Get Our Extension

Hermit crab

From Wikipedia, in a visual modern way
Hermit crab
Temporal range: Hettangian–Present
Calliactis and Dardanus 001.JPG
Dardanus calidus
Scientific classification e
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Crustacea
Class: Malacostraca
Order: Decapoda
Suborder: Pleocyemata
Infraorder: Anomura
Superfamily: Paguroidea
Latreille, 1802
Families

Hermit crabs are anomuran decapod crustaceans of the superfamily Paguroidea that have adapted to occupy empty scavenged mollusc shells to protect their fragile exoskeletons.[1][2][3] There are over 800 species of hermit crab, most of which possess an asymmetric abdomen concealed by a snug-fitting shell. Hermit crabs' soft (non-calcified) abdominal exoskeleton means they must occupy shelter produced by other organisms or risk being defenseless.

The strong association between hermit crabs and their shelters has significantly influenced their biology. Almost 800 species carry mobile shelters (most often calcified snail shells); this protective mobility contributes to the diversity and multitude of crustaceans found in almost all marine environments. In most species, development involves metamorphosis from symmetric, free-swimming larvae to morphologically asymmetric, benthic-dwelling, shell-seeking crabs. Such physiological and behavioral extremes facilitate a transition to a sheltered lifestyle, revealing the extensive evolutionary lengths that led to their superfamily success.

Discover more about Hermit crab related topics

Anomura

Anomura

Anomura is a group of decapod crustaceans, including hermit crabs and others. Although the names of many anomurans include the word crab, all true crabs are in the sister group to the Anomura, the Brachyura.

Decapoda

Decapoda

The Decapoda or decapods are an order of crustaceans within the class Malacostraca, including many familiar groups, such as crabs, lobsters, crayfish, shrimp and prawns. Most decapods are scavengers. The order is estimated to contain nearly 15,000 species in around 2,700 genera, with around 3,300 fossil species. Nearly half of these species are crabs, with the shrimp and Anomura including hermit crabs, porcelain crabs, squat lobsters making up the bulk of the remainder. The earliest fossil decapod is the Devonian Palaeopalaemon.

Crustacean

Crustacean

Crustaceans form a large, diverse arthropod taxon which includes such animals as decapods, seed shrimp, branchiopods, fish lice, krill, remipedes, isopods, barnacles, copepods, amphipods and mantis shrimp. The crustacean group can be treated as a subphylum under the clade Mandibulata. It is now well accepted that the hexapods emerged deep in the Crustacean group, with the completed group referred to as Pancrustacea. Some crustaceans are more closely related to insects and the other hexapods than they are to certain other crustaceans.

Marine biogenic calcification

Marine biogenic calcification

Marine biogenic calcification is the process by which marine organisms such as oysters and clams form calcium carbonate. Seawater is full of dissolved compounds, ions and nutrients that organisms can use for energy and, in the case of calcification, to build shells and outer structures. Calcifying organisms in the ocean include molluscs, foraminifera, coccolithophores, crustaceans, echinoderms such as sea urchins, and corals. The shells and skeletons produced from calcification have important functions for the physiology and ecology of the organisms that create them.

Exoskeleton

Exoskeleton

An exoskeleton is an external skeleton that supports and protects an animal's body, in contrast to an internal skeleton (endoskeleton) in for example, a human. In usage, some of the larger kinds of exoskeletons are known as "shells". Examples of exoskeletons within animals include the arthropod exoskeleton shared by chelicerates, myriapods, crustaceans, and insects, as well as the shell of certain sponges and the mollusc shell shared by snails, clams, tusk shells, chitons and nautilus. Some animals, such as the turtle, have both an endoskeleton and an exoskeleton.

Gastropod shell

Gastropod shell

The gastropod shell is part of the body of a gastropod or snail, a kind of mollusc. The shell is an exoskeleton, which protects from predators, mechanical damage, and dehydration, but also serves for muscle attachment and calcium storage. Some gastropods appear shell-less (slugs) but may have a remnant within the mantle, or in some cases the shell is reduced such that the body cannot be retracted within it (semi-slug). Some snails also possess an operculum that seals the opening of the shell, known as the aperture, which provides further protection. The study of mollusc shells is known as conchology. The biological study of gastropods, and other molluscs in general, is malacology. Shell morphology terms vary by species group.

Metamorphosis

Metamorphosis

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

Benthic zone

Benthic zone

The benthic zone is the ecological region at the lowest level of a body of water such as an ocean, lake, or stream, including the sediment surface and some sub-surface layers. The name comes from ancient Greek, βένθος (bénthos), meaning "the depths." Organisms living in this zone are called benthos and include microorganisms as well as larger invertebrates, such as crustaceans and polychaetes. Organisms here generally live in close relationship with the substrate and many are permanently attached to the bottom. The benthic boundary layer, which includes the bottom layer of water and the uppermost layer of sediment directly influenced by the overlying water, is an integral part of the benthic zone, as it greatly influences the biological activity that takes place there. Examples of contact soil layers include sand bottoms, rocky outcrops, coral, and bay mud.

Biological description

A hermit crab emerges from its shell
A hermit crab emerges from its shell
Outside its shell, the soft, curved abdomen of hermit crabs, such as Pagurus bernhardus, is vulnerable.
Outside its shell, the soft, curved abdomen of hermit crabs, such as Pagurus bernhardus, is vulnerable.

Most species have long, spirally curved abdomens, which are soft, unlike the hard, calcified abdomens seen in related crustaceans. The vulnerable abdomen is protected from predators by a salvaged empty seashell carried by the hermit crab, into which its whole body can retract.[4] Most frequently, hermit crabs use the shells of sea snails (although the shells of bivalves and scaphopods and even hollow pieces of wood and stone are used by some species).[5] The tip of the hermit crab's abdomen is adapted to clasp strongly onto the columella of the snail shell.[6] Most hermit crabs are nocturnal.

Environment

Hermit crabs can be divided into two groups:[7]

Four hermit crabs in an aquarium
Four hermit crabs in an aquarium

Shells and shell competition

Hermit crabs fighting over a shell
Hermit crabs fighting over a shell
A hermit crab retracted into a shell of Acanthina punctulata and using its claws to block the entrance
A hermit crab retracted into a shell of Acanthina punctulata and using its claws to block the entrance

As hermit crabs grow, they require larger shells. Since suitable intact gastropod shells are sometimes a limited resource, vigorous competition often occurs between hermit crabs for shells. The availability of empty shells at any given place depends on the relative abundance of gastropods and hermit crabs, matched for size. An equally important issue is the population of organisms that prey upon gastropods and leave the shells intact.[8] Hermit crabs kept together may fight or kill a competitor to gain access to the shell they favour. However, if the crabs vary significantly in size, the occurrence of fights over empty shells will decrease or remain nonexistent.[9] Hermit crabs with undersized shells cannot grow as fast as those with well-fitting shells, and are more likely to be eaten if they cannot retract completely into the shell.[10]

Several Hermit crabs on the beach at Amami Ōshima in Japan.

As the hermit crab grows in size, it must find a larger shell and abandon the previous one. Several hermit crab species, both terrestrial and marine, have been observed forming a vacancy chain to exchange shells.[9] When an individual crab finds a new empty shell it will leave its own shell and inspect the vacant shell for size. If the shell is found to be too large, the crab goes back to its own shell and then waits by the vacant shell for up to 8 hours. As new crabs arrive they also inspect the shell and, if it is too big, wait with the others, forming a group of up to 20 individuals, holding onto each other in a line from the largest to the smallest crab. As soon as a crab that is the right size for the vacant shell arrives and claims it—leaving its old shell vacant—all the crabs in the queue swiftly exchange shells in sequence, each one moving up to the next size.[11] Hermit crabs often "gang up" on one of their species with what they perceive to be a better shell, and pry its shell away from it before competing for it until one takes it over.[12]

There are cases when seashells are not available and hermit crabs will use alternatives such as tin cans, custom-made shells, or any other types of debris, which often proves fatal to the hermit crabs (as they can climb into, but not out of, slippery plastic debris).[13] This can even create a chain reaction of fatality, because a dead hermit crab will release a signal to tell others that a shell is available, luring more hermit crabs to their deaths.

