Get Our Extension

Hydrostatics

From Wikipedia, in a visual modern way
Table of Hydraulics and Hydrostatics, from the 1728 Cyclopædia
Table of Hydraulics and Hydrostatics, from the 1728 Cyclopædia

Fluid statics or hydrostatics is the branch of fluid mechanics that studies the condition of the equilibrium of a floating body and submerged body "fluids at hydrostatic equilibrium[1] and the pressure in a fluid, or exerted by a fluid, on an immersed body".[2]

It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics, the study of fluids in motion. Hydrostatics is a subcategory of fluid statics, which is the study of all fluids, both compressible or incompressible, at rest.

Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. It is also relevant to geophysics and astrophysics (for example, in understanding plate tectonics and the anomalies of the Earth's gravitational field), to meteorology, to medicine (in the context of blood pressure), and many other fields.

Hydrostatics offers physical explanations for many phenomena of everyday life, such as why atmospheric pressure changes with altitude, why wood and oil float on water, and why the surface of still water is always level according to the curvature of the earth.

Discover more about Hydrostatics related topics

Fluid mechanics

Fluid mechanics

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology.

Fluid

Fluid

In physics, a fluid is a liquid, gas, or other material that continuously deforms (flows) under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear force applied to them.

Hydrostatic equilibrium

Hydrostatic equilibrium

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space.

Fluid dynamics

Fluid dynamics

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Hydraulics

Hydraulics

Hydraulics is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counterpart of pneumatics, which concerns gases. Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on the applied engineering using the properties of fluids. In its fluid power applications, hydraulics is used for the generation, control, and transmission of power by the use of pressurized liquids. Hydraulic topics range through some parts of science and most of engineering modules, and cover concepts such as pipe flow, dam design, fluidics and fluid control circuitry. The principles of hydraulics are in use naturally in the human body within the vascular system and erectile tissue. Free surface hydraulics is the branch of hydraulics dealing with free surface flow, such as occurring in rivers, canals, lakes, estuaries and seas. Its sub-field open-channel flow studies the flow in open channels.

Engineering

Engineering

Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.

Geophysics

Geophysics

Geophysics is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists, who usually study geophysics, physics, or one of the earth sciences at the graduate level, complete investigations across a wide range of scientific disciplines. The term geophysics classically refers to solid earth applications: Earth's shape; its gravitational, magnetic fields, and electromagnetic fields ; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets.

Astrophysics

Astrophysics

Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, Astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space–what they are, rather than where they are." Among the subjects studied are the Sun, other stars, galaxies, extrasolar planets, the interstellar medium and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, astrophysicists apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

Gravity of Earth

Gravity of Earth

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

Blood pressure

Blood pressure

Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" refers to the pressure in the large arteries. Blood pressure is usually expressed in terms of the systolic pressure over diastolic pressure in the cardiac cycle. It is measured in millimeters of mercury (mmHg) above the surrounding atmospheric pressure.

Atmospheric pressure

Atmospheric pressure

Atmospheric pressure, also known as barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

Altitude

Altitude

Altitude or height is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.

History

Some principles of hydrostatics have been known in an empirical and intuitive sense since antiquity, by the builders of boats, cisterns, aqueducts and fountains. Archimedes is credited with the discovery of Archimedes' Principle, which relates the buoyancy force on an object that is submerged in a fluid to the weight of fluid displaced by the object. The Roman engineer Vitruvius warned readers about lead pipes bursting under hydrostatic pressure.[3]

The concept of pressure and the way it is transmitted by fluids was formulated by the French mathematician and philosopher Blaise Pascal in 1647.

Hydrostatics in ancient Greece and Rome

Pythagorean Cup

The "fair cup" or Pythagorean cup, which dates from about the 6th century BC, is a hydraulic technology whose invention is credited to the Greek mathematician and geometer Pythagoras. It was used as a learning tool.

The cup consists of a line carved into the interior of the cup, and a small vertical pipe in the center of the cup that leads to the bottom. The height of this pipe is the same as the line carved into the interior of the cup. The cup may be filled to the line without any fluid passing into the pipe in the center of the cup. However, when the amount of fluid exceeds this fill line, fluid will overflow into the pipe in the center of the cup. Due to the drag that molecules exert on one another, the cup will be emptied.

