Get Our Extension

Limpet

From Wikipedia, in a visual modern way
The true limpet species Patella vulgata on a rock surface in Wales
The true limpet species Patella vulgata on a rock surface in Wales
Underside of a Patella vulgata specimen
Underside of a Patella vulgata specimen

Limpets are a group of aquatic snails that exhibit a conical shell shape (patelliform) and a strong, muscular foot. Limpets are members of the class Gastropoda, but are polyphyletic, meaning the various groups called "limpets" descended independently from different ancestral gastropods. This general category of conical shell is known as "patelliform" (dish-shaped).[1] All members of the large and ancient marine clade Patellogastropoda are limpets. Within that clade, the members of the Patellidae family in particular are often referred to as "true limpets".

Other groups, not in the same family, are also called limpets of one type or another, due to the similarity of their shells' shape. Examples include the Fissurellidae ("keyhole limpet") family, which is part of the Vetigastropoda clade (many other members of the Vetigastropoda do not have the morphology of limpets) and the Siphonariidae ("false limpets"), which use a siphon to pump water over their gills.

Discover more about Limpet related topics

Gastropod shell

Gastropod shell

The gastropod shell is part of the body of a gastropod or snail, a kind of mollusc. The shell is an exoskeleton, which protects from predators, mechanical damage, and dehydration, but also serves for muscle attachment and calcium storage. Some gastropods appear shell-less (slugs) but may have a remnant within the mantle, or in some cases the shell is reduced such that the body cannot be retracted within it (semi-slug). Some snails also possess an operculum that seals the opening of the shell, known as the aperture, which provides further protection. The study of mollusc shells is known as conchology. The biological study of gastropods, and other molluscs in general, is malacology. Shell morphology terms vary by species group.

Gastropoda

Gastropoda

The gastropods, commonly known as slugs and snails, belong to a large taxonomic class of invertebrates within the phylum Mollusca called Gastropoda.

Clade

Clade

In biological phylogenetics, a clade, also known as a monophyletic group or natural group, is a grouping of organisms that are monophyletic – that is, composed of a common ancestor and all its lineal descendants – on a phylogenetic tree. In the taxonomical literature, sometimes the Latin form cladus is used rather than the English form.

Patellogastropoda

Patellogastropoda

The Patellogastropoda, common name true limpets and historically called the Docoglossa, are members of a major phylogenetic group of marine gastropods, treated by experts either as a clade or as a taxonomic order.

Patellidae

Patellidae

Patellidae is a taxonomic family of sea snails or true limpets, marine gastropod molluscs in the clade Patellogastropoda.

Fissurellidae

Fissurellidae

Fissurellidae, common name the keyhole limpets and slit limpets, is a taxonomic family of limpet-like sea snails, marine gastropod molluscs in the clade Vetigastropoda. Their common name derives from the small hole in the apex of their cone-like shells. Although superficially resembling "true" limpets, they are in fact not closely related to them.

Vetigastropoda

Vetigastropoda

Vetigastropoda is a major taxonomic group of sea snails, marine gastropod mollusks that form a very ancient lineage. Taxonomically the Vetigastropoda are sometimes treated as an order, although they are treated as an unranked clade in Bouchet and Rocroi, 2005.

Morphology (biology)

Morphology (biology)

Morphology is a branch of biology dealing with the study of the form and structure of organisms and their specific structural features.

Siphonariidae

Siphonariidae

Siphonariidae, also known as false limpets, are a taxonomic family of small to medium-sized air-breathing sea snails, marine and brackish water pulmonate gastropod molluscs.

Behaviour and ecology

Anatomy

The basic anatomy of a limpet consists of the usual molluscan organs and systems:

  • A nervous system centered around the paired cerebral, pedal, and pleural sets of ganglia. These ganglia create a ring around the limpet's esophagus called a circumesophageal nerve ring or nerve collar. Other nerves in the head/ snout are the optic nerves which connect to the two eye spots located at the base of the cerebral tentacles (these eyespots, when present, are only able to sense light and darkness and do not provide any imagery), as well as the labial and buccal ganglia which are associated with feeding and controlling the animal's odontophore, the muscular cushion used to support the limpet's radula (a kind of tongue) that scrapes algae off the surrounding rock for nutrition. Behind these ganglia lie the pedal nerve cords which control the movement of the foot, and the visceral ganglion which in limpets has been torted during the course of evolution. This means, among other things, that the limpet's left osphradium and oshradial ganglion (an organ believed used to sense the time to produce gametes) is controlled by its right pleural ganglion and vice versa.[2]
  • For most limpets, the circulatory system is based around a single triangular three-chambered heart consisting of an atrium, a ventricle, and a bulbous aorta. Blood enters the atrium via the circumpallial vein (after being oxygenated by the ring of gills located around the edge of the shell) and through a series of small vesicles that deliver more oxygenated blood from the nuchal cavity (the area above the head and neck). Many limpets still retain a ctenidium (sometimes two) in this nuchal chamber instead of the circumpallial gills as a means for exchanging oxygen and carbon dioxide with the surrounding water or air (many limpets can breathe air during periods of low tide, but those limpet species which never leave the water do not have this ability and will suffocate if deprived of water). Blood moves from the atrium into the ventricle and into the aorta where it is then pumped out to the various lacunar blood spaces / sinuses in the hemocoel. The odontophore may play a large role in assisting with blood circulation as well.

The two kidneys are very different in size and location. This is a result of torsion. The left kidney is diminutive and in most limpets is barely functional. The right kidney, however, has taken over the majority of blood filtration and often extends over and around the entire mantle of the animal in a thin, almost-invisible layer.[2]

  • The digestive system is extensive and takes up a large part of the animal's body. Food (algae) is collected by the radula and odontophore and enters via the downward-facing mouth. It then moves through the esophagus and into the numerous loops of the intestines. The large digestive gland helps break down the microscopic plant material, and the long rectum helps compact used food which is then excreted through the anus located in the nuchal cavity. The anus of most molluscs and indeed many animals is located far from the head. In limpets and most gastropods, however, the evolutionary torsion which took place and allowed the gastropods to have a shell into which they could completely withdraw has caused the anus to be located near the head. Used food would quickly foul the nuchal cavity unless it was firmly compacted prior to being excreted. The torted condition of the limpets remains even though they no longer have a shell into which they can withdraw and even though the evolutionary advantages of torsion appear to therefore be negligible (some species of gastropod have subsequently de-torted and now have their anus located once again at the posterior end of the body; these groups no longer have a visceral twist to their nervous systems).[2]
  • The gonad of a limpet is located beneath its digestive system just above its foot. It swells and eventually bursts, sending gametes into the right kidney which then releases them into the surrounding water on a regular schedule. Fertilized eggs hatch and the floating veliger larvae are free-swimming for a period before settling to the bottom and becoming an adult animal.[2]
Detailed anatomy of Patella vulgata, a common limpet
Detailed anatomy of Patella vulgata, a common limpet

True limpets in the family Patellidae live on hard surfaces in the intertidal zone. Unlike barnacles (which are not molluscs but may resemble limpets in appearance) and mussels (which are bivalve molluscs that cement themselves to a substrate for their entire adult lives), limpets are capable of locomotion instead of being permanently attached to a single spot. However, when they need to resist strong wave action or other disturbances, limpets cling extremely firmly to the surfaces on which they live, using their muscular foot to apply suction combined with the effect of adhesive mucus. It often is very difficult to remove a true limpet from a rock without injuring or killing it.

All "true" limpets are marine. The most primitive group have one pair of gills, in others only a single gill remains, the lepetids do not have any gills at all, while the patellids have evolved secondary gills as they have lost the original pair.[3] However, because the adaptive feature of a simple conical shell has repeatedly arisen independently in gastropod evolution, limpets from many different evolutionary lineages occur in widely different environments. Some saltwater limpets such as Trimusculidae breathe air, and some freshwater limpets are descendants of air-breathing land snails (e.g. the genus Ancylus) whose ancestors had a pallial cavity serving as a lung. In these small freshwater limpets, that "lung" underwent secondary adaptation to allow the absorption of dissolved oxygen from water.

Symbiosis

Limpets have a mutualistic relationship with several other beings. Clathromorphum, a type of algae, provides food to limpets, which clean the algae's surface and allow its persistence.[4]

The rough keyhole limpet (Diodora aspera) is host to the scale worm copepod Anthessius nortoni, which bites predatory starfish to discourage them from eating the limpet.[4]

Homescars

Limpet Homescar found at the Bay of Skaill
Limpet Homescar found at the Bay of Skaill

Limpets wander over the surface of the rocks during high tide and tend to return to their favourite spot by following a trail of mucus left whilst grazing. Over a period of time the edges of the limpet's shell wear a shallow hollow in the rock called a homescar. The homescar helps the limpet to stay attached to the rock and not to dry out during low tide periods.

Bio-erosion

Limpets are known to cause bio-erosion on sedimentary rocks by the formation of homescars and by ingesting tiny particles of rock through the action of feeding. C.Andrews & R.B.G. Williams [5] in their research paper titled Limpet erosion of chalk shore platforms in southeast England from Oct 2000 estimate from the amount of calcium carbonate deposits in faeces of captive limpets, that an adult limpet will ingest around 4.9 g of chalk per year. Suggesting that limpets are on average responsible for 12% of the chalk platform erosion in areas that they frequent, potentially rising to 35% + in areas where the limpet population has reached its maximum.

Discover more about Behaviour and ecology related topics

Brain

Brain

A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons, and the estimated number of neurons in the cerebellum is 55–70 billion. Each neuron is connected by synapses to several thousand other neurons. These neurons typically communicate with one another by means of long fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body targeting specific recipient cells.

Foot

Foot

The foot is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made up of one or more segments or bones, generally including claws and or nails.

Ganglion

Ganglion

A ganglion is a group of neuron cell bodies in the peripheral nervous system. In the somatic nervous system this includes dorsal root ganglia and trigeminal ganglia among a few others. In the autonomic nervous system there are both sympathetic and parasympathetic ganglia which contain the cell bodies of postganglionic sympathetic and parasympathetic neurons respectively.

Esophagus

Esophagus

The esophagus or oesophagus, non-technically known also as the food pipe or gullet, is an organ in vertebrates through which food passes, aided by peristaltic contractions, from the pharynx to the stomach. The esophagus is a fibromuscular tube, about 25 cm (10 in) long in adults, that travels behind the trachea and heart, passes through the diaphragm, and empties into the uppermost region of the stomach. During swallowing, the epiglottis tilts backwards to prevent food from going down the larynx and lungs. The word oesophagus is from Ancient Greek οἰσοφάγος (oisophágos), from οἴσω (oísō), future form of φέρω + ἔφαγον.

Circumesophageal nerve ring

Circumesophageal nerve ring

A circumesophageal or circumpharyngeal nerve ring is an arrangement of nerve ganglia around the esophagus/ pharynx of an animal. It is a common feature of nematodes, molluscs, and many other invertebrate animals, though it is absent in all vertebrate animals and is not structurally possible in simpler ones such as water bears.

