Get Our Extension

Gonochorism

From Wikipedia, in a visual modern way

In biology, gonochorism is a sexual system where there are only two sexes and each individual organism is either male or female.[1] The term gonochorism is usually applied in animal species, the vast majority of which are gonochoric.[2]

Gonochorism contrasts with simultaneous hermaphroditism but it may be hard to tell if a species is gonochoric or sequentially hermaphroditic. (e.g. Parrotfish, Patella ferruginea).[3] However, in gonochoric species individuals remain either male or female throughout their lives.[4] Species that reproduce by thelytokous parthenogenesis and do not have males can still be classified as gonochoric.[5]

Discover more about Gonochorism related topics

Biology

Biology

Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce. Finally, all organisms are able to regulate their own internal environments.

Sexual system

Sexual system

A sexual system is a pattern of sex allocation or a distribution of male and female function across organisms in a species. Terms like reproductive system and mating system have also been used as synonyms.

Sex

Sex

Sex is the trait that determines whether a sexually reproducing animal or plant produces male or female gametes. Male plants and animals produce smaller mobile gametes, while females produce larger ones. Organisms that produce both types of gametes are called hermaphrodites. During sexual reproduction, male and female gametes fuse to form zygotes, which develop into offspring that inherit traits from each parent.

Male

Male

Male is the sex of an organism that produces the gamete known as sperm, which fuses with the larger female gamete, or ovum, in the process of fertilization.

Female

Female

Female is the sex of an organism that produces the large non-motile ova, the type of gamete that fuses with the male gamete during sexual reproduction.

Hermaphrodite

Hermaphrodite

In reproductive biology, a hermaphrodite is an organism that has both kinds of reproductive organs and can produce both gametes associated with male and female sexes.

Parrotfish

Parrotfish

Parrotfishes are a group of about 90 fish species regarded as a family (Scaridae), or a subfamily (Scarinae) of the wrasses. With about 95 species, this group's largest species richness is in the Indo-Pacific. They are found in coral reefs, rocky coasts, and seagrass beds, and can play a significant role in bioerosion.

Patella ferruginea

Patella ferruginea

Patella ferruginea, commonly known as the ribbed Mediterranean limpet, is a species of sea snail, a true limpet, a marine gastropod mollusk in the family Patellidae, one of the families of true limpets. It is a large limpet, native to the western Mediterranean Sea, and although common in the past, it is now rare and restricted to only a few locations.

Terminology

The term is derived from Greek (gone, generation) + (chorizein, to separate).[6] The term gonochorism originally came from German gonochorismus.[7]

Gonochorism is also referred to as unisexualism or gonochory.

Evolution

Gonochorism has evolved independently multiple times[8] and is very evolutionary stable in animals.[9] Its stability and advantages have received little attention.[10]: 46  Its origin owes to the evolution of anisogamy,[11] it is unclear if the evolution of anisogamy first led to hermaphroditism or gonochorism.[12]: 213 

Gonochorism is thought to be ancestral in polychaetes,[13]: 126  hexacorallia,[14]: 74  nematodes,[15]: 62  and hermaphroditic fishes. Gonochorism is thought to be ancestral in hermaphroditic fishes because it is widespread in basal clades of fish and other vertebrate lineages.[16]

Two papers from 2008 have suggested that transitions between hermaphroditism and gonochorism or vice versa have occurred in certain animal taxonomy groups between 10 to 20 times.[17] In a 2017 study involving 165 taxon groups, more evolutionary transitions from gonochorism to hermaphroditism were found than the reverse.[18]

Discover more about Evolution related topics

Evolution of sexual reproduction

Evolution of sexual reproduction

Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms, with some organisms being incapable of asexual reproduction. Currently the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate. And if the environment has not changed, then there may be little reason for variation, as the organism may already be well adapted. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.

Convergent evolution

Convergent evolution

Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.

Anisogamy

Anisogamy

Anisogamy is a form of sexual reproduction that involves the union or fusion of two gametes that differ in size and/or form. The smaller gamete is male, a sperm cell, whereas the larger gamete is female, typically an egg cell. Anisogamy is predominant among multicellular organisms. In both plants and animals gamete size difference is the fundamental difference between females and males.

Polychaete

Polychaete

Polychaeta is a paraphyletic class of generally marine annelid worms, commonly called bristle worms or polychaetes. Each body segment has a pair of fleshy protrusions called parapodia that bear many bristles, called chaetae, which are made of chitin. More than 10,000 species are described in this class. Common representatives include the lugworm and the sandworm or clam worm Alitta.

Hexacorallia

Hexacorallia

Hexacorallia is a class of Anthozoa comprising approximately 4,300 species of aquatic organisms formed of polyps, generally with 6-fold symmetry. It includes all of the stony corals, most of which are colonial and reef-forming, as well as all sea anemones, and zoanthids, arranