelines as a means of transport. Since long-distance pipelines would be costly due to the insulation requirements, it would be costly to use distant energy sources for production of liquid nitrogen. Petroleum reserves are typically a vast distance from consumption but can be transferred at ambient temperatures.

Liquid nitrogen consumption is in essence production in reverse. The Stirling engine or cryogenic heat engine offers a way to power vehicles and a means to generate electricity. Liquid nitrogen can also serve as a direct coolant for refrigerators, electrical equipment and air conditioning units. The consumption of liquid nitrogen is in effect boiling and returning the nitrogen to the atmosphere.

In the Dearman Engine the nitrogen is heated by combining it with the heat exchange fluid inside the cylinder of the engine.[4][5]

In 2008, the US Patent Office granted a patent on a liquid nitrogen powered turbine engine.[6] The turbine flash-expands liquid nitrogen that is sprayed into the high-pressure section of the turbine, and the expanding gas is combined with incoming pressurized air to produce a high-velocity stream of gas that is ejected from the back of the turbine. The resulting gas stream can be used to drive generators or other devices. The system has not been demonstrated to power electric generators of greater than 1 kW,[7] however higher output may be possible.

Carnot Cycle

Although the liquid nitrogen is colder than the ambient temperature, the liquid nitrogen engine is nevertheless an example of a heat engine. A heat engine runs by extracting thermal energy from the temperature difference between a hot and a cold reservoir; in the case of the liquid nitrogen engine, the "hot" reservoir is the air in the ambient ("room temperature") surroundings, which is used to boil the nitrogen.

As such, the nitrogen engine is extracting energy from the thermal energy of the air, and the conversion efficiency with which it converts energy can be calculated from the laws of thermodynamics using Carnot efficiency equation, which applies to all heat engines.

Tanks

The tanks to store the liquid nitrogen must be designed to safety standards appropriate for a pressure vessel, such as ISO 11439.[8]

Liquid nitrogen tank (Izmir, Turkey)
Liquid nitrogen tank (Izmir, Turkey)

The storage tank may be made of:

The fiber materials are considerably lighter than metals but generally more expensive. Metal tanks can withstand a large number of pressure cycles, but must be checked for corrosion periodically. Liquid nitrogen, LN2, is commonly transported in insulated tanks, up to 50 litres, at atmospheric pressure. These tanks, being non-pressurized tanks, are not subject to inspection. Very large tanks for LN2 are sometimes pressurized to less than 25 psi to aid in transferring the liquid at point of use.

Discover more about Description related topics

Cryocooler

Cryocooler

A refrigerator designed to reach cryogenic temperatures is often called a cryocooler. The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have input powers as low as 2–3 W. Large systems, such as those used for cooling the superconducting magnets in particle accelerators are more often called cryogenic refrigerators. Their input powers can be as high as 1 MW. In most cases cryocoolers use a cryogenic fluid as the working substance and employ moving parts to cycle the fluid around a thermodynamic cycle. The fluid is typically compressed at room temperature, precooled in a heat exchanger, then expanded at some low temperature. The returning low-pressure fluid passes through the heat exchanger to precool the high-pressure fluid before entering the compressor intake. The cycle is then repeated.

Stirling engine

Stirling engine

A Stirling engine is a heat engine that is operated by the cyclic compression and expansion of air or other gas between different temperatures, resulting in a net conversion of heat energy to mechanical work.

Nitrogen

Nitrogen

Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element. Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins), in the nucleic acids (DNA and RNA) and in the energy transfer molecule adenosine triphosphate. The human body contains about 3% nitrogen by mass, the fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes the movement of the element from the air, into the biosphere and organic compounds, then back into the atmosphere.

Hydroelectricity

Hydroelectricity

Hydroelectricity, or hydroelectric power, is electricity generated from hydropower. Hydropower supplies one sixth of the world's electricity, almost 4500 TWh in 2020, which is more than all other renewable sources combined and also more than nuclear power. Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems. A hydroelectric power station that has a dam and reservoir is a flexible source, since the amount of electricity produced can be increased or decreased in seconds or minutes in response to varying electricity demand. Once a hydroelectric complex is constructed, it produces no direct waste, and almost always emits considerably less greenhouse gas than fossil fuel-powered energy plants. However, when constructed in lowland rainforest areas, where part of the forest is inundated, substantial amounts of greenhouse gases may be emitted.

Wind turbine

Wind turbine

A wind turbine is a device that converts the kinetic energy of wind into electrical energy. As of 2020, hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels. One study claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and the most favorable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas energy sources.

Vacuum flask

Vacuum flask

A vacuum flask is an insulating storage vessel that greatly lengthens the time over which its contents remain hotter or cooler than the flask's surroundings. Invented by Sir James Dewar in 1892, the vacuum flask consists of two flasks, placed one within the other and joined at the neck. The gap between the two flasks is partially evacuated of air, creating a near-vacuum which significantly reduces heat transfer by conduction or convection. When used to hold cold liquids, this also virtually eliminates condensation on the outside of the flask.

Air conditioning

Air conditioning

Air conditioning, often abbreviated as A/C (US), AC (US), or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior environment and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical 'air conditioner' or alternatively a variety of other methods, including passive cooling or ventilative cooling. Air conditioning is a member of a family of systems and techniques that provide heating, ventilation, and air conditioning (HVAC). Heat pumps are similar in many ways to air conditioners, but use a reversing valve to allow them to heat and also cool an enclosed space.

Heat engine

Heat engine

In thermodynamics and engineering, a heat engine is a system that converts heat to usable energy, particularly mechanical energy, which can then be used to do mechanical work. While originally conceived in the context of mechanical energy, the concept of the heat engine has been applied to various other kinds of energy, particularly electrical, since at least the late 19th century. The heat engine does this by bringing a working substance from a higher state temperature to a lower state temperature. A heat source generates thermal energy that brings the working substance to the higher temperature state. The working substance generates work in the working body of the engine while transferring heat to the colder sink until it reaches a lower temperature state. During this process some of the thermal energy is converted into work by exploiting the properties of the working substance. The working substance can be any system with a non-zero heat capacity, but it usually is a gas or liquid. During this process, some heat is normally lost to the surroundings and is not converted to work. Also, some energy is unusable because of friction and drag.

Laws of thermodynamics

Laws of thermodynamics

The laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships between them. They state empirical facts that form a basis of precluding the possibility of certain phenomena, such as perpetual motion. In addition to their use in thermodynamics, they are important fundamental laws of physics in general, and are applicable in other natural sciences.

Pressure vessel

Pressure vessel

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

Steel

Steel

Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant typically need an additional 11% chromium. Because of its high tensile strength and low cost, steel is used in buildings, infrastructure, tools, ships, trains, cars, machines, electrical appliances, and weapons.

Aluminium

Aluminium

Aluminium is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It has a great affinity towards oxygen, and forms a protective layer of oxide on the surface when exposed to air. Aluminium visually resembles silver, both in its color and in its great ability to reflect light. It is soft, non-magnetic and ductile. It has one stable isotope, 27Al; this isotope is very common, making aluminium the twelfth most common element in the Universe. The radioactivity of 26Al is used in radiodating.

Liquid nitrogen vehicles

A vehicle propelled by liquid nitrogen, the Liquid Air, was demonstrated in 1902.

In June 2016 trials will begin in London, UK on supermarket J. Sainsbury's fleet of food delivery vehicles: using a Dearman nitrogen engine to provide power for the cooling of food cargo when the vehicle is stationary and the main engine is off. Currently delivery lorries mostly have second smaller diesel engines to power cooling when the main engine is off.[9]

Emission output

Like other non-combustion energy storage technologies, a liquid nitrogen vehicle displaces the emission source from the vehicle's tail pipe to the central electrical generating plant. Where emissions-free sources are available, net production of pollutants can be reduced. Emission control measures at a central generating plant may be more effective and less costly than treating the emissions of widely dispersed vehicles.

Advantages

Liquid nitrogen vehicles are comparable in many ways to electric vehicles, but use liquid nitrogen to store the energy instead of batteries. Their potential advantages over other vehicles include:

  • Much like electrical vehicles, liquid nitrogen vehicles would ultimately be powered through the electrical grid, which makes it easier to focus on reducing pollution from one source, as opposed to the millions of vehicles on the road.
  • Transportation of the fuel would not be required due to drawing power off the electrical grid. This presents significant cost benefits. Pollution created during fuel transportation would be eliminated.
  • Lower maintenance costs
  • Liquid nitrogen tanks can be disposed of or recycled with less pollution than batteries.
  • Liquid nitrogen vehicles are unconstrained by the degradation problems associated with current battery systems.
  • The tank may be able to be refilled more often and in less time than batteries can be recharged, with re-fueling rates comparable to liquid fuels.
  • It can work as part of a combined cycle powertrain in conjunction with a petrol or diesel engine, using the waste heat from one to run the other in a turbocompound system. It can even run as a hybrid system.