Odontophore

Odontophore

The odontophore is part of the feeding mechanism in molluscs. It is the cartilage which underlies and supports the radula, a ribbon of teeth. The radula is found in every class of molluscs except for the bivalves.

Circulatory system

Circulatory system

The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels. The circulatory system has two divisions, a systemic circulation or circuit, and a pulmonary circulation or circuit. Some sources use the terms cardiovascular system and vascular system interchangeably with the circulatory system.

Heart

Heart

The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to the lungs. In humans, the heart is approximately the size of a closed fist and is located between the lungs, in the middle compartment of the chest.

Atrium (heart)

Atrium (heart)

The atrium is one of two upper chambers in the heart that receives blood from the circulatory system. The blood in the atria is pumped into the heart ventricles through the atrioventricular valves.

Aorta

Aorta

The aorta is the main and largest artery in the human body, originating from the left ventricle of the heart and extending down to the abdomen, where it splits into two smaller arteries. The aorta distributes oxygenated blood to all parts of the body through the systemic circulation.

Ctenidium (mollusc)

Ctenidium (mollusc)

A ctenidium is a respiratory organ or gill which is found in many molluscs. This structure exists in bivalves, cephalopods, Polyplacophorans (chitons), and in aquatic gastropods such as freshwater snails and marine snails. Some aquatic gastropods possess one ctenidium known as monopectinate and others have a pair of ctenidia known as bipectinate.

Diminutive

Diminutive

A diminutive is a word obtained by modifying a root word to convey a slighter degree of its root meaning, either to convey the smallness of the object or quality named, or to convey a sense of intimacy or endearment. A diminutive form is a word-formation device used to express such meanings. In many languages, diminutives are word forms that are formed from the root word by affixation. In most languages, diminutives can also be formed as multi-word constructions such as "Tiny Tim", or "Little Dorrit". Diminutives are often employed as nicknames and pet names when speaking to small children and when expressing extreme tenderness and intimacy to an adult. The opposite of the diminutive form is the augmentative.

Naming

The common name "limpet" also is applied to a number of not very closely related groups of sea snails and freshwater snails (aquatic gastropod mollusks). Thus the common name "limpet" has very little taxonomic significance in and of itself; the name is applied not only to true limpets (the Patellogastropoda), but also to all snails that have a simple shell that is broadly conical in shape, and either is not spirally coiled, or appears not to be coiled in the adult snail. In other words, the shell of all limpets is "patelliform", which means the shell is shaped more or less like the shell of most true limpets. The term "false limpets" is used for some (but not all) of these other groups that have a conical shell.

Thus, the name limpet is used to describe various extremely diverse groups of gastropods that have independently evolved a shell of the same basic shape (see convergent evolution). And although the name "limpet" is given on the basis of a limpet-like or "patelliform" shell, the several groups of snails that have a shell of this type are not at all closely related to one another.

Discover more about Naming related topics

Sea snail

Sea snail

Sea snail is a common name for slow-moving marine gastropod molluscs, usually with visible external shells, such as whelk or abalone. They share the taxonomic class Gastropoda with slugs, which are distinguished from snails primarily by the absence of a visible shell.

Freshwater snail

Freshwater snail

Freshwater snails are gastropod mollusks that live in fresh water. There are many different families. They are found throughout the world in various habitats, ranging from ephemeral pools to the largest lakes, and from small seeps and springs to major rivers. The great majority of freshwater gastropods have a shell, with very few exceptions. Some groups of snails that live in freshwater respire using gills, whereas other groups need to reach the surface to breathe air. In addition, some are amphibious and have both gills and a lung. Most feed on algae, but many are detritivores and some are filter feeders.

Aquatic animal

Aquatic animal

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in water for all or most of its lifetime. Many insects such as mosquitoes, mayflies, dragonflies and caddisflies have aquatic larvae, with winged adults. Aquatic animals may breathe air or extract oxygen from water through specialised organs called gills, or directly through the skin. Natural environments and the animals that live in them can be categorized as aquatic (water) or terrestrial (land). This designation is polyphyletic.

Taxonomy (biology)

Taxonomy (biology)

In biology, taxonomy is the scientific study of naming, defining (circumscribing) and classifying groups of biological organisms based on shared characteristics. Organisms are grouped into taxa and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a more inclusive group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum, class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, as he developed a ranked system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

Patellogastropoda

Patellogastropoda

The Patellogastropoda, common name true limpets and historically called the Docoglossa, are members of a major phylogenetic group of marine gastropods, treated by experts either as a clade or as a taxonomic order.

Gastropod shell

Gastropod shell

The gastropod shell is part of the body of a gastropod or snail, a kind of mollusc. The shell is an exoskeleton, which protects from predators, mechanical damage, and dehydration, but also serves for muscle attachment and calcium storage. Some gastropods appear shell-less (slugs) but may have a remnant within the mantle, or in some cases the shell is reduced such that the body cannot be retracted within it (semi-slug). Some snails also possess an operculum that seals the opening of the shell, known as the aperture, which provides further protection. The study of mollusc shells is known as conchology. The biological study of gastropods, and other molluscs in general, is malacology. Shell morphology terms vary by species group.

Convergent evolution

Convergent evolution

Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.

Teeth

SEM images of the different shapes of teeth in the following limpet species: (A) Nacella mytilina; (B) N. clypeater; (C) N. chiloensis; (D) N. deaurata; (E) N. delicatissima; (F) N. magellanica; (G) N. venosa.
SEM images of the different shapes of teeth in the following limpet species: (A) Nacella mytilina; (B) N. clypeater; (C) N. chiloensis; (D) N. deaurata; (E) N. delicatissima; (F) N. magellanica; (G) N. venosa.