For some larger marine species, supporting one or more sea anemones on the shell can scare away predators. The sea anemone also benefits, because it is in a prime position to consume fragments of the hermit crab's meals. Other very close symbiotic relationships are known from encrusting bryozoans and hermit crabs forming bryoliths.[14]

Development and reproduction

Hermit crab species range in size and shape, from species with a carapace only a few millimetres long to Coenobita brevimanus, which can live 12–70 years and can approach the size of a coconut. The shell-less hermit crab Birgus latro (coconut crab) is the world's largest terrestrial invertebrate.[15]

The young develop in stages, with the first two (the nauplius and protozoea) occurring inside the egg. Most hermit crab larvae hatch at the third stage, the zoea. In this larval stage, the crab has several long spines, a long, narrow abdomen, and large fringed antennae. Several zoeal moults are followed by the final larval stage, the megalopa.[16]

Hermit crabs are often considered to be 'throwaway pets' that only live for a few months, but species such as Coenobita clypeatus have a 20-year lifespan if properly cared for,[17] and some have lived longer than 32 years.[18][19]

Discover more about Biological description related topics

Pagurus bernhardus

Pagurus bernhardus

Pagurus bernhardus is the common marine hermit crab of Europe's Atlantic coasts. It is sometimes referred to as the common hermit crab or soldier crab. Its carapace reaches 3.5 centimetres (1.4 in) long, and is found in both rocky and sandy areas, from the Arctic waters of Iceland, Svalbard and Russia as far south as southern Portugal, but its range does not extend as far as the Mediterranean Sea. It can be found in pools on the upper shore and at the mean tide level down to a depth of approximately 140 metres (460 ft), with smaller specimens generally found in rock pools around the middle shore and lower shore regions, with larger individuals at depth. P. bernhardus is an omnivorous detritivore that opportunistically scavenges for carrion, and which can also filter feed when necessary.

Species

Species

In biology, a species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.

Abdomen

Abdomen

The abdomen is the part of the body between the thorax (chest) and pelvis, in humans and in other vertebrates. The abdomen is the front part of the abdominal segment of the torso. The area occupied by the abdomen is called the abdominal cavity. In arthropods it is the posterior tagma of the body; it follows the thorax or cephalothorax.

Seashell

Seashell

A seashell or sea shell, also known simply as a shell, is a hard, protective outer layer usually created by an animal or organism that lives in the sea. The shell is part of the body of the animal. Empty seashells are often found washed up on beaches by beachcombers. The shells are empty because the animal has died and the soft parts have decomposed or been eaten by another animal.

Sea snail

Sea snail

Sea snail is a common name for slow-moving marine gastropod molluscs, usually with visible external shells, such as whelk or abalone. They share the taxonomic class Gastropoda with slugs, which are distinguished from snails primarily by the absence of a visible shell.

Nocturnality

Nocturnality

Nocturnality is an animal behavior characterized by being active during the night and sleeping during the day. The common adjective is "nocturnal", versus diurnal meaning the opposite.

Clibanarius fonticola

Clibanarius fonticola

Clibanarius fonticola is the only species of hermit crab in the world that lives in fresh water. It is found on the island of Espiritu Santo, Vanuatu. While a number of other hermit crabs are terrestrial or live in estuarine habitats, C. fonticola is the only species that spends its life in fresh water. It lives in a pool fed by springs near the village of Matevulu, close to an abandoned airstrip. The adult hermit crabs of this species all use shells of Clithon corona.

