Get Our Extension

Ligation (molecular biology)

From Wikipedia, in a visual modern way
A sticky end ligation
A sticky end ligation

Ligation is the joining of two nucleic acid fragments through the action of an enzyme. It is an essential laboratory procedure in the molecular cloning of DNA, whereby DNA fragments are joined to create recombinant DNA molecules (such as when a foreign DNA fragment is inserted into a plasmid). The ends of DNA fragments are joined by the formation of phosphodiester bonds between the 3'-hydroxyl of one DNA terminus with the 5'-phosphoryl of another. RNA may also be ligated similarly. A co-factor is generally involved in the reaction, and this is usually ATP or NAD+. Eukaryotic cells ligases belong to ATP type, and NAD+ - dependent are found in bacteria (e.g. E. coli).[1]

The discovery of DNA ligase dates back to 1967 and is an important event in the field of molecular biology.[1] Ligation in the laboratory is normally performed using T4 DNA ligase. It is broadly used in vitro as molecular biology research tool due to its capability of joining as sticky as blunt DNA ends.[2] However, procedures for ligation without the use of standard DNA ligase are also popular. Human DNA ligases abnormalities have been linked to pathological disorders characterized by immunodeficiency, radiation sensitivity, and developmental problems.[3]

Discover more about Ligation (molecular biology) related topics

Molecular cloning

Molecular cloning

Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

Recombinant DNA

Recombinant DNA

Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination that bring together genetic material from multiple sources, creating sequences that would not otherwise be found in the genome.

Plasmid

Plasmid

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.

Phosphodiester bond

Phosphodiester bond

In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage C−O−PO−2O−C. Discussion of phosphodiesters is dominated by their prevalence in DNA and RNA, but phosphodiesters occur in other biomolecules, e.g. acyl carrier proteins.

Adenosine triphosphate

Adenosine triphosphate

Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. The human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA, and is used as a coenzyme.

Nicotinamide riboside

Nicotinamide riboside

Nicotinamide riboside (NR, SR647) is a pyridine-nucleoside and a form of vitamin B3. It functions as a precursor to nicotinamide adenine dinucleotide or NAD+ through a two-step and a three-step pathway.

Escherichia coli

Escherichia coli

Escherichia coli, also known as E. coli, is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes (EPEC, ETEC etc.) can cause serious food poisoning in their hosts, and are occasionally responsible for food contamination incidents that prompt product recalls. Most strains do not cause disease in humans and are part of the normal microbiota of the gut; such strains are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones). For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship — where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh faecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

Molecular biology

Molecular biology

Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physical structure of biological macromolecules is known as molecular biology.

DNA ligase

DNA ligase

DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms may specifically repair double-strand breaks. Single-strand breaks are repaired by DNA ligase using the complementary strand of the double helix as a template, with DNA ligase creating the final phosphodiester bond to fully repair the DNA.

Ligation reaction

The mechanism of the ligation reaction was first elucidated in the laboratory of I. Robert Lehman.[4][5] Two fragments of DNA may be joined by DNA ligase which catalyzes the formation of a phosphodiester bond between the 3'-hydroxyl group (-OH) at one end of a strand of DNA and the 5'-phosphate group (-PO4) of another. In animals and bacteriophage, ATP is used as the energy source for the ligation, while in bacteria, NAD+ is used.[6]

The DNA ligase first reacts with ATP or NAD+, forming a ligase-AMP intermediate with the AMP linked to the ε-amino group of lysine in the active site of the ligase via a phosphoramide bond. This adenylyl group is then transferred to the phosphate group at the 5' end of a DNA chain, forming a DNA-adenylate complex. Finally, a phosphodiester bond between the two DNA ends is formed via the nucleophilic attack of the 3'-hydroxyl at the end of a DNA strand on the activated 5′-phosphoryl group of another.[4]

A nick in the DNA (i.e. a break in one strand of a double-stranded DNA) can be repaired very efficiently by the ligase. However, a complicating feature of ligation presents itself when ligating two separate DNA ends as the two ends need to come together before the ligation reaction can proceed. In the ligation of DNA with sticky or cohesive ends, the protruding strands of DNA may be annealed together already, therefore it is a relatively efficient process as it is equivalent to repairing two nicks in the DNA. However, in the ligation of blunt-ends, which lack protruding ends for the DNA to anneal together, the process is dependent on random collision for the ends to align together before they can be ligated, and is consequently a much less efficient process.[7] The DNA ligase from E. coli cannot ligate blunt-ended DNA except under conditions of molecular crowding, and it is therefore not normally used for ligation in the laboratory. Instead the DNA ligase from phage T4 is used as it can ligate blunt-ended DNA as well as single-stranded DNA.[8][6]

Discover more about Ligation reaction related topics

DNA ligase

DNA ligase

DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms may specifically repair double-strand breaks. Single-strand breaks are repaired by DNA ligase using the complementary strand of the double helix as a template, with DNA ligase creating the final phosphodiester bond to fully repair the DNA.

Bacteriophage

Bacteriophage

A bacteriophage, also known informally as a phage, is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν, meaning "to devour". Bacteriophages are composed of proteins that encapsulate a DNA or RNA genome, and may have structures that are either simple or elaborate. Their genomes may encode as few as four genes and as many as hundreds of genes. Phages replicate within the bacterium following the injection of their genome into its cytoplasm.

Adenosine triphosphate

Adenosine triphosphate

Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. The human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA, and is used as a coenzyme.