Function and formation

In order to obtain food, limpets rely on an organ called the radula, which contains iron-mineralized teeth.[6] Although limpets contain over 100 rows of teeth, only the outermost 10 are used in feeding.[7] These teeth form via matrix-mediated biomineralization, a cyclic process involving the delivery of iron minerals to reinforce a polymeric chitin matrix.[6][8] Upon being fully mineralized, the teeth reposition themselves within the radula, allowing limpets to scrape off algae from rock surfaces. As limpet teeth wear out, they are subsequently degraded (occurring anywhere between 12 and 48 hours)[7] and replaced with new teeth. Different limpet species exhibit different overall shapes of their teeth.[9]

Growth and development

Development of limpet teeth occurs in conveyor belt style, where teeth start growing at the back of the radula, and move toward the front of this structure as they mature.[10] The growth rate of the limpet's teeth is around 47 hours per row.[11] Fully mature teeth are located in the scraping zone, the very front of the radula. The scraping zone is in contact with the substrate that the limpet feeds off of. As a result, the fully mature teeth are subsequently worn down until they are discarded – at a rate equal to the growth rate.[11] To counter this degradation, a new row of teeth begin to grow.

Schematic displaying the growth and development of limpet teeth, as well as their feeding mechanism.
Schematic displaying the growth and development of limpet teeth, as well as their feeding mechanism.

Biomineralization

Currently, the exact mechanism behind the biomineralization of limpet teeth is unknown. However, it is suggested that limpet teeth biomineralize using a dissolution-reprecipitation mechanism.[12] Specifically, this mechanism is associated with the dissolution of iron stored in epithelial cells of the radula to create ferrihydrite ions. These ferrihydrite ions are transported through ion channels to the tooth surface. The build-up of enough ferrihydrite ions leads to nucleation, the rate of which can be altered via changing the pH at the site of nucleation.[7] After one to two days, these ions are converted to goethite crystals.[13]

SEM images displaying the different orientations of goethite fibers (black) due to the chitin matrix (gray).
SEM images displaying the different orientations of goethite fibers (black) due to the chitin matrix (gray).

The unmineralized matrix consists of relatively well-ordered, densely packed arrays of chitin fibers, with only a few nanometers between adjacent fibers.[14] The lack of space leads to the absence of pre-formed compartments within the matrix that control goethite crystal size and shape. Because of this, the main factor influencing goethite crystal growth is the chitin fibers of the matrix. Specifically, goethite crystals nucleate on these chitin fibers and push aside or engulf the chitin fibers as they grow, influencing their resulting orientation.

Strength

Looking into limpet teeth of Patella vulgata, Vickers hardness values are between 268 and 646 kg⋅m−1⋅s−2,[7] while tensile strength values range between 3.0 and 6.5 GPa.[8] As spider silk has a tensile strength only up to 4.5 GPa, limpet teeth outperforms spider silk to be the strongest biological material.[8] These considerably high values exhibited by limpet teeth are due to the following factors:

The first factor is the nanometer length scale of goethite nanofibers in limpet teeth;[15] at this length scale, materials become insensitive to flaws that would otherwise decrease failure strength. As a result, goethite nanofibers are able to maintain substantial failure strength despite the presence of defects.

The second factor is the small critical fiber length of the goethite fibers in limpet teeth.[16] Critical fiber length is a parameter defining the fiber length that a material must be to transfer stresses from the matrix to the fibers themselves during external loading. Materials with a large critical fiber length (relative to the total fiber length) act as poor reinforcement fibers, meaning that most stresses are still loaded on the matrix. Materials with small critical fiber lengths (relative to the total fiber length) act as effective reinforcement fibers that are able to transfer stresses on the matrix to themselves. Goethite nanofibers express a critical fiber length of around 420 to 800 nm,[16] which is several orders of magnitude away from their estimated fiber length of 3.1 μm.[16] This suggests that the goethite nanofibers serve as effective reinforcement for the collagen matrix and significantly contribute to the load-bearing capabilities of limpet teeth. This is further supported by the large mineral volume fraction of elongated goethite nanofibers within limpet teeth, around 0.81.[16]

Applications of limpet teeth involve structural designs requiring high strength and hardness, such as biomaterials used in next-generation dental restorations.[8]

Role in distributing stress

The structure, composition, and morphological shape of the teeth of the limpet allow for an even distribution of stress throughout the tooth.[6] The teeth have a self-sharpening mechanism which allows for the teeth to be more highly functional for longer periods of time. Stress wears preferentially on the front surface of the cusp of the teeth, allowing the back surface to stay sharp and more effective.[6]

There is evidence that different regions of the limpet teeth show different mechanical strengths.[16] Measurements taken from the tip of the anterior edge of the tooth show that the teeth can exhibit an elastic modulus of around 140 GPa. Traveling down the anterior edge toward the anterior cusp of the teeth however, the elastic modulus decreases ending around 50 GPa at the edge of the teeth.[16] The orientation of the goethite fibers can be correlated to this decrease in elastic modulus, as towards the tip of the tooth the fibers are more aligned with each other, correlating to a high modulus and vice versa.[16]

Critical length of the goethite fibers is the reason the structural chitin matrix has extreme support. The critical length of goethite fibers has been estimated to be around 420 to 800 nm and when compared with the actual length of the fibers found in the teeth, around 3.1 um, shows that the teeth have fibers much larger than the critical length. This paired with orientation of the fibers leads to effective stress distribution onto the goethite fibers and not onto the weaker chitin matrix in the limpet teeth.[16]

Causes of structure degradation

The overall structure of the limpet teeth is relatively stable within most natural conditions given the limpet's ability to produce new teeth at a similar rate to the degradation.[6] Individual teeth are subjected to shear stresses as the tooth is dragged along the rock. Goethite as a mineral is a relatively soft iron based material,[17] which increases the chance of physical damage to the structure. Limpet teeth and the radula have also been shown to experience greater levels of damage in CO2 acidified water.