Aquatic animal

Aquatic animal

An aquatic animal is any animal, whether vertebrate or invertebrate, that lives in water for all or most of its lifetime. Many insects such as mosquitoes, mayflies, dragonflies and caddisflies have aquatic larvae, with winged adults. Aquatic animals may breathe air or extract oxygen from water through specialised organs called gills, or directly through the skin. Natural environments and the animals that live in them can be categorized as aquatic (water) or terrestrial (land). This designation is polyphyletic.

Marine aquarium

Marine aquarium

A marine aquarium is an aquarium that keeps marine plants and animals in a contained environment. Marine aquaria are further subdivided by hobbyists into fish only (FO), fish only with live rock (FOWLR), and reef aquaria. Fish only tanks often showcase large or aggressive marine fish species and generally rely on mechanical and chemical filtration. FOWLR and reef tanks use live rock, a material composed of coral skeletons harboring beneficial nitrogen waste metabolizing bacteria, as a means of more natural biological filtration.

Polychaete

Polychaete

Polychaeta is a paraphyletic class of generally marine annelid worms, commonly called bristle worms or polychaetes. Each body segment has a pair of fleshy protrusions called parapodia that bear many bristles, called chaetae, which are made of chitin. More than 10,000 species are described in this class. Common representatives include the lugworm and the sandworm or clam worm Alitta.

Vermetidae

Vermetidae

The Vermetidae, the worm snails or worm shells, are a taxonomic family of small to medium-sized sea snails, marine gastropod molluscs in the clade Littorinimorpha. The shells of species in the family Vermetidae are extremely irregular, and do not resemble the average snail shell, hence the common name "worm shells" or "worm snails".

Coral

Coral

Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

Classification

Hermit crabs are more closely related to squat lobsters and porcelain crabs than they are to true crabs (Brachyura). However, the relationship of king crabs to the rest of Paguroidea has been a highly contentious topic. Many studies based on their physical characteristics, genetic information, and combined data demonstrate the longstanding hypothesis that the king crabs in the family Lithodidae are derived hermit crabs descended from pagurids and should be classified as a family within Paguroidea.[20][21][22][23] The molecular data has disproven an alternate view based on morphological arguments that the Lithodidae (king crabs) nest with the Hapalogastridae in a separate superfamily, Lithodoidea.[24][25] Eight families are formally recognized in the superfamily Paguroidea,[1] containing around 1100 species in total in 120 genera.[2]

A hermit crab from Chabahar, Iran
A hermit crab from Chabahar, Iran

Discover more about Classification related topics

Crab

Crab

Crabs are decapod crustaceans of the infraorder Brachyura, which typically have a very short projecting "tail" (abdomen), usually hidden entirely under the thorax. They live in all the world's oceans, in freshwater, and on land, are generally covered with a thick exoskeleton, and have a single pair of pincers. They first appeared during the Jurassic Period.

King crab

King crab

King crabs are a taxon of decapod crustaceans chiefly found in cold seas. Because of their large size and the taste of their meat, many species are widely caught and sold as food, the most common being the red king crab.

Hapalogastridae

Hapalogastridae

Hapalogastridae is a family of decapod crustaceans, belonging to king crabs in the broadest sense, containing the following species:Acantholithodes Holmes, 1895 Acantholithodes hispidus (Stimpson, 1860) Dermaturus Brandt, 1850 Dermaturus mandtii Brandt, 1850 — wrinkled crab Hapalogaster Brandt, 1850 Hapalogaster cavicauda Stimpson, 1859 Hapalogaster dentata (De Haan, 1849) Hapalogaster grebnitzkii Schalfeew, 1892 Hapalogaster mertensii Brandt, 1850 Oedignathus Benedict, 1895 Oedignathus inermis (Stimpson, 1860) — granular claw crab Placetron Schalfeew, 1892 Placetron wosnessenskii Schalfeew, 1892 — scaled crab

Chabahar

Chabahar

Chābahār pronunciation (help·info) is the capital city of Chabahar County, Sistan and Baluchestan Province, Iran. It is a free port situated on the coast of the Gulf of Oman, and is Iran's southernmost city. The sister port city of Gwadar in Balochistan, Pakistan, is located about 170 kilometres (110 mi) to the east of Chabahar.