Disadvantages

The principal disadvantage is the inefficient use of primary energy. Energy is used to liquefy nitrogen, which in turn provides the energy to run the motor. Any conversion of energy has losses. For liquid nitrogen cars, electrical energy is lost during the liquefaction process of nitrogen.

Liquid nitrogen is not available in public refueling stations; however, there are distribution systems in place at most welding gas suppliers and liquid nitrogen is an abundant by-product of liquid oxygen production.

Discover more about Liquid nitrogen vehicles related topics

Criticisms

Cost of production

Liquid nitrogen production is an energy-intensive process. Currently practical refrigeration plants producing a few tons/day of liquid nitrogen operate at about 50% of Carnot efficiency.[10] Currently surplus liquid nitrogen is produced as a byproduct in the production of liquid oxygen.[4]

Energy density of liquid nitrogen

Any process that relies on a phase-change of a substance will have much lower energy densities than processes involving a chemical reaction in a substance, which in turn have lower energy densities than nuclear reactions. Liquid nitrogen as an energy store has a low energy density. Liquid hydrocarbon fuels, by comparison, have a high energy density. A high energy density makes the logistics of transport and storage more convenient. Convenience is an important factor in consumer acceptance. The convenient storage of petroleum fuels combined with its low cost has led to an unrivaled success. In addition, a petroleum fuel is a primary energy source, not just an energy storage and transport medium.

The energy density—derived from nitrogen's isobaric heat of vaporization and specific heat in gaseous state—that can theoretically be realised from liquid nitrogen at atmospheric pressure and 27 °C ambient temperature is about 213 watt-hours per kilogram (W·h/kg), while typically only 97 W·h/kg can be achieved under realistic circumstances. This compares with 100–250 W·h/kg for a lithium-ion battery and 3,000 W·h/kg for a gasoline combustion engine running at 28% thermal efficiency, 14 times the density of liquid nitrogen used at the Carnot efficiency.[11]

For an isothermal expansion engine to have a range comparable to an internal combustion engine, a 350-litre (92 US gal) insulated onboard storage vessel is required.[11] A practical volume, but a noticeable increase over the typical 50-litre (13 US gal) gasoline tank. The addition of more complex power cycles would reduce this requirement and help enable frost free operation. However, no commercially practical instances of liquid nitrogen use for vehicle propulsion exist.

Frost formation

Unlike internal combustion engines, using a cryogenic working fluid requires heat exchangers to warm and cool the working fluid. In a humid environment, frost formation will prevent heat flow and thus represents an engineering challenge. To prevent frost build up, multiple working fluids can be used. This adds topping cycles to ensure the heat exchanger does not fall below freezing. Additional heat exchangers, weight, complexity, efficiency loss, and expense, would be required to enable frost free operation.[11]

Safety

However efficient the insulation on the nitrogen fuel tank, there will inevitably be losses by evaporation to the atmosphere. If a vehicle is stored in a poorly ventilated space, there is some risk that leaking nitrogen could reduce the oxygen concentration in the air and cause asphyxiation. Since nitrogen is a colorless and odourless gas that already makes up 78 per cent of air, such a change would be difficult to detect.

Cryogenic liquids are hazardous if spilled. Liquid nitrogen can cause frostbite and can make some materials extremely brittle.

As liquid nitrogen is colder than 90.2K, oxygen from the atmosphere can condense. Liquid oxygen can spontaneously and violently react with organic chemicals, including petroleum products like asphalt.[12]

Since the liquid to gas expansion ratio of this substance is 1:694, a tremendous amount of force can be generated if liquid nitrogen is rapidly vaporized. In an incident in 2006 at Texas A&M University, the pressure-relief devices of a tank of liquid nitrogen were sealed with brass plugs. As a result, the tank failed catastrophically, and exploded.[13]

Discover more about Criticisms related topics

Carnot heat engine

Carnot heat engine

A Carnot heat engine is a heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857, work that led to the fundamental thermodynamic concept of entropy. The Carnot engine is the most efficient heat engine which is theoretically possible. The efficiency depends only upon the absolute temperatures of the hot and cold heat reservoirs between which it operates.

Liquid oxygen

Liquid oxygen

Liquid oxygen—abbreviated LOx, LOX or Lox in the aerospace, submarine and gas industries—is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an application which has continued to the present.

Energy density

Energy density

In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or gravimetric energy density.

Lithium-ion battery

Lithium-ion battery

A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. The anode of a conventional lithium-ion cell is typically graphite made from carbon. The cathode is typically a metal oxide. The electrolyte is typically a lithium salt in an organic solvent.