SEM and TEM images of the morphologies of goethite in limpet teeth. Different goethite morphologies result from limiting growth in certain crystal planes.
SEM and TEM images of the morphologies of goethite in limpet teeth. Different goethite morphologies result from limiting growth in certain crystal planes.

Crystal structure

Goethite crystals form in at the start of the tooth production cycle and remain as a fundamental part of the tooth with intercrystal space filled with amorphous silica. Existing in multiple morphologies, Prisms with rhomb-shaped sections are the most frequent".[12] The goethite crystals are stable and well formed for a biogenic crystal. The transport of the mineral to create the crystal structures has been suggested to be a dissolution-reprecipitation mechanism as of 2011. Limpet tooth structure is dependent upon living depth of the specimen. While deep water limpets have been shown to have the same elemental composition as shallow water limpets, deep water limpets do not show crystalline phases of goethite.[18]

Crystallization process

The initial event that takes place when the limpet creates a new row of teeth is the creation of the main macromolecular α-chitin component. The resulting organic matrix serves as framework for the crystallization of the teeth themselves.[11] The first mineral to be deposited is goethite (α-FeOOH), a soft iron oxide which forms crystals parallel to the chitin fibers.[11][19] The goethite, however, has varying different crystal habits. The crystals arrange in various shapes and even thicknesses throughout the chitin matrix.[11] Still, depending on the formation of the chitin matrix, this can have varying profound effects on the formation of the goethite crystals.[12] The space in between the crystals and the chitin matrix is filled with an amorphous hydrated silica (SiO2).[11]

Characterizing composition

The most prominent metal by percent composition is iron in the form of goethite. Goethite has the chemical formula of FeO(OH) and belongs to a group known as oxy-hydroxides. There exists amorphous silica between the goethite crystals; surrounding the goethite is a matrix of chitin.[12] Chitin has a chemical formula of C8H13O5N. Other metals have been shown to be present with the relative percent compositions varying on geographic locations. The goethite has been reported to have a volume fraction of approximately 80%.[8]

Regional dependency

Limpets from different locations were shown to have different elemental ratios within their teeth. Iron is consistently most abundant however other metals such as sodium, potassium, calcium, and copper were all shown to be present to varying degrees.[20] The relative percentages of the elements have also been shown to differ from one geographic location to another. This demonstrates an environmental dependency of some kind; however the specific variables are currently undetermined.

Discover more about Teeth related topics

Radula

Radula

The radula is an anatomical structure used by mollusks for feeding, sometimes compared to a tongue. It is a minutely toothed, chitinous ribbon, which is typically used for scraping or cutting food before the food enters the esophagus. The radula is unique to the mollusks, and is found in every class of mollusk except the bivalves, which instead use cilia, waving filaments that bring minute organisms to the mouth.

Iron

Iron

Iron is a chemical element with symbol Fe and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, just ahead of oxygen, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust, being mainly deposited by meteorites in its metallic state, with its ores also being found there.

Biomineralization

Biomineralization

Biomineralization, also written biomineralisation, is the process by which living organisms produce minerals, often to harden or stiffen existing tissues. Such tissues are called mineralized tissues. It is an extremely widespread phenomenon; all six taxonomic kingdoms contain members that are able to form minerals, and over 60 different minerals have been identified in organisms. Examples include silicates in algae and diatoms, carbonates in invertebrates, and calcium phosphates and carbonates in vertebrates. These minerals often form structural features such as sea shells and the bone in mammals and birds.

Chitin

Chitin

Chitin (C8H13O5N)n ( KY-tin) is a long-chain polymer of N-acetylglucosamine, an amide derivative of glucose. Chitin is probably the second most abundant polysaccharide in nature (behind only cellulose); an estimated 1 billion tons of chitin are produced each year in the biosphere. It is a primary component of cell walls in fungi (especially basidiomycetes and filamentous fungi), the exoskeletons of arthropods such as crustaceans and insects, the radulae, cephalopod beaks and gladii of molluscs and in some nematodes and diatoms. It is also synthesised by at least some fish and lissamphibians. Commercially, chitin is extracted from the shells of crabs, shrimps, shellfish and lobsters, which are major by-products of the seafood industry. The structure of chitin is comparable to cellulose, forming crystalline nanofibrils or whiskers. It is functionally comparable to the protein keratin. Chitin has proved useful for several medicinal, industrial and biotechnological purposes.

Biodegradation

Biodegradation

Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradation occurs under a specific set of circumstances.

Conveyor belt

Conveyor belt

A conveyor belt is the carrying medium of a belt conveyor system. A belt conveyor system is one of many types of conveyor systems. A belt conveyor system consists of two or more pulleys, with a closed loop of carrying medium—the conveyor belt—that rotates about them. One or both of the pulleys are powered, moving the belt and the material on the belt forward. The powered pulley is called the drive pulley while the unpowered pulley is called the idler pulley. There are two main industrial classes of belt conveyors; Those in general material handling such as those moving boxes along inside a factory and bulk material handling such as those used to transport large volumes of resources and agricultural materials, such as grain, salt, coal, ore, sand, overburden and more.