Heron's fountain

Heron's fountain is a device invented by Heron of Alexandria that consists of a jet of fluid being fed by a reservoir of fluid. The fountain is constructed in such a way that the height of the jet exceeds the height of the fluid in the reservoir, apparently in violation of principles of hydrostatic pressure. The device consisted of an opening and two containers arranged one above the other. The intermediate pot, which was sealed, was filled with fluid, and several cannula (a small tube for transferring fluid between vessels) connecting the various vessels. Trapped air inside the vessels induces a jet of water out of a nozzle, emptying all water from the intermediate reservoir.

Pascal's contribution in hydrostatics

Pascal made contributions to developments in both hydrostatics and hydrodynamics. Pascal's Law is a fundamental principle of fluid mechanics that states that any pressure applied to the surface of a fluid is transmitted uniformly throughout the fluid in all directions, in such a way that initial variations in pressure are not changed.

Discover more about History related topics

Cistern

Cistern

A cistern is a waterproof receptacle for holding liquids, usually water. Cisterns are often built to catch and store rainwater. Cisterns are distinguished from wells by their waterproof linings. Modern cisterns range in capacity from a few litres to thousands of cubic metres, effectively forming covered reservoirs.

Aqueduct (water supply)

Aqueduct (water supply)

An aqueduct is a watercourse constructed to carry water from a source to a distribution point far away. In modern engineering, the term aqueduct is used for any system of pipes, ditches, canals, tunnels, and other structures used for this purpose. The term aqueduct also often refers specifically to a bridge carrying an artificial watercourse. Aqueducts were used in ancient Greece, ancient Egypt, and ancient Rome. The simplest aqueducts are small ditches cut into the earth. Much larger channels may be used in modern aqueducts. Aqueducts sometimes run for some or all of their path through tunnels constructed underground. Modern aqueducts may also use pipelines. Historically, agricultural societies have constructed aqueducts to irrigate crops and supply large cities with drinking water.

Fountain

Fountain

A fountain, from the Latin "fons", meaning source or spring, is a decorative reservoir used for discharging water. It is also a structure that jets water into the air for a decorative or dramatic effect.

Archimedes

Archimedes

Archimedes of Syracuse was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Considered the greatest mathematician of ancient history, and one of the greatest of all time, Archimedes anticipated modern calculus and analysis by applying the concept of the infinitely small and the method of exhaustion to derive and rigorously prove a range of geometrical theorems. These include the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral.

Buoyancy

Buoyancy

Buoyancy, or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

Lead

Lead

Lead is a chemical element with the symbol Pb and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, lead is a shiny gray with a hint of blue. It tarnishes to a dull gray color when exposed to air. Lead has the highest atomic number of any stable element and three of its isotopes are endpoints of major nuclear decay chains of heavier elements. Lead is toxic, even in small amounts, especially to children.

France

France

France, officially the French Republic, is a country located primarily in Western Europe. It also includes overseas regions and territories in the Americas and the Atlantic, Pacific and Indian Oceans, giving it one of the largest discontiguous exclusive economic zones in the world. Its metropolitan area extends from the Rhine to the Atlantic Ocean and from the Mediterranean Sea to the English Channel and the North Sea; overseas territories include French Guiana in South America, Saint Pierre and Miquelon in the North Atlantic, the French West Indies, and many islands in Oceania and the Indian Ocean. Its eighteen integral regions span a combined area of 643,801 km2 (248,573 sq mi) and had a total population of over 68 million as of January 2023. France is a unitary semi-presidential republic with its capital in Paris, the country's largest city and main cultural and commercial centre; other major urban areas include Marseille, Lyon, Toulouse, Lille, Bordeaux, and Nice.

Mathematician

Mathematician

A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change.

Philosopher

Philosopher

A philosopher is a person who practices or investigates philosophy. The term philosopher comes from the Ancient Greek: φιλόσοφος, romanized: philosophos, meaning 'lover of wisdom'. The coining of the term has been attributed to the Greek thinker Pythagoras. In the classical sense, a philosopher was someone who lived according to a certain way of life, focusing upon resolving existential questions about the human condition; it was not necessary that they discoursed upon theories or commented upon authors. Those who most arduously committed themselves to this lifestyle would have been considered philosophers.