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

Adenosine monophosphate

Adenosine monophosphate

Adenosine monophosphate (AMP), also known as 5'-adenylic acid, is a nucleotide. AMP consists of a phosphate group, the sugar ribose, and the nucleobase adenine. It is an ester of phosphoric acid and the nucleoside adenosine. As a substituent it takes the form of the prefix adenylyl-.

Nick (DNA)

Nick (DNA)

A nick is a discontinuity in a double stranded DNA molecule where there is no phosphodiester bond between adjacent nucleotides of one strand typically through damage or enzyme action. Nicks allow DNA strands to untwist during replication, and are also thought to play a role in the DNA mismatch repair mechanisms that fix errors on both the leading and lagging daughter strands.

Sticky and blunt ends

Sticky and blunt ends

DNA ends refer to the properties of the ends of linear DNA molecules, which in molecular biology are described as "sticky" or "blunt" based on the shape of the complementary strands at the terminus. In sticky ends, one strand is longer than the other, such that the longer strand has bases which are left unpaired. In blunt ends, both strands are of equal length – i.e. they end at the same base position, leaving no unpaired bases on either strand.

Factors affecting ligation

Factors that affect an enzyme-mediated chemical reaction would naturally affect a ligation reaction, such as the concentration of enzyme and the reactants, as well as the temperature of reaction and the length of time of incubation. Ligation is complicated by the fact that the desired ligation products for most ligation reactions should be between two different DNA molecules and the reaction involves both inter- and intra-molecular reactions, and that an additional annealing step is necessary for efficient ligation.

The three steps to form a new phosphodiester bond during ligation are: enzyme adenylylation, adenylyl transfer to DNA, and nick sealing. Mg(2+) is a cofactor for catalysis, therefore at high concentration of Mg(2+) the ligation efficiency is high. If the concentration of Mg(2+) is limited, the nick- sealing is the rate- limiting reaction of the process, and adenylylated DNA intermediate stays in the solution. Such adenylylation of the enzyme restrains the rebinding to the adenylylated DNA intermediate comparison of an Achilles' heel of LIG1, and represents a risk if they are not fixed.[9]

DNA concentration

The concentration of DNA can affect the rate of ligation, and whether the ligation is an inter-molecular or intra-molecular reaction. Ligation involves joining up the ends of a DNA with other ends, however, each DNA fragment has two ends, and if the ends are compatible, a DNA molecule can circularize by joining its own ends. At high DNA concentration, there is a greater chance of one end of a DNA molecule meeting the end of another DNA, thereby forming intermolecular ligation. At a lower DNA concentration, the chance that one end of a DNA molecule would meet the other end of the same molecule increases, therefore intramolecular reaction that circularizes the DNA is more likely. The transformation efficiency of linear DNA is also much lower than circular DNA, and for the DNA to circularize, the DNA concentration should not be too high. As a general rule, the total DNA concentration should be less than 10 μg/ml.[10]

The relative concentration of the DNA fragments, their length, as well as buffer conditions are also factors that can affect whether intermolecular or intramolecular reactions are favored.

The concentration of DNA can be artificially increased by adding condensing agents such as cobalt hexamine and biogenic polyamines such as spermidine, or by using crowding agents such as polyethylene glycol (PEG) which also increase the effective concentration of enzymes.[11][12] Note however that additives such as cobalt hexamine can produce exclusively intermolecular reaction,[11] resulting in linear concatemers rather than the circular DNA more suitable for transformation of plasmid DNA, and is therefore undesirable for plasmid ligation. If it is necessary to use additives in plasmid ligation, the use of PEG is preferable as it can promote intramolecular as well as intermolecular ligation.[13]

Ligase concentration

The higher the ligase concentration, the faster the rate of ligation. Blunt-end ligation is much less efficient than sticky end ligation, so a higher concentration of ligase is used in blunt-end ligations. High DNA ligase concentration may be used in conjunction with PEG for a faster ligation, and they are the components often found in commercial kits designed for rapid ligation.[14][15]

Temperature

Two issues are involved when considering the temperature of a ligation reaction. First, the optimum temperature for DNA ligase activity which is 37°C, and second, the melting temperature (Tm) of the DNA ends to be ligated. The melting temperature is dependent on length and base composition of the DNA overhang—the greater the number of G and C, the higher the Tm since there are three hydrogen bonds formed between G-C base pair compared to two for A-T base pair—with some contribution from the stacking of the bases between fragments. For the ligation reaction to proceed efficiently, the ends should be stably annealed, and in ligation experiments, the Tm of the DNA ends is generally much lower than 37°C. The optimal temperature for ligating cohesive ends is therefore a compromise between the best temperature for DNA ligase activity and the Tm where the ends can associate.[16] However, different restriction enzymes generates different ends, and the base composition of the ends produced by these enzymes may also differ, the melting temperature and therefore the optimal temperature can vary widely depending on the restriction enzymes used, and the optimum temperature for ligation may be between 4-15°C depending on the ends.[17][18] Ligations also often involve ligating ends generated from different restriction enzymes in the same reaction mixture, therefore it may not be practical to select optimal temperature for a particular ligation reaction and most protocols simply choose 12-16°C, room temperature, or 4°C.

Buffer composition

The ionic strength of the buffer used can affect the ligation. The kinds of cations presence can also influence the ligation reaction, for example, excess amount of Na+ can cause the DNA to become more rigid and increase the likelihood of intermolecular ligation. At high concentration of monovalent cation (>200 mM) ligation can also be almost completely inhibited.[19] The standard buffer used for ligation is designed to minimize ionic effects.[20]

Discover more about Factors affecting ligation related topics

Intramolecular reaction

Intramolecular reaction

In chemistry, intramolecular describes a process or characteristic limited within the structure of a single molecule, a property or phenomenon limited to the extent of a single molecule.