Ferrihydrite

Ferrihydrite

Ferrihydrite (Fh) is a widespread hydrous ferric oxyhydroxide mineral at the Earth's surface, and a likely constituent in extraterrestrial materials. It forms in several types of environments, from freshwater to marine systems, aquifers to hydrothermal hot springs and scales, soils, and areas affected by mining. It can be precipitated directly from oxygenated iron-rich aqueous solutions, or by bacteria either as a result of a metabolic activity or passive sorption of dissolved iron followed by nucleation reactions. Ferrihydrite also occurs in the core of the ferritin protein from many living organisms, for the purpose of intra-cellular iron storage.

Nucleation

Nucleation

In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of water is cooled below 0 °C, it will tend to freeze into ice, but volumes of water cooled only a few degrees below 0 °C often stay completely free of ice for long periods (supercooling). At these conditions, nucleation of ice is either slow or does not occur at all. However, at lower temperatures nucleation is fast, and ice crystals appear after little or no delay.

Goethite

Goethite

Goethite is a mineral of the diaspore group, consisting of iron(III) oxide-hydroxide, specifically the "α" polymorph. It is found in soil and other low-temperature environments such as sediment. Goethite has been well known since ancient times for its use as a pigment. Evidence has been found of its use in paint pigment samples taken from the caves of Lascaux in France. It was first described in 1806 based on samples found in the Hollertszug Mine in Herdorf, Germany. The mineral was named after the German polymath and poet Johann Wolfgang von Goethe (1749–1832).

Patella vulgata

Patella vulgata

Patella vulgata, common name the common limpet or common European limpet is a species of sea snail. It is a typical true limpet; a marine gastropod mollusc in the family Patellidae, with gills. This species occurs in the waters of Western Europe.

Vickers hardness test

Vickers hardness test

The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness. The basic principle, as with all common measures of hardness, is to observe a material's ability to resist plastic deformation from a standard source. The Vickers test can be used for all metals and has one of the widest scales among hardness tests. The unit of hardness given by the test is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness (DPH). The hardness number can be converted into units of pascals, but should not be confused with pressure, which uses the same units. The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force, and is therefore not pressure.

Spider silk

Spider silk

Spider silk is a protein fibre spun by spiders. Spiders use their silk to make webs or other structures, which function as sticky nets to catch other animals, or as nests or cocoons to protect their offspring, or to wrap up prey. They can also use their silk to suspend themselves, to float through the air, or to glide away from predators. Most spiders vary the thickness and stickiness of their silk for different uses.

Phylogeny

Gastropods that have limpet-like or patelliform shells are found in several different clades:

Other limpets

Marine

Freshwater

  • The pulmonate river and lake limpets – Ancylidae

Some species of limpet live in fresh water,[21][22] but these are the exception. Most marine limpets have gills, whereas all freshwater limpets and a few marine limpets have a mantle cavity adapted to breathe air and function as a lung (and in some cases again adapted to absorb oxygen from water). All these kinds of snail are only very distantly related.

Discover more about Phylogeny related topics

Patellogastropoda

Patellogastropoda

The Patellogastropoda, common name true limpets and historically called the Docoglossa, are members of a major phylogenetic group of marine gastropods, treated by experts either as a clade or as a taxonomic order.

Patellidae

Patellidae

Patellidae is a taxonomic family of sea snails or true limpets, marine gastropod molluscs in the clade Patellogastropoda.

Fissurellidae

Fissurellidae

Fissurellidae, common name the keyhole limpets and slit limpets, is a taxonomic family of limpet-like sea snails, marine gastropod molluscs in the clade Vetigastropoda. Their common name derives from the small hole in the apex of their cone-like shells. Although superficially resembling "true" limpets, they are in fact not closely related to them.

Lepetelloidea

Lepetelloidea

Lepetelloidea is a superfamily of sea snails, small deepwater limpets, marine gastropod mollusks in the clade Vetigastropoda.

Neritimorpha

Neritimorpha

Neritimorpha is a taxonomic grouping, an unranked major clade of snails, gastropod mollusks. This grouping includes land snails, sea snails, slugs, some deepwater limpets, and also freshwater snails. Neritimorpha contains around 2,000 extant species. Some Neritimorphs are commonly kept as pets. This clade used to be known as the superorder Neritopsina.

Phenacolepadidae

Phenacolepadidae

Phenacolepadidae is a family of small sea snails or false limpets, marine gastropod mollusks in the clade Cycloneritimorpha.

Heterobranchia

Heterobranchia

Heterobranchia, the heterobranchs, is a taxonomic clade of snails and slugs, which includes marine, aquatic and terrestrial gastropod mollusks.

Opisthobranchia

Opisthobranchia

Opisthobranchs is now an informal name for a large and diverse group of specialized complex gastropods which used to be united in the subclass Opisthobranchia. That taxon is no longer considered to represent a monophyletic grouping.

Pulmonata

Pulmonata

Pulmonata or pulmonates, is an informal group of snails and slugs characterized by the ability to breathe air, by virtue of having a pallial lung instead of a gill, or gills. The group includes many land and freshwater families, and several marine families.

Siphonariidae

Siphonariidae

Siphonariidae, also known as false limpets, are a taxonomic family of small to medium-sized air-breathing sea snails, marine and brackish water pulmonate gastropod molluscs.

Hydrothermal vent

Hydrothermal vent

A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

Neomphaloidea

Neomphaloidea

Neomphaloidea is a superfamily of deep-sea snails or limpets, marine gastropod mollusks. Neomphaloidea is the only superfamily in the order Neomphalida.