Blaise Pascal

Blaise Pascal

Blaise Pascal was a French mathematician, physicist, inventor, philosopher, and Catholic writer.

Heron's fountain

Heron's fountain

Heron's fountain is a hydraulic machine invented by the 1st century AD inventor, mathematician, and physicist Heron of Alexandria.

Cannula

Cannula

A cannula is a tube that can be inserted into the body, often for the delivery or removal of fluid or for the gathering of samples. In simple terms, a cannula can surround the inner or outer surfaces of a trocar needle thus extending the effective needle length by at least half the length of the original needle. Its size mainly ranges from 14 to 24 gauge. Different-sized cannula have different colours as coded.

Pressure in fluids at rest

Due to the fundamental nature of fluids, a fluid cannot remain at rest under the presence of a shear stress. However, fluids can exert pressure normal to any contacting surface. If a point in the fluid is thought of as an infinitesimally small cube, then it follows from the principles of equilibrium that the pressure on every side of this unit of fluid must be equal. If this were not the case, the fluid would move in the direction of the resulting force. Thus, the pressure on a fluid at rest is isotropic; i.e., it acts with equal magnitude in all directions. This characteristic allows fluids to transmit force through the length of pipes or tubes; i.e., a force applied to a fluid in a pipe is transmitted, via the fluid, to the other end of the pipe. This principle was first formulated, in a slightly extended form, by Blaise Pascal, and is now called Pascal's law.

Hydrostatic pressure

In a fluid at rest, all frictional and inertial stresses vanish and the state of stress of the system is called hydrostatic. When this condition of V = 0 is applied to the Navier–Stokes equations, the gradient of pressure becomes a function of body forces only. For a barotropic fluid in a conservative force field like a gravitational force field, the pressure exerted by a fluid at equilibrium becomes a function of force exerted by gravity.

The hydrostatic pressure can be determined from a control volume analysis of an infinitesimally small cube of fluid. Since pressure is defined as the force exerted on a test area (p = F/A, with p: pressure, F: force normal to area A, A: area), and the only force acting on any such small cube of fluid is the weight of the fluid column above it, hydrostatic pressure can be calculated according to the following formula:

where

For water and other liquids, this integral can be simplified significantly for many practical applications, based on the following two assumptions. Since many liquids can be considered incompressible, a reasonable good estimation can be made from assuming a constant density throughout the liquid. The same assumption cannot be made within a gaseous environment. Also, since the height h of the fluid column between z and z0 is often reasonably small compared to the radius of the Earth, one can neglect the variation of g. Under these circumstances, the integral is simplified into the formula

where h is the height zz0 of the liquid column between the test volume and the zero reference point of the pressure. This formula is often called Stevin's law.[4][5] Note that this reference point should lie at or below the surface of the liquid. Otherwise, one has to split the integral into two (or more) terms with the constant ρliquid and ρ(z′)above. For example, the absolute pressure compared to vacuum is

where H is the total height of the liquid column above the test area to the surface, and patm is the atmospheric pressure, i.e., the pressure calculated from the remaining integral over the air column from the liquid surface to infinity. This can easily be visualized using a pressure prism.

Hydrostatic pressure has been used in the preservation of foods in a process called pascalization.[6]

Medicine

In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure.

Atmospheric pressure

Statistical mechanics shows that, for a pure ideal gas of constant temperature in a gravitational field, T, its pressure, p will vary with height, h, as

where

This is known as the barometric formula, and maybe derived from assuming the pressure is hydrostatic.

If there are multiple types of molecules in the gas, the partial pressure of each type will be given by this equation. Under most conditions, the distribution of each species of gas is independent of the other species.

Buoyancy

Any body of arbitrary shape which is immersed, partly or fully, in a fluid will experience the action of a net force in the opposite direction of the local pressure gradient. If this pressure gradient arises from gravity, the net force is in the vertical direction opposite that of the gravitational force. This vertical force is termed buoyancy or buoyant force and is equal in magnitude, but opposite in direction, to the weight of the displaced fluid. Mathematically,

where ρ is the density of the fluid, g is the acceleration due to gravity, and V is the volume of fluid directly above the curved surface.[7] In the case of a ship, for instance, its weight is balanced by pressure forces from the surrounding water, allowing it to float. If more cargo is loaded onto the ship, it would sink more into the water – displacing more water and thus receive a higher buoyant force to balance the increased weight.