Transformation efficiency

Transformation efficiency

Transformation efficiency refers to the ability of a cell to take up and incorporate exogenous DNA, such as plasmids, during a process called transformation. The efficiency of transformation is typically measured as the number of transformants per microgram of DNA added to the cells. A higher transformation efficiency means that more cells are able to take up the DNA, and a lower efficiency means that fewer cells are able to do so.

Spermidine

Spermidine

Spermidine is a polyamine compound found in ribosomes and living tissues and having various metabolic functions within organisms. It was originally isolated from semen.

Macromolecular crowding

Macromolecular crowding

The phenomenon of macromolecular crowding alters the properties of molecules in a solution when high concentrations of macromolecules such as proteins are present. Such conditions occur routinely in living cells; for instance, the cytosol of Escherichia coli contains about 300–400 mg/ml of macromolecules. Crowding occurs since these high concentrations of macromolecules reduce the volume of solvent available for other molecules in the solution, which has the result of increasing their effective concentrations. Crowding can promote formation of a biomolecular condensate by colloidal phase separation.

Polyethylene glycol

Polyethylene glycol

Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG is commonly expressed as H−(O−CH2−CH2)n−OH.

Transformation (genetics)

Transformation (genetics)

In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.

Ionic strength

Ionic strength

The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts. One of the main characteristics of a solution with dissolved ions is the ionic strength. Ionic strength can be molar or molal and to avoid confusion the units should be stated explicitly. The concept of ionic strength was first introduced by Lewis and Randall in 1921 while describing the activity coefficients of strong electrolytes.

Sticky-end ligation

Restriction enzymes can generate a wide variety of ends in the DNA they digest, but in cloning experiments most commonly-used restriction enzymes generate a 4-base single-stranded overhang called the sticky or cohesive end (exceptions include NdeI which generates a 2-base overhang, and those that generate blunt ends). These sticky ends can anneal to other compatible ends and become ligated in a sticky-end (or cohesive end) ligation. EcoRI for example generates an AATT end, and since A and T have lower melting temperature than C and G, its melting temperature Tm is low at around 6°C.[21] For most restriction enzymes, the overhangs generated have a Tm that is around 15°C.[20] For practical purposes, sticky end ligations are performed at 12-16°C, or at room temperature, or alternatively at 4°C for a longer period.

For the insertion of a DNA fragment into a plasmid vector, it is preferable to use two different restriction enzymes to digest the DNA so that different ends are generated. The two different ends can prevent the religation of the vector without any insert, and it also allows the fragment to be inserted in a directional manner.

When it is not possible to use two different sites, then the vector DNA may need to be dephosphorylated to avoid a high background of recircularized vector DNA with no insert. Without a phosphate group at the ends the vector cannot ligate to itself, but can be ligated to an insert with a phosphate group. Dephosphorylation is commonly done using calf-intestinal alkaline phosphatase (CIAP) which removes the phosphate group from the 5′ end of digested DNA, but note that CIAP is not easy to inactivate and can interfere with ligation without an additional step to remove the CIAP, thereby resulting in failure of ligation. CIAP should not be used in excessive amount and should only be used when necessary. Shrimp alkaline phosphatase (SAP) or Antarctic phosphatase (AP) are suitable alternative as they can be easily inactivated.

Discover more about Sticky-end ligation related topics

NdeI

NdeI

NdeI is an endonuclease isolated from Neisseria denitrificans.

EcoRI

EcoRI

EcoRI is a restriction endonuclease enzyme isolated from species E. coli. It is a restriction enzyme that cleaves DNA double helices into fragments at specific sites, and is also a part of the restriction modification system. The Eco part of the enzyme's name originates from the species from which it was isolated - "E" denotes generic name which is "Escherichia" and "co" denotes species name, "coli" - while the R represents the particular strain, in this case RY13, and the I denotes that it was the first enzyme isolated from this strain.

Calf-intestinal alkaline phosphatase

Calf-intestinal alkaline phosphatase

Calf-intestinal alkaline phosphatase (CIAP/CIP) is a type of alkaline phosphatase that catalyzes the removal of phosphate groups from the 5' end of DNA strands and phosphomonoesters from RNA. This enzyme is frequently used in DNA sub-cloning, as DNA fragments that lack the 5' phosphate groups cannot ligate. This prevents recircularization of the linearized DNA vector and improves the yield of the vector containing the appropriate insert.

Alkaline phosphatase

Alkaline phosphatase

The enzyme alkaline phosphatase has the physiological role of dephosphorylating compounds. The enzyme is found across a multitude of organisms, prokaryotes and eukaryotes alike, with the same general function but in different structural forms suitable to the environment they function in. Alkaline phosphatase is found in the periplasmic space of E. coli bacteria. This enzyme is heat stable and has its maximum activity at high pH. In humans, it is found in many forms depending on its origin within the body – it plays an integral role in metabolism within the liver and development within the skeleton. Due to its widespread prevalence in these areas, its concentration in the bloodstream is used by diagnosticians as a biomarker in helping determine diagnoses such as hepatitis or osteomalacia.

Blunt-end ligation

Blunt end ligation does not involve base-pairing of the protruding ends, so any blunt end may be ligated to another blunt end. Blunt ends may be generated by restriction enzymes such as SmaI and EcoRV. A major advantage of blunt-end cloning is that the desired insert does not require any restriction sites in its sequence as blunt-ends are usually generated in a PCR, and the PCR generated blunt-ended DNA fragment may then be ligated into a blunt-ended vector generated from restriction digest.