In culture and literature

Many species of limpets have historically been used, or are still used, by humans and other animals for food.[23][24]

Limpet mines are a type of naval mine attached to a target by magnets. They are named after the tenacious grip of the limpet.

The humorous author Edward Lear wrote "Cheer up, as the limpet said to the weeping willow" in one of his letters.[25] Simon Grindle wrote the 1964 illustrated children's book of nonsense poetry The Loving Limpet and Other Peculiarities, said to be "in the great tradition of Edward Lear and Lewis Carroll".[26]

In his book South, Sir Ernest Shackleton relates the stories of his twenty-two men left behind on Elephant Island harvesting limpets from the icy waters on the shore of the Southern Ocean. Near the end of their four-month stay on the island, as their stocks of seal and penguin meat dwindled, they derived a major portion of their sustenance from limpets.

The light-hearted comedy film The Incredible Mr. Limpet is about a patriotic but weak American who desperately clings to the idea of joining the U.S. military to serve his country; by the end of the film, having been transformed into a fish, he is able to use his new body to save U.S. naval vessels from disaster. Although he does not become a snail but a fish, his name limpet hints at his tenacity.

Discover more about In culture and literature related topics

Limpet mine

Limpet mine

A limpet mine is a type of naval mine attached to a target by magnets. It is so named because of its superficial similarity to the shape of the limpet, a type of sea snail that clings tightly to rocks or other hard surfaces.

Edward Lear

Edward Lear

Edward Lear was an English artist, illustrator, musician, author and poet, who is known mostly for his literary nonsense in poetry and prose and especially his limericks, a form he popularised.

Lewis Carroll

Lewis Carroll

Charles Lutwidge Dodgson, better known by his pen name Lewis Carroll, was an English author, poet and mathematician. His most notable works are Alice's Adventures in Wonderland (1865) and its sequel Through the Looking-Glass (1871). He was noted for his facility with word play, logic, and fantasy. His poems Jabberwocky (1871) and The Hunting of the Snark (1876) are classified in the genre of literary nonsense.

South (book)

South (book)

South is a book by Ernest Shackleton describing the second expedition to Antarctica led by him, the Imperial Trans-Antarctic Expedition of 1914 to 1917. It was published in London by William Heinemann in 1919.

Elephant Island

Elephant Island

Elephant Island is an ice-covered, mountainous island off the coast of Antarctica in the outer reaches of the South Shetland Islands, in the Southern Ocean. The island is situated 245 kilometres north-northeast of the tip of the Antarctic Peninsula, 1,253 kilometres west-southwest of South Georgia, 935 kilometres south of the Falkland Islands, and 885 kilometres southeast of Cape Horn. It is within the Antarctic claims of Argentina, Chile and the United Kingdom.

Southern Ocean

Southern Ocean

The Southern Ocean, also known as the Antarctic Ocean, comprises the southernmost waters of the world ocean, generally taken to be south of 60° S latitude and encircling Antarctica. With a size of 20,327,000 km2 (7,848,000 sq mi), it is regarded as the second-smallest of the five principal oceanic divisions: smaller than the Pacific, Atlantic, and Indian oceans but larger than the Arctic Ocean. Since the 1980s, the Southern Ocean has been subject to rapid climate change, which has led to changes in the marine ecosystem.

The Incredible Mr. Limpet

The Incredible Mr. Limpet

The Incredible Mr. Limpet is a 1964 American live-action/animated comedy film produced by Warner Bros. and based on the 1942 novel Mr. Limpet by Theodore Pratt. It is about a man named Henry Limpet who turns into a talking fish and helps the U.S. Navy locate and destroy Nazi submarines. Don Knotts plays the title character. The live action was directed by Arthur Lubin, while the animation was directed by Bill Tytla, Robert McKimson, Hawley Pratt, and Gerry Chiniquy at Warner Bros. Cartoons. Music includes songs by Sammy Fain, in collaboration with Harold Adamson, including "I Wish I Were a Fish", "Be Careful How You Wish" and "Deep Rapture". The film received mixed reviews. It was the final project for Warner Bros. Cartoons prior to its closure in May 1963.

Source: "Limpet", Wikipedia, Wikimedia Foundation, (2023, January 8th), https://en.wikipedia.org/wiki/Limpet.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