Iran

Iran

Iran, officially the Islamic Republic of Iran and also called Persia, is a country located in Western Asia. It is bordered by Iraq and Turkey to the west, by Azerbaijan and Armenia to the northwest, by the Caspian Sea and Turkmenistan to the north, by Afghanistan and Pakistan to the east, and by the Gulf of Oman and the Persian Gulf to the south. It covers an area of 1.64 million square kilometres, making it the 17th-largest country. Iran has an estimated population of 86.8 million, making it the 17th-most populous country in the world, and the second-largest in the Middle East. Its largest cities, in descending order, are the capital Tehran, Mashhad, Isfahan, Karaj, Shiraz, and Tabriz.

Calcinidae

Calcinidae

Calcinidae is a family of aquatic hermit crab of the superfamily Paguroidea.

Coenobitidae

Coenobitidae

The Coenobitidae are the family of terrestrial hermit crabs, widely known for their land-living habits as adults. They are found in coastal tropical regions around the world and require access to the ocean to breed.

Coenobita

Coenobita

The genus Coenobita contains 17 species of terrestrial hermit crabs. Several species in this genus are kept as pets.

Coconut crab

Coconut crab

The coconut crab is a species of terrestrial hermit crab, also known as the robber crab or palm thief. It is the largest terrestrial arthropod in the world, with a weight of up to 4.1 kg (9 lb). It can grow to up to 1 m in width from the tip of one leg to the tip of another. It is found on islands across the Indian Ocean, and parts of the Pacific Ocean as far east as the Gambier Islands, Pitcairn Islands and Caroline Island, similar to the distribution of the coconut palm; it has been extirpated from most areas with a significant human population, including mainland Australia and Madagascar. Coconut crabs also live off the coast of Africa near Zanzibar.

Diogenidae

Diogenidae

The Diogenidae are a family of hermit crabs, sometimes known as "left-handed hermit crabs" because in contrast to most other hermit crabs, its left chela (claw) is enlarged instead of the right. It comprises 429 extant species, and a further 46 extinct species, making it the second-largest family of marine hermit crabs, after the Paguridae.

Paguridae

Paguridae

The Paguridae are a family of hermit crabs of the order Decapoda. This family contains 542 species in over 70 genera:. The king crabs, Lithodoidea, are now widely undestood to be derived from deep within the Paguridae, with some authors placing their ancestors within the genus Pagurus.

Parapaguridae

Parapaguridae

The Parapaguridae are a family of marine hermit crabs from deep waters. Instead of carrying empty gastropod shells like other hermit crabs, they carry colonies of dozen or more sea anemones or zoanthids. Some genera, such as Bivalvopagurus and Tylaspis, do not inhabit shells. The following genera are included:

Fossil record

The fossil record of in situ hermit crabs using gastropod shells stretches back to the Late Cretaceous. Before that time, at least some hermit crabs used ammonite shells instead, as shown by a specimen of Palaeopagurus vandenengeli from the Speeton Clay Formation, Yorkshire, UK, from the Lower Cretaceous,[28] as well as from the Upper Jurassic of Russia.[29] The earliest record of the superfamily extends back to the earliest part of the Jurassic, with the oldest known species being Schobertella hoelderi from the late Hettangian of Germany.[30]

Discover more about Fossil record related topics

In situ

In situ

In situ is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in many different contexts. For example, in fields such as physics, geology, chemistry, or biology, in situ may describe the way a measurement is taken, that is, in the same place the phenomenon is occurring without isolating it from other systems or altering the original conditions of the test. The opposite of in situ is ex situ.