Blunt-end ligation, however, is much less efficient than sticky end ligation, typically the reaction is 100X slower than sticky-end ligation. Since blunt-end does not have protruding ends, the ligation reaction depends on random collisions between the blunt-ends and is consequently much less efficient. To compensate for the lower efficiency, the concentration of ligase used is higher than sticky end ligation (10x or more). The concentration of DNA used in blunt-end ligation is also higher to increase the likelihood of collisions between ends, and longer incubation time may also be used for blunt-end ligations.

If both ends needed to be ligated into a vector are blunt-ended, then the vector needs to be dephosphorylated to minimize self-ligation. This may be done using CIAP, but caution in its use is necessary as noted previously. Since the vector has been dephosphorylated, and ligation requires the presence of a 5'-phosphate, the insert must be phosphorylated. Blunt-ended PCR product normally lacks a 5'-phosphate, therefore it needs to be phosphorylated by treatment with T4 polynucleotide kinase.[22]

Blunt-end ligation is also reversibly inhibited by high concentration of ATP.[23]

PCR usually generates blunt-ended PCR products, but note that PCR using Taq polymerase can add an extra adenine (A) to the 3' end of the PCR product. This property may be exploited in TA cloning where the ends of the PCR product can anneal to the T end of a vector. TA ligation is therefore a form of sticky end ligation. Blunt-ended vectors may be turned into vector for TA ligation with dideoxythymidine triphosphate (ddTTP) using terminal transferase.

Discover more about Blunt-end ligation related topics

EcoRV

EcoRV

EcoRV is a type II restriction endonuclease isolated from certain strains of Escherichia coli. It has the alternative name Eco32I.

Polymerase chain reaction

Polymerase chain reaction

The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it to a large enough amount to study in detail. PCR was invented in 1983 by the American biochemist Kary Mullis at Cetus Corporation; Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.

Sticky and blunt ends

Sticky and blunt ends

DNA ends refer to the properties of the ends of linear DNA molecules, which in molecular biology are described as "sticky" or "blunt" based on the shape of the complementary strands at the terminus. In sticky ends, one strand is longer than the other, such that the longer strand has bases which are left unpaired. In blunt ends, both strands are of equal length – i.e. they end at the same base position, leaving no unpaired bases on either strand.

Taq polymerase

Taq polymerase

Taq polymerase is a thermostable DNA polymerase I named after the thermophilic eubacterial microorganism Thermus aquaticus, from which it was originally isolated by Chien et al. in 1976. Its name is often abbreviated to Taq or Taq pol. It is frequently used in the polymerase chain reaction (PCR), a method for greatly amplifying the quantity of short segments of DNA.

TA cloning

TA cloning

TA cloning is a subcloning technique that avoids the use of restriction enzymes and is easier and quicker than traditional subcloning. The technique relies on the ability of adenine (A) and thymine (T) on different DNA fragments to hybridize and, in the presence of ligase, become ligated together. PCR products are usually amplified using Taq DNA polymerase which preferentially adds an adenine to the 3' end of the product. Such PCR amplified inserts are cloned into linearized vectors that have complementary 3' thymine overhangs.

General guidelines

For the cloning of an insert into a circular plasmid:

  • The total DNA concentration used should be less than 10 μg/ml as the plasmid needs to recircularize.
  • The molar ratio of insert to vector is usually used at around 3:1. Very high ratio may produce multiple inserts. The ratio may be adjusted depending on the size of the insert, and other ratios may be used, such as 1:1.

Trouble-shooting

Sometimes ligation fail to produce the desired ligated products, and some of the possible reasons may be:

  • Damaged DNA – Over-exposure to UV radiation during preparation of DNA for ligation can damage the DNA and significantly reduce transformation efficiency. A higher-wavelength UV radiation (365 nm) which cause less damage to DNA should be used if it is necessary work for work on the DNA on a UV transilluminator for an extended period of time. Addition of cytidine or guanosine to the electrophoresis buffer at 1 mM concentration however may protect the DNA from damage.[24]
  • Incorrect usage of CIAP or its inefficient inactivation or removal.
  • Excessive amount of DNA used.
  • Incomplete DNA digest – The vector DNA that is incompletely digested will give rise to a high background, and this may be checked by doing a ligation without insert as a control. Insert that is not completely digested will also not ligate properly and circularize. When digesting a PCR product, make sure that sufficient extra bases have been added to the 5'-ends of the oligonucleotides used for PCR as many restriction enzymes require a minimum number of extra basepairs for efficient digest. The information on the minimum basepair required is available from restriction enzyme suppliers such as in the catalog of New England Biolabs.[25]
  • Incomplete ligation – Blunt-ends DNA (e.g. SmaI) and some sticky-ends DNA (e.g. NdeI) that have low-melting temperature require more ligase and longer incubation time.[26]
  • Protein expressed from ligated gene insert is toxic to cells.
  • Homologous sequence in insert to sequence in plasmid DNA resulting in deletion.
  • High concentration of EDTA or salts that acts as an inhibitors.[27]

Discover more about Trouble-shooting related topics

Transformation efficiency

Transformation efficiency

Transformation efficiency refers to the ability of a cell to take up and incorporate exogenous DNA, such as plasmids, during a process called transformation. The efficiency of transformation is typically measured as the number of transformants per microgram of DNA added to the cells. A higher transformation efficiency means that more cells are able to take up the DNA, and a lower efficiency means that fewer cells are able to do so.