Discovery of the principle of buoyancy is attributed to Archimedes.

Hydrostatic force on submerged surfaces

The horizontal and vertical components of the hydrostatic force acting on a submerged surface are given by the following formula:[7]

where

  • pc is the pressure at the centroid of the vertical projection of the submerged surface
  • A is the area of the same vertical projection of the surface
  • ρ is the density of the fluid
  • g is the acceleration due to gravity
  • V is the volume of fluid directly above the curved surface

Discover more about Pressure in fluids at rest related topics

Shear stress

Shear stress

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

Pressure

Pressure

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

Pascal's law

Pascal's law

Pascal's law is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. The law was established by French mathematician Blaise Pascal in 1653 and published in 1663.

Vertical pressure variation

Vertical pressure variation

Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects. However, the vertical variation is especially significant, as it results from the pull of gravity on the fluid; namely, for the same given fluid, a decrease in elevation within it corresponds to a taller column of fluid weighing down on that point.

Navier–Stokes equations

Navier–Stokes equations

In physics, the Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

Barotropic fluid

Barotropic fluid

In fluid dynamics, a barotropic fluid is a fluid whose density is a function of pressure only. The barotropic fluid is a useful model of fluid behavior in a wide variety of scientific fields, from meteorology to astrophysics.

Density

Density

Density is the substance's mass per unit of volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:

Gravity

Gravity

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

Simon Stevin

Simon Stevin

Simon Stevin, sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated various mathematical terms into Dutch, making it one of the few European languages in which the word for mathematics, wiskunde, was not a loanword from Greek but a calque via Latin. He also replaced the word chemie, the Dutch for chemistry, by scheikunde, made in analogy with wiskunde.

Atmospheric pressure

Atmospheric pressure

Atmospheric pressure, also known as barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

Pressure prism

Pressure prism

A pressure prism is a way of visually describing the variation of hydrostatic pressure within a volume of fluid. When variables of fluid density, depth, gravity, and other forces such as atmospheric pressure are charted, the resulting figure somewhat resembles a prism.

Pascalization

Pascalization

Pascalization, bridgmanization, high pressure processing (HPP) or high hydrostatic pressure (HHP) processing is a method of preserving and sterilizing food, in which a product is processed under very high pressure, leading to the inactivation of certain microorganisms and enzymes in the food. HPP has a limited effect on covalent bonds within the food product, thus maintaining both the sensory and nutritional aspects of the product. The technique was named after Blaise Pascal, a French scientist of the 17th century whose work included detailing the effects of pressure on fluids. During pascalization, more than 50,000 pounds per square inch may be applied for around fifteen minutes, leading to the inactivation of yeast, mold, and bacteria. Pascalization is also known as bridgmanization, named for physicist Percy Williams Bridgman.

Liquids (fluids with free surfaces)

Liquids can have free surfaces at which they interface with gases, or with a vacuum. In general, the lack of the ability to sustain a shear stress entails that free surfaces rapidly adjust towards an equilibrium. However, on small length scales, there is an important balancing force from surface tension.

Capillary action

When liquids are constrained in vessels whose dimensions are small, compared to the relevant length scales, surface tension effects become important leading to the formation of a meniscus through capillary action. This capillary action has profound consequences for biological systems as it is part of one of the two driving mechanisms of the flow of water in plant xylem, the transpirational pull.

Hanging drops

Without surface tension, drops would not be able to form. The dimensions and stability of drops are determined by surface tension. The drop's surface tension is directly proportional to the cohesion property of the fluid.

Discover more about Liquids (fluids with free surfaces) related topics

Free surface

Free surface

In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids. An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere. Unlike liquids, gases cannot form a free surface on their own. Fluidized/liquified solids, including slurries, granular materials, and powders may form a free surface.

Vacuum

Vacuum

A vacuum is a space devoid of matter. The word is derived from the Latin adjective vacuus for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a perfect vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term in vacuo is used to describe an object that is surrounded by a vacuum.

Shear stress

Shear stress

Shear stress is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

Surface tension

Surface tension

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects to float on a water surface without becoming even partly submerged.