Gastropod shell

Gastropod shell

The gastropod shell is part of the body of a gastropod or snail, a kind of mollusc. The shell is an exoskeleton, which protects from predators, mechanical damage, and dehydration, but also serves for muscle attachment and calcium storage. Some gastropods appear shell-less (slugs) but may have a remnant within the mantle, or in some cases the shell is reduced such that the body cannot be retracted within it (semi-slug). Some snails also possess an operculum that seals the opening of the shell, known as the aperture, which provides further protection. The study of mollusc shells is known as conchology. The biological study of gastropods, and other molluscs in general, is malacology. Shell morphology terms vary by species group.

Late Cretaceous

Late Cretaceous

The Late Cretaceous is the younger of two epochs into which the Cretaceous Period is divided in the geologic time scale. Rock strata from this epoch form the Upper Cretaceous Series. The Cretaceous is named after creta, the Latin word for the white limestone known as chalk. The chalk of northern France and the white cliffs of south-eastern England date from the Cretaceous Period.

Palaeopagurus

Palaeopagurus

Palaeopagurus is an extinct genus of hermit crab from the Lower Cretaceous.

Speeton Clay Formation

Speeton Clay Formation

The Speeton Clay Formation (SpC) is a Lower Cretaceous geological formation in Yorkshire, northern England. Unlike the contemporaneous terrestrial Wealden Group to the south, the Speeton Clay was deposited in marine conditions. The most common fossils in the unit are belemnites, followed by ammonites and the lobster Meyeria ornata. Dinosaur remains are among the fossils that have been recovered from the formation, although none have yet been referred to a specific genus.

Yorkshire

Yorkshire

Yorkshire is a historic county in Northern England and the largest by area size in the United Kingdom. Because of its large area in comparison with other English counties, functions have been undertaken over time by its subdivisions, which have also been subject to periodic reform. Throughout these changes, Yorkshire has continued to be recognised as a geographic territory and cultural region.

United Kingdom

United Kingdom

The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Europe, off the north-western coast of the continental mainland. It comprises England, Scotland, Wales and Northern Ireland. The United Kingdom includes the island of Great Britain, the north-eastern part of the island of Ireland, and many smaller islands within the British Isles. Northern Ireland shares a land border with the Republic of Ireland; otherwise, the United Kingdom is surrounded by the Atlantic Ocean, the North Sea, the English Channel, the Celtic Sea and the Irish Sea. The total area of the United Kingdom is 242,495 square kilometres (93,628 sq mi), with an estimated 2023 population of over 68 million people.

Hettangian

Hettangian

The Hettangian is the earliest age and lowest stage of the Jurassic Period of the geologic timescale. It spans the time between 201.3 ± 0.2 Ma and 199.3 ± 0.3 Ma. The Hettangian follows the Rhaetian and is followed by the Sinemurian.

Source: "Hermit crab", Wikipedia, Wikimedia Foundation, (2023, March 17th), https://en.wikipedia.org/wiki/Hermit_crab.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