Cytidine

Cytidine

Cytidine (symbol C or Cyd) is a nucleoside molecule that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a β-N1-glycosidic bond. Cytidine is a component of RNA. It is a white water-soluble solid. which is only slightly soluble in ethanol.

Guanosine

Guanosine

Guanosine (symbol G or Guo) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). These forms play important roles in various biochemical processes such as synthesis of nucleic acids and proteins, photosynthesis, muscle contraction, and intracellular signal transduction (cGMP). When guanine is attached by its N9 nitrogen to the C1 carbon of a deoxyribose ring it is known as deoxyguanosine.

Restriction digest

Restriction digest

A restriction digest is a procedure used in molecular biology to prepare DNA for analysis or other processing. It is sometimes termed DNA fragmentation. Hartl and Jones describe it this way: This enzymatic technique can be used for cleaving DNA molecules at specific sites, ensuring that all DNA fragments that contain a particular sequence at a particular location have the same size; furthermore, each fragment that contains the desired sequence has the sequence located at exactly the same position within the fragment. The cleavage method makes use of an important class of DNA-cleaving enzymes isolated primarily from bacteria. These enzymes are called restriction endonucleases or restriction enzymes, and they are able to cleave DNA molecules at the positions at which particular short sequences of bases are present.

New England Biolabs

New England Biolabs

New England Biolabs (NEB) produces and supplies recombinant and native enzyme reagents for the life science research, as well as providing products and services supporting genome editing, synthetic biology and next-generation sequencing. NEB also provides free access to research tools such as REBASE, InBASE, and Polbase.

NdeI

NdeI

NdeI is an endonuclease isolated from Neisseria denitrificans.

Other methods of DNA ligation

A number of commercially available DNA cloning kits use other methods of ligation that do not require the use of the usual DNA ligases. These methods allow cloning to be done much more rapidly, as well as allowing for simpler transfer of cloned DNA insert to different vectors. These methods however require the use of specially designed vectors and components, and may lack flexibility.

Topoisomerase-mediated ligation

Topoisomerase can be used instead of ligase for ligation, and the cloning may be done more rapidly without the need for restriction digest of the vector or insert. In this TOPO cloning method a linearized vector is activated by attaching topoisomerase I to its ends, and this "TOPO-activated" vector may then accept a PCR product by ligating to both of the 5' ends of the PCR product, the topoisomerase is released and a circular vector is formed in the process.[28]

Homologous recombination

Another method of cloning without the use of ligase is by DNA recombination, for example as used in the Gateway cloning system.[29][30] The gene, once cloned into the cloning vector (called entry clone in this method), may be conveniently introduced into a variety of expression vectors by recombination.[31]

Discover more about Other methods of DNA ligation related topics

Expression vector

Expression vector

An expression vector, otherwise known as an expression construct, is usually a plasmid or virus designed for gene expression in cells. The vector is used to introduce a specific gene into a target cell, and can commandeer the cell's mechanism for protein synthesis to produce the protein encoded by the gene. Expression vectors are the basic tools in biotechnology for the production of proteins.

Cloning vector

Cloning vector

A cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or it may be the plasmid of a bacterium. The vector contains features that allow for the convenient insertion of a DNA fragment into the vector or its removal from the vector, for example through the presence of restriction sites. The vector and the foreign DNA may be treated with a restriction enzyme that cuts the DNA, and DNA fragments thus generated contain either blunt ends or overhangs known as sticky ends, and vector DNA and foreign DNA with compatible ends can then be joined by molecular ligation. After a DNA fragment has been cloned into a cloning vector, it may be further subcloned into another vector designed for more specific use.

Topoisomerase

Topoisomerase

DNA topoisomerases are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in DNA arise due to the intertwined nature of its double-helical structure, which, for example, can lead to overwinding of the DNA duplex during DNA replication and transcription. If left unchanged, this torsion would eventually stop the DNA or RNA polymerases involved in these processes from continuing along the DNA helix. A second topological challenge results from the linking or tangling of DNA during replication. Left unresolved, links between replicated DNA will impede cell division. The DNA topoisomerases prevent and correct these types of topological problems. They do this by binding to DNA and cutting the sugar-phosphate backbone of either one or both of the DNA strands. This transient break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed. Since the overall chemical composition and connectivity of the DNA do not change, the DNA substrate and product are chemical isomers, differing only in their topology.

TOPO cloning

TOPO cloning

Topoisomerase-based cloning is a molecular biology technique in which DNA fragments are cloned into specific vectors without the requirement for DNA ligases. Taq polymerase has a nontemplate-dependent terminal transferase activity that adds a single deoxyadenosine (A) to the 3'-end of the PCR products. This characteristic is exploited in "sticky end" TOPO TA cloning. For "blunt end" TOPO cloning, the recipient vector does not have overhangs and blunt-ended DNA fragments can be cloned.

Site-specific recombination

Site-specific recombination

Site-specific recombination, also known as conservative site-specific recombination, is a type of genetic recombination in which DNA strand exchange takes place between segments possessing at least a certain degree of sequence homology. Enzymes known as site-specific recombinases (SSRs) perform rearrangements of DNA segments by recognizing and binding to short, specific DNA sequences (sites), at which they cleave the DNA backbone, exchange the two DNA helices involved, and rejoin the DNA strands. In some cases the presence of a recombinase enzyme and the recombination sites is sufficient for the reaction to proceed; in other systems a number of accessory proteins and/or accessory sites are required. Many different genome modification strategies, among these recombinase-mediated cassette exchange (RMCE), an advanced approach for the targeted introduction of transcription units into predetermined genomic loci, rely on SSRs.