References
  1. ^ Jaeger, Edmund Carroll (1959). A Source-book of Biological Names and Terms. Springfield, IL: Thomas. ISBN 978-0398061791.
  2. ^ a b c d James Richard Ainsworth Davis; Herbert John Fleure (1903). Patella, the Common Limpet. Williams & Norgate.
  3. ^ Trueman, E. R.; Clarke, M. R. (22 October 2013). Evolution. Academic Press. ISBN 9781483289366 – via Google Books.
  4. ^ a b Limpet fights off a starfish - The Secret Life of Rock Pools - Preview - BBC Four, retrieved 20 October 2022
  5. ^ Andrews, C.; Williams, R. B. G. (2000). "Limpet erosion of chalk shore platforms in southeast England". Earth Surface Processes and Landforms. 25 (12): 1371–1381. Bibcode:2000ESPL...25.1371A. doi:10.1002/1096-9837(200011)25:123.0.CO;2-#.
  6. ^ a b c d e Shaw, Jeremy A.; Macey, David J.; Brooker, Lesley R.; Clode, Peta L. (1 April 2010). "Tooth use and wear in three iron-biomineralizing mollusc species". The Biological Bulletin. 218 (2): 132–44. doi:10.1086/bblv218n2p132. PMID 20413790. S2CID 35442787.
  7. ^ a b c d Faivre, Damien; Godec, Tina Ukmar (13 April 2015). "From Bacteria to Mollusks: The Principles Underlying the Biomineralization of Iron Oxide Materials". Angewandte Chemie International Edition. 54 (16): 4728–4747. doi:10.1002/anie.201408900. ISSN 1521-3773. PMID 25851816.
  8. ^ a b c d e Barber, Asa H.; Lu, Dun; Pugno, Nicola M. (6 April 2015). "Extreme strength observed in limpet teeth". Journal of the Royal Society Interface. 12 (105): 20141326. doi:10.1098/rsif.2014.1326. ISSN 1742-5689. PMC 4387522. PMID 25694539.
  9. ^ Valdovinos, Claudio; Rüth, Maximillian (1 September 2005). "Nacellidae limpets of the southern end of South America: taxonomy and distribution". Revista Chilena de Historia Natural. 78 (3): 497–517. doi:10.4067/S0716-078X2005000300011. ISSN 0716-078X.
  10. ^ Ukmar-Godec, Tina; Kapun, Gregor; Zaslansky, Paul; Faivre, Damien (1 December 2015). "The giant keyhole limpet radular teeth: A naturally-grown harvest machine". Journal of Structural Biology. 192 (3): 392–402. doi:10.1016/j.jsb.2015.09.021. PMC 4658332. PMID 26433029.
  11. ^ a b c d e f Sone, Eli D.; Weiner, Steve; Addadi, Lia (1 November 2005). "Morphology of Goethite Crystals in Developing Limpet Teeth: Assessing Biological Control over Mineral Formation". Crystal Growth & Design. 5 (6): 2131–2138. doi:10.1021/cg050171l. ISSN 1528-7483.
  12. ^ a b c d Weiner, Steve; Addadi, Lia (4 August 2011). "Crystallization Pathways in Biomineralization". Annual Review of Materials Research. 41 (1): 21–40. Bibcode:2011AnRMS..41...21W. doi:10.1146/annurev-matsci-062910-095803.
  13. ^ Sigel, Astrid; Sigel, Helmut; Sigel, Roland K. O. (2008). Biomineralization: From Nature to Application. John Wiley & Sons. ISBN 978-0470986318.
  14. ^ Sone, Eli D.; Weiner, Steve; Addadi, Lia (1 June 2007). "Biomineralization of limpet teeth: A cryo-TEM study of the organic matrix and the onset of mineral deposition". Journal of Structural Biology. 158 (3): 428–44. doi:10.1016/j.jsb.2007.01.001. PMID 17306563.
  15. ^ Gao, Huajian; Ji, Baohua; Jäger, Ingomar L.; Arzt, Eduard; Fratzl, Peter (13 May 2003). "Materials become insensitive to flaws at nanoscale: Lessons from nature". Proceedings of the National Academy of Sciences. 100 (10): 5597–5600. doi:10.1073/pnas.0631609100. ISSN 0027-8424. PMC 156246. PMID 12732735.
  16. ^ a b c d e f g h Lu, Dun; Barber, Asa H. (7 June 2012). "Optimized nanoscale composite behaviour in limpet teeth". Journal of the Royal Society Interface. 9 (71): 1318–24. doi:10.1098/rsif.2011.0688. ISSN 1742-5689. PMC 3350734. PMID 22158842.
  17. ^ Chicot, D.; Mendoza, J.; Zaoui, A.; Louis, G.; Lepingle, V.; Roudet, F.; Lesage, J. (October 2011). "Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeO·OH) by instrumented indentation and molecular dynamics analysis". Materials Chemistry and Physics. 129 (3): 862–70. doi:10.1016/j.matchemphys.2011.05.056.
  18. ^ Cruz, R.; Farina, M. (4 March 2005). "Mineralization of major lateral teeth in the radula of a deep-sea hydrothermal vent limpet (Gastropoda:Neolepetopsidae)". Marine Biology. 147 (1): 163–68. doi:10.1007/s00227-004-1536-y. S2CID 84563618.
  19. ^ Mann, S.; Perry, C. C.; Webb, J.; Luke, B.; Williams, R. J. P. (22 March 1986). "Structure, Morphology, Composition and Organization of Biogenic Minerals in Limpet Teeth". Proceedings of the Royal Society of London B: Biological Sciences. 227 (1247): 179–90. Bibcode:1986RSPSB.227..179M. doi:10.1098/rspb.1986.0018. ISSN 0962-8452. S2CID 89570130.
  20. ^ Davies, Mark S.; Proudlock, Donna J.; Mistry, A. (May 2005). "Metal Concentrations in the Radula of the Common Limpet, Patella vulgata L., from 10 Sites in the UK". Ecotoxicology. 14 (4): 465–75. doi:10.1007/s10646-004-1351-8. PMID 16385740. S2CID 25235604.
  21. ^ "Luminescent limpet". Landcare Research. Archived from the original on 21 February 2015. Retrieved 21 February 2015.
  22. ^ "Identifying British freshwater snails: Ancylidae". The Conchological Society of Great Britain and Ireland. Retrieved 21 February 2015.
  23. ^ "Samson – A Deserted Island – About Scilly the Islands". 24 August 2018.
  24. ^ September 2013, William Gray | 18. "Escape to the Isles of Scilly". Wanderlust.
  25. ^ Lear, Edward (1907). Letters of Edward Lear. T. Fisher Unwin. p. 165.
  26. ^ Grindle, Simon (1964). The Loving Limpet and Other Peculiarities. Illustrated by Alan Todd. Newcastle: Oriel Press.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.