References
  1. ^ a b Patsy McLaughlin & Michael Türkay (2011). Lemaitre R, McLaughlin P (eds.). "Paguroidea". World Paguroidea & Lomisoidea database. World Register of Marine Species. Retrieved November 25, 2011.
  2. ^ a b Patsy A. McLaughlin; Tomoyuki Komai; Rafael Lemaitre; Dwi Listyo Rahayu (2010). Martyn E. Y. Low; S. H. Tan (eds.). "Annotated checklist of anomuran decapod crustaceans of the world (exclusive of the Kiwaoidea and families Chirostylidae and Galatheidae of the Galatheoidea) - Chapter: Part I – Lithodoidea, Lomisoidea and Paguroidea" (PDF). Zootaxa. Suppl. 23: 5–107. Archived from the original (PDF) on 2012-01-22.
  3. ^ Hazlett, B.A. (1981). "The Behavioral Ecology of Hermit Crabs". Annual Review of Ecology and Systematics. 12 (1): 1–22. doi:10.1146/annurev.es.12.110181.000245. ISSN 0066-4162.
  4. ^ Ray W. Ingle (1997). "Hermit and stone crabs (Paguroidea)". Crayfishes, lobsters, and crabs of Europe: an illustrated guide to common and traded species. Cambridge University Press. pp. 83–98. ISBN 978-0-412-71060-5.
  5. ^ a b Jason D. Williams; John J. McDermott (2004). "Hermit crab biocoenoses: a worldwide review of the biodiversity and natural history of hermit crab associates" (PDF). Journal of Experimental Marine Biology and Ecology. 305: 1–128. doi:10.1016/j.jembe.2004.02.020. Archived from the original (PDF) on 2016-03-04. Retrieved 2020-01-13.
  6. ^ W. D. Chapple (2002). "Mechanoreceptors innervating soft cuticle in the abdomen of the hermit crab, Pagurus pollicarus". Journal of Comparative Physiology A. 188 (10): 753–766. doi:10.1007/s00359-002-0362-2. PMID 12466951. S2CID 7105940.
  7. ^ W. Michael, Scott. "Aquarium Hermit Crabs". Fishchannel.com.
  8. ^ Elena Tricarico; Francesca Gherardi (August 2006). "Shell acquisition by hermit crabs: which tactic is more efficient?" (PDF). Behavioral Ecology and Sociobiology. 60 (4): 492–500. doi:10.1007/s00265-006-0191-3. hdl:2158/210264. S2CID 23622893.
  9. ^ a b Randi D. Rotjan; Jeffrey R. Chabot; Sara M. Lewis (2010). "Social context of shell acquisition in Coenobita clypeatus hermit crabs". Behavioral Ecology. 21 (3): 639–646. doi:10.1093/beheco/arq027. hdl:10.1093/beheco/arq027. ISSN 1465-7279.
  10. ^ Jennifer E. Angel (2000). "Effects of shell fit on the biology of the hermit crab Pagurus longicarpus (Say)". Journal of Experimental Marine Biology and Ecology. 243 (2): 169–184. doi:10.1016/S0022-0981(99)00119-7.
  11. ^ Ferris Jabr (5 June 2012). "On a Tiny Caribbean Island, Hermit Crabs Form Sophisticated Social Networks". Scientific American. Scientific American. Retrieved 6 November 2014.
  12. ^ Robert Sanders (October 26, 2012). "Hermit crabs socialize to evict their neighbors". University of California, Berkeley. Retrieved October 27, 2012.
  13. ^ Lewis, Sophie (Dec 7, 2019). "Plastic pollution has killed half a million hermit crabs that confused trash for shells". CBS News.
  14. ^ A. Klicpera; Paul D. Taylor; H. Westphal (2013). "Bryoliths constructed by bryozoans in symbiotic associations with hermit crabs in a tropical heterozoan carbonate system, Golfe d'Arguin, Mauritania". Marine Biodiversity. 43 (4): 429. doi:10.1007/s12526-013-0173-4. S2CID 15841444.
  15. ^ Grubb, P. (1971). "Ecology of terrestrial decapod crustaceans on Aldabra". Philosophical Transactions of the Royal Society B. 260 (836): 411–416. Bibcode:1971RSPTB.260..411G. doi:10.1098/rstb.1971.0020.