Meniscus (liquid)

Meniscus (liquid)

The meniscus is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.

Capillary action

Capillary action

Capillary action is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces like gravity. The effect can be seen in the drawing up of liquids between the hairs of a paint-brush, in a thin tube, in porous materials such as paper and plaster, in some non-porous materials such as sand and liquefied carbon fiber, or in a biological cell. It occurs because of intermolecular forces between the liquid and surrounding solid surfaces. If the diameter of the tube is sufficiently small, then the combination of surface tension and adhesive forces between the liquid and container wall act to propel the liquid.

Plant

Plant

Plants are predominantly photosynthetic eukaryotes, forming the kingdom Plantae. Most of them are multicellular. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi. All current definitions exclude the fungi and some of the algae. By one definition, plants form the clade Viridiplantae which consists of the green algae and the Embryophyta or land plants. The latter include the hornworts, liverworts, mosses, lycophytes, ferns, conifers and other gymnosperms, and the flowering plants. A definition based on genomes includes the Viridiplantae, along with the red algae and the glaucophytes, in the clade Archaeplastida.

Xylem

Xylem

Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word xylem is derived from the Ancient Greek word ξύλον (xylon), meaning "wood"; the best-known xylem tissue is wood, though it is found throughout a plant. The term was introduced by Carl Nägeli in 1858.

Drop (liquid)

Drop (liquid)

A drop or droplet is a small column of liquid, bounded completely or almost completely by free surfaces. A drop may form when liquid accumulates at the lower end of a tube or other surface boundary, producing a hanging drop called a pendant drop. Drops may also be formed by the condensation of a vapor or by atomization of a larger mass of solid. Water vapor will condense into droplets depending on the temperature. The temperature at which droplets form is called the dew point.

Source: "Hydrostatics", Wikipedia, Wikimedia Foundation, (2023, January 31st), https://en.wikipedia.org/wiki/Hydrostatics.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
  • Communicating vessels – Set of internally connected containers containing a homogeneous fluid
  • Hydrostatic test – Non-destructive test of pressure vessels
  • D-DIA – Apparatus used for high pressure and high temperature deformation experiments
References
  1. ^ "Fluid Mechanics/Fluid Statics/mentals of Fluid Statics - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2021-04-01.
  2. ^ "Hydrostatics". Merriam-Webster. Retrieved 11 September 2018.
  3. ^ Marcus Vitruvius Pollio (ca. 15 BCE), "The Ten Books of Architecture", Book VIII, Chapter 6. At the University of Chicago's Penelope site. Accessed on 2013-02-25.
  4. ^ Bettini, Alessandro (2016). A Course in Classical Physics 2—Fluids and Thermodynamics. Springer. p. 8. ISBN 978-3-319-30685-8.
  5. ^ Mauri, Roberto (8 April 2015). Transport Phenomena in Multiphase Flow. Springer. p. 24. ISBN 978-3-319-15792-4. Retrieved 3 February 2017.
  6. ^ Brown, Amy Christian (2007). Understanding Food: Principles and Preparation (3 ed.). Cengage Learning. p. 546. ISBN 978-0-495-10745-3.
  7. ^ a b Fox, Robert; McDonald, Alan; Pritchard, Philip (2012). Fluid Mechanics (8 ed.). John Wiley & Sons. pp. 76–83. ISBN 978-1-118-02641-0.
Further reading
  • Batchelor, George K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press. ISBN 0-521-66396-2.
  • Falkovich, Gregory (2011). Fluid Mechanics (A short course for physicists). Cambridge University Press. ISBN 978-1-107-00575-4.
  • Kundu, Pijush K.; Cohen, Ira M. (2008). Fluid Mechanics (4th rev. ed.). Academic Press. ISBN 978-0-12-373735-9.
  • Currie, I. G. (1974). Fundamental Mechanics of Fluids. McGraw-Hill. ISBN 0-07-015000-1.
  • Massey, B.; Ward-Smith, J. (2005). Mechanics of Fluids (8th ed.). Taylor & Francis. ISBN 978-0-415-36206-1.
  • White, Frank M. (2003). Fluid Mechanics. McGraw–Hill. ISBN 0-07-240217-2.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.