Gateway Technology

Gateway Technology

The Gateway cloning method, invented and commercialized by Invitrogen since the late 1990s, is the cloning method of the integration and excision recombination reactions that take place when bacteriophage lambda infects bacteria. This technology provides a fast and highly efficient way to transport DNA sequences into multi-vector systems for functional analysis and protein expression using Gateway att sites, and two proprietary enzyme mixes called BP Clonase and LR Clonase. In vivo, these recombination reactions are facilitated by the recombination of attachment sites from the lambda/phage chromosome (attP) and the bacteria (attB). As a result of recombination between the attP and attB sites, the phage integrates into the bacterial genome flanked by two new recombination sites. The removal of the phage from the bacterial chromosome and the regeneration of attP and attB sites can both result from the attL and attR sites recombining under specific circumstances.

Examples and application of DNA ligases

Different types of ligases found in the studied organisms. For instance, Nicotinamide adenine dinucleotide (NAD+)-dependent ligase was found and isolated from bacterial organism, known as E. coli in second third of 20th century. Since then, this model has been widely used to study that DNA ligase family. Moreover, it is found in all bacteria. Examples of genes present in E. coli are LigA, which has essential functions affecting bacterial growth, and LigB.[32]

In mammals, including human 3 genes, namely Lig1, Lig3, Lig4 were identified. All eukaryotes contain multiple types of DNA ligases encoded by Lig genes.[33] The smallest known eukaryotic ligase is Chlorella virus DNA ligase (ChVLig). It contains only 298 amino acids. When ChVLig is the only source of ligase in the cell, it can continue to support mitotic development, and nonhomologous end joining in budding yeasts.[34] Abnormalities in regulation of E3 ubiquitin ligases family are being studied and, like some other ligases, they are associated with cancers, autoimmune diseases and other disorders.[35][36] E3 ubiquitin ligases, as Hdm2 , can be further studied, characterized and utilized as practical cancer biomarkers because they are overexpressed in a number of cancer types in humans that have a negative prognosis in terms of patients survival.[37][38] DNA Ligase I (Lig1) is accountable for Okazaki Fragments ligation. It is consist of 919 amino acids. In a complex process of DNA replication, DNA Ligase I recruited to replications machinery by protein interactions. Lig1 plays role in cell division in plants and yeasts. Knockout of the Lig1 gene is lethal in yeasts and some plants sprouts.  Nevertheless, studies of mouse embryogenesis have shown that until the middle of the growth process embryo developing without DNA ligase I.[39]

Enzymatic ligation has been used in various studies related to DNA nanostructures and lead to increase of  efficiency and stability. One of the methods is sealing of covalent DNA bond, namely phosphodiester bond and nicks. Reconstruction of those structures performed with assistance of ligation. For instance, T4 DNA ligase serve as a catalyst for sealing of a nick between 3 prime and 5 prime ends of DNA to make up strong  phosphodiester bond. Ligated structures have higher thermal stability values.[40] T4 DNA ligase has many valuable properties such as already mentioned catalytic, but it is also responsible for sealing of the gaps between DNA strands, nick-closing activity, repair of the DNA damage, etc.[2]

In nanostructures architecture, molecular biology researches - ssDNA is an important application model. T4 DNA ligase used to cyclize short ssDNA fragments, but process is complicated by formation of secondary structures. On the other hand, Taq DNA ligase is a thermostable enzyme which can be applied at higher temperatures (45, 55 and 65 °C respectively). Since at these temperature range secondary structures less stable it is enhance cyclization efficiency of oligonucleotides. The kinetic, biological, and other parameters of nanostructures are influenced by presence of the secondary structures in DNA rings. However, Taq DNA ligation occur only when two complementary DNA strands are perfectly paired and have no gaps in between.[41]

Analysis of ligases activities, mutations, deficiencies widely used in drug design and biological researches to investigate diseases, pathologies developments and related rare acquired or inherited syndromes (e.g. DNA ligase IV syndrome).[42][43][44][45]

The ligation procedure is prevalent in molecular biology cloning techniques, and it has been applied to define and characterize specific nucleotide sequences in the genome using Ligase Chain Reaction (LCR) or Polymerase Chain Reaction (PCR)-based amplification of ligated probes.[46]

Analysis

Ligation may also serve as a DNA analysis method.[47] Some techniques employ rolling circle amplification.[47] The most notable of these is described by Smolina et al., 2007 & Smolina et al., 2008 using fluorescence in situ hybridization and peptide nucleic acids.[47] They developed and employed this technique for analyses of bacterial chromosomes.[47]

Discover more about Analysis related topics

Source: "Ligation (molecular biology)", Wikipedia, Wikimedia Foundation, (2023, January 31st), https://en.wikipedia.org/wiki/Ligation_(molecular_biology).