  16. ^ Squires, H.J. (1996). "Larvae of the hermit crab, Pagurus arcuatus, from the plankton (Crustacea, Decapoda)". Journal of Northwest Atlantic Fishery Science. 18: 43–56. doi:10.2960/J.v18.a3.
  17. ^ "Land hermit crab care guide". Pet Smart Veterinarians. Pet Smart. 2006. Archived from the original on 2011-06-11. {{cite journal}}: Cite journal requires |journal= (help)
  18. ^ Lombardi, Linda (July 22, 2008). "Hermit crabs don't have to fade away; with proper care they can have long life". Amherst Daily News. The Associated Press. Retrieved 2017-07-07.
  19. ^ Stacy (February 21, 2013). "How old is my hermit crab?". The Crabstreet Journal. Retrieved 2013-04-28.
  20. ^ J. D. MacDonald; R. B. Pike; D. I. Williamson (1957). "Larvae of the British Species of Diogenes, Pagurus, Anapagurus,and Lithodes". Proceedings of the Zoological Society of London. 128 (2): 209–257. doi:10.1111/j.1096-3642.1957.tb00265.x.
  21. ^ C. W. Cunningham; N. W. Blackstone; L. W. Buss (1992). "Evolution of king crabs from hermit crab ancestors". Nature. 355 (6360): 539–542. Bibcode:1992Natur.355..539C. doi:10.1038/355539a0. PMID 1741031. S2CID 4257029.
  22. ^ C. L. Morrison; A. W. Harvey; S. Lavery; K. Tieu; Y. Huang; C. W. Cunningham (2001). "Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form" (PDF). Proceedings of the Royal Society B: Biological Sciences. 269 (1489): 345–350. doi:10.1098/rspb.2001.1886. PMC 1690904. PMID 11886621.
  23. ^ Tsang, L. M.; Chan, T.-Y.; Ahyong, S. T.; Chu, K. H. (2011). "Hermit to King, or Hermit to All: Multiple Transitions to Crab-like Forms from Hermit Crab Ancestors". Systematic Biology. 60 (5): 616–629. doi:10.1093/sysbio/syr063. PMID 21835822.
  24. ^ Patsy A. McLaughlin; Rafael Lemaitre (1997). "Carcinization in the anomura – fact or fiction? I. Evidence from adult morphology". Contributions to Zoology. 67 (2): 79–123. doi:10.1163/18759866-06702001. PDF
  25. ^ Sammy De Grave; N. Dean Pentcheff; Shane T. Ahyong; et al. (2009). "A classification of living and fossil genera of decapod crustaceans" (PDF). Raffles Bulletin of Zoology. Suppl. 21: 1–109. Archived from the original (PDF) on 2011-06-06.
  26. ^ René H.B. Fraaije; Barry W.M. Van Bakel; John W.M. Jagt (2017). "A new paguroid from the type Maastrichtian (upper Cretaceous, the Netherlands) and erection of a new family". Bulletin de la Société Géologique de France. 188 (3): 1–4. doi:10.1051/bsgf/2017185.
  27. ^ René H. B. Fraaije; Adiël A. Klompmaker; Pedro Artal (2012). "New species, genera and a family of hermit crabs (Crustacea, Anomura, Paguroidea) from a mid-Cretaceous reef of Navarra, northern Spain". Neues Jahrbuch für Geologie und Paläontologie. 263 (1): 85–92. doi:10.1127/0077-7749/2012/0213.
  28. ^ René H. Fraaije (January 2003). "The oldest in situ hermit crab from the Lower Cretaceous of Speeton, UK". Palaeontology. 46 (1): 53–57. doi:10.1111/1475-4983.00286. S2CID 128545998.
  29. ^ Mironenko, Aleksandr (January 2020). "A hermit crab preserved inside an ammonite shell from the Upper Jurassic of central Russia: Implications to ammonoid palaeoecology". Palaeogeography, Palaeoclimatology, Palaeoecology. 537: 109397. Bibcode:2020PPP...537j9397M. doi:10.1016/j.palaeo.2019.109397.
  30. ^ Fraaije, René; Schweigert, Günter; Nützel, Alexander; Havlik, Philipe (2013-01-01). "New Early Jurassic hermit crabs from Germany and France". Journal of Crustacean Biology. 33 (6): 802–817. doi:10.1163/1937240X-00002191. ISSN 0278-0372.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.