Internal combustion engine

Internal combustion engine

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. This replaced the external combustion engine for applications where the weight or size of an engine were more important.

Frostbite

Frostbite

Frostbite is a skin injury that occurs when exposed to extreme low temperatures, causing the freezing of the skin or other tissues, commonly affecting the fingers, toes, nose, ears, cheeks and chin areas. Most often, frostbite occurs in the hands and feet. The initial symptoms are typically a feeling of cold and tingling or numbing. This may be followed by clumsiness with a white or bluish color to the skin. Swelling or blistering may occur following treatment. Complications may include hypothermia or compartment syndrome.

Expansion ratio

Expansion ratio

The expansion ratio of a liquefied and cryogenic substance is the volume of a given amount of that substance in liquid form compared to the volume of the same amount of substance in gaseous form, at room temperature and normal atmospheric pressure.

Texas A&M University

Texas A&M University

Texas A&M University is a public, land-grant, research university in College Station, Texas. It was founded in 1876 and became the flagship institution of the Texas A&M University System in 1948. Since 2021, Texas A&M has enrolled the largest student body in the United States, and the only university in Texas to hold simultaneous designations as a land-, sea-, and space-grant institution. It is classified among "R1: Doctoral Universities – Very high research activity" and a member of the Association of American Universities.

Source: "Liquid nitrogen engine", Wikipedia, Wikimedia Foundation, (2022, December 7th), https://en.wikipedia.org/wiki/Liquid_nitrogen_engine.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

Further reading
  • C.A. Ordonez, M.C. Plummer, R.F. Reidy "Cryogenic Heat Engines for Powering Zero Emission Vehicles", Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, November 11–16, 2001, New York, NY.
  • Kleppe J.A., Schneider R.N., “A Nitrogen Economy”, Winter Meeting ASEE, Honolulu, HI, December, 1974.
  • Gordon J. Van Wylen and Richard F. Sontag, Fundamentals of Classical Thermodynamics SI Version 2nd Ed.
References
  1. ^ Balmer, Robert T. (2011). "14.15 Reversed Stirling Cycle Refrigeration". Modern Engineering Thermodynamics. Academic Press. ISBN 978-0-12-374996-3.
  2. ^ "Our History".
  3. ^ "Stirling Cryogenics - Cryogenic and cryogenerator engineers". Archived from the original on 2013-02-03. Retrieved 2013-02-11. Commercial Stirling engine cooling
  4. ^ a b Raili Leino (2012-10-22). "Mullistava idea: Tulevaisuuden auto voi kulkea typpimoottorilla". Tekniikka&Talous (in Finnish). Archived from the original on 2013-09-01. Retrieved 2012-10-22.
  5. ^ "The Technology". Dearman Engine Company. 2012. Archived from the original on 2012-10-22.
  6. ^ Reyes, De Reyes, Edward (25 Jun 2013), Liquid nitrogen engine, retrieved 2016-11-18
  7. ^ "LN2 Turbine - Clean, Green Energy". www.nitroturbodyne.com. Retrieved 2016-11-18.
  8. ^ "ISO 11439:2000". ISO.
  9. ^ "Sainsbury's trials Dearman's world-leading cooling technology". Innovate UK.
  10. ^ J. Franz, C.A. Ordonez, A. Carlos, Cryogenic Heat Engines Made Using Electrocaloric Capacitors, American Physical Society, Texas Section Fall Meeting, October 4–6, 2001 Fort Worth, Texas Meeting ID: TSF01, abstract #EC.009, 10/2001. Bibcode:2001APS..TSF.EC009F
  11. ^ a b c Knowlen, C.; Mattick, A. T.; Bruckner, A. P.; Hertzberg, A. (1998-08-11). "High Efficiency Energy Conversion Systems for Liquid Nitrogen Automobiles" (PDF). Society of Automotive Engineers. SAE Technical Paper Series. Warrendale, PA. 1. doi:10.4271/981898. Archived from the original (PDF) on 2003-04-24 – via University of Washington College of Engineering.
  12. ^ Werley, Barry L. (Edtr.) (1991). "Fire Hazards in Oxygen Systems". ASTM Technical Professional training. Philadelphia: ASTM International Subcommittee G-4.05.
  13. ^ Brent S. Mattox. "Investigative Report on Chemistry 301A Cylinder Explosion" (PDF). Texas A&M University. Archived from the original (reprint) on 2008-10-31.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.