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

References
  1. ^ a b Shuman S (June 2009). "DNA ligases: progress and prospects". The Journal of Biological Chemistry. 284 (26): 17365–17369. doi:10.1074/jbc.R900017200. PMC 2719376. PMID 19329793.
  2. ^ a b Su T, Liu F, Chang Y, Guo Q, Wang J, Wang Q, Qi Q (June 2019). "The phage T4 DNA ligase mediates bacterial chromosome DSBs repair as single component non-homologous end joining". Synthetic and Systems Biotechnology. 4 (2): 107–112. doi:10.1016/j.synbio.2019.04.001. PMC 6525309. PMID 31193309.
  3. ^ Tomkinson AE, Naila T, Khattri Bhandari S (February 2020). "Altered DNA ligase activity in human disease". Mutagenesis. 35 (1): 51–60. doi:10.1093/mutage/gez026. PMC 7317150. PMID 31630206.
  4. ^ a b Kresge N, Simoni RD, Hill RL (January 2007). "Insights into DNA Joining: I. Robert Lehman's Work on DNA Ligase". The Journal of Biological Chemistry. 282 (2): e1–e3. doi:10.1016/S0021-9258(20)73504-0.
  5. ^ Modorich P, Lehman IR (November 1973). "Deoxyribonucleic acid ligase. A steady state kinetic analysis of the reaction catalyzed by the enzyme from Escherichia coli" (PDF). The Journal of Biological Chemistry. 248 (21): 7502–7511. PMID 4355585.
  6. ^ a b Stryer L (2007). Biochemistry (3rd ed.). Freeman. pp. 658–659. ISBN 9780716787242.
  7. ^ Saunders VA (6 December 2012). Microbial genetics applied to biotechnology :: principles and techniques of Gene Transfer and Manipulation. Springer. ISBN 9781461597964.
  8. ^ Old RW, Primrose SB (1994-09-27). Principle of Gene Manipulation - An Introduction to Genetic Engineering (5th ed.). Blackwell Scientific. p. 37. ISBN 9780632037124.
  9. ^ Taylor MR, Conrad JA, Wahl D, O'Brien PJ (July 2011). "Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency". The Journal of Biological Chemistry. 286 (26): 23054–23062. doi:10.1074/jbc.m111.248831. PMC 3123073. PMID 21561855.
  10. ^ Sambrook J, Russell D. "Chapter 1: Plasmids and Their Usefulness in Molecular Cloning". Molecular Cloning - A Laboratory Manual. Vol. 1 (3rd ed.). pp. 1.20–1.21. ISBN 978-0-87969-577-4.
  11. ^ a b Rusche JR, Howard-Flanders P (March 1985). "Hexamine cobalt chloride promotes intermolecular ligation of blunt end DNA fragments by T4 DNA ligase". Nucleic Acids Research. 13 (6): 1997–2008. doi:10.1093/nar/13.6.1997. PMC 341130. PMID 4000951.
  12. ^ Zimmerman SB, Pheiffer BH (October 1983). "Macromolecular crowding allows blunt-end ligation by DNA ligases from rat liver or Escherichia coli". Proceedings of the National Academy of Sciences of the United States of America. 80 (19): 5852–5856. Bibcode:1983PNAS...80.5852Z. doi:10.1073/pnas.80.19.5852. PMC 390173. PMID 6351067.
  13. ^ Hayashi K, Nakazawa M, Ishizaki Y, Hiraoka N, Obayashi A (October 1986). "Regulation of inter- and intramolecular ligation with T4 DNA ligase in the presence of polyethylene glycol". Nucleic Acids Research. 14 (19): 7617–7631. doi:10.1093/nar/14.19.7617. PMC 311784. PMID 3022231.
  14. ^ "FAQ". NEB.
  15. ^ "Quick Ligation Kit". NEB.
  16. ^ Old RW, Primrose SB (1994-09-27). Principle of Gene Manipulation - An Introduction to Genetic Engineering (5th ed.). Blackwell Scientific. p. 36. ISBN 9780632037124.
  17. ^ Ferretti L, Sgaramella V (January 1981). "Temperature dependence of the joining by T4 DNA ligase of termini produced by type II restriction endonucleases". Nucleic Acids Research. 9 (1): 85–93. doi:10.1093/nar/9.1.85. PMC 326670. PMID 6259621.
  18. ^ Dugaiczyk A, Boyer HW, Goodman HM (July 1975). "Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures". Journal of Molecular Biology. 96 (1): 171–184. doi:10.1016/0022-2836(75)90189-8. PMID 169355.
  19. ^ Raae AJ, Kleppe RK, Kleppe K (December 1975). "Kinetics and effect of salts and polyamines on T4 polynucleotide ligase". European Journal of Biochemistry. 60 (2): 437–443. doi:10.1111/j.1432-1033.1975.tb21021.x. PMID 173544.
  20. ^ a b Lucotte G, Baneyx F (1993). Introduction to Molecular Cloning Techniques. Wiley-Blackwell. p. 156. ISBN 978-0471188490.
  21. ^ Mertz JE, Davis RW (November 1972). "Cleavage of DNA by R 1 restriction endonuclease generates cohesive ends". Proceedings of the National Academy of Sciences of the United States of America. 69 (11): 3370–3374. Bibcode:1972PNAS...69.3370M. doi:10.1073/pnas.69.11.3370. PMC 389773. PMID 4343968.
  22. ^ "Cloning Guide". New England Biolabs Inc.
  23. ^ Ferretti L, Sgaramella V (August 1981). "Specific and reversible inhibition of the blunt end joining activity of the T4 DNA ligase". Nucleic Acids Research. 9 (15): 3695–3705. doi:10.1093/nar/9.15.3695. PMC 327385. PMID 6269089.
  24. ^ Gründemann D, Schömig E (November 1996). "Protection of DNA during preparative agarose gel electrophoresis against damage induced by ultraviolet light". BioTechniques. 21 (5): 898–903. doi:10.2144/96215rr02. PMID 8922632.
  25. ^ "Cleavage Close to the End of DNA Fragments". New England Biolabs Inc.
  26. ^ Chang EL, Ge B, Lee MA, So MA, Wang WE (2005). "Investigation of the Ligation Efficiency of NdeI Digested Fragments" (PDF). Journal of Experimental Microbiology and Immunology. 7: 68–72. Retrieved 2012-10-29. (Note that this paper has an error describing NdeI as a four-base cutter.)
  27. ^ "Optimize Your DNA Ligation with 7 Must-Have Tips - US". www.thermofisher.com. Retrieved 2023-01-10.
  28. ^ "The Technology Behind TOPO® Cloning". Invitrogen.
  29. ^ Esposito D, Garvey LA, Chakiath CS (2009). "Gateway cloning for protein expression". High Throughput Protein Expression and Purification. Methods in Molecular Biology. Vol. 498. pp. 31–54. doi:10.1007/978-1-59745-196-3_3. ISBN 978-1-58829-879-9. PMID 18988017.
  30. ^ "Cloning Methods - Recombination cloning systems". EMBL.
  31. ^ "Gateway® Recombination Cloning Technology". Invitrogen.
  32. ^ Sriskanda V, Shuman S (December 2001). "A second NAD(+)-dependent DNA ligase (LigB) in Escherichia coli". Nucleic Acids Research. 29 (24): 4930–4934. doi:10.1093/nar/29.24.4930. PMC 97608. PMID 11812821.
  33. ^ Sun L, Liu X, Song S, Feng L, Shi C, Sun Z, et al. (2021-11-12). "Identification of LIG1 and LIG3 as prognostic biomarkers in breast cancer". Open Medicine. 16 (1): 1705–1717. doi:10.1515/med-2021-0388. PMC 8590111. PMID 34825062.
  34. ^ Samai P, Shuman S (April 2011). "Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase". The Journal of Biological Chemistry. 286 (15): 13314–13326. doi:10.1074/jbc.M111.226191. PMC 3075678. PMID 21335605.
  35. ^ Buetow L, Huang DT (October 2016). "Structural insights into the catalysis and regulation of E3 ubiquitin ligases". Nature Reviews. Molecular Cell Biology. 17 (10): 626–642. doi:10.1038/nrm.2016.91. PMC 6211636. PMID 27485899.
  36. ^ Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F (December 2011). "Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b". Proceedings of the National Academy of Sciences of the United States of America. 108 (51): 20579–20584. Bibcode:2011PNAS..10820579K. doi:10.1073/pnas.1110712108. PMC 3251137. PMID 22158902.
  37. ^ Sun Y (August 2006). "E3 ubiquitin ligases as cancer targets and biomarkers". Neoplasia. 8 (8): 645–654. doi:10.1593/neo.06376. PMC 1601942. PMID 16925947.
  38. ^ Bai J, Wu K, Cao MH, Yang Y, Pan Y, Liu H, et al. (June 2019). "SCFFBXO22 targets HDM2 for degradation and modulates breast cancer cell invasion and metastasis". Proceedings of the National Academy of Sciences of the United States of America. 116 (24): 11754–11763. doi:10.1073/pnas.1820990116. PMC 6575577. PMID 31138683.
  39. ^ Waterworth WM, Kozak J, Provost CM, Bray CM, Angelis KJ, West CE (June 2009). "DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks". BMC Plant Biology. 9 (1): 79. doi:10.1186/1471-2229-9-79. PMC 2708163. PMID 19558640.
  40. ^ Bai T, Zhang J, Huang K, Wang W, Chen B, Li Y, et al. (August 2022). "Reconfiguration of DNA nanostructures induced by enzymatic ligation treatment". Nucleic Acids Research. 50 (14): 8392–8398. doi:10.1093/nar/gkac606. PMC 9371897. PMID 35880584.
  41. ^ Lei C, Li SY, Liu JK, Zheng X, Zhao GP, Wang J (May 2017). "The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro". Nucleic Acids Research. 45 (9): e74. doi:10.1093/nar/gkx018. PMC 5436000. PMID 28115632.
  42. ^ Huang M, Dong G, Lu X, Xiao F, Zhou Q, Zhang S (October 2022). "DNA ligase IV dificiency with elevated serum IgG levels suspected to have myelodysplastic syndrome: a case report". BMC Pediatrics. 22 (1): 588. doi:10.1186/s12887-022-03655-x. PMC 9552496. PMID 36221079.
  43. ^ Altmann T, Gennery AR (October 2016). "DNA ligase IV syndrome; a review". Orphanet Journal of Rare Diseases. 11 (1): 137. doi:10.1186/s13023-016-0520-1. PMC 5055698. PMID 27717373.
  44. ^ Chen X, Zhong S, Zhu X, Dziegielewska B, Ellenberger T, Wilson GM, et al. (May 2008). "Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair". Cancer Research. 68 (9): 3169–3177. doi:10.1158/0008-5472.can-07-6636. PMC 2734474. PMID 18451142.
  45. ^ Enders A, Fisch P, Schwarz K, Duffner U, Pannicke U, Nikolopoulos E, et al. (April 2006). "A severe form of human combined immunodeficiency due to mutations in DNA ligase IV". Journal of Immunology. 176 (8): 5060–5068. doi:10.4049/jimmunol.176.8.5060. PMID 16585603.
  46. ^ Lohman GJ, Zhang Y, Zhelkovsky AM, Cantor EJ, Evans TC (February 2014). "Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase". Nucleic Acids Research. 42 (3): 1831–1844. doi:10.1093/nar/gkt1032. PMC 3919565. PMID 24203707.
  47. ^ a b c d Conze T, Shetye A, Tanaka Y, Gu J, Larsson C, Göransson J, et al. (2009-07-19). "Analysis of genes, transcripts, and proteins via DNA ligation". Annual Review of Analytical Chemistry. Annual Reviews. 2 (1): 215–239. Bibcode:2009ARAC....2..215C. doi:10.1146/annurev-anchem-060908-155239. PMID 20636060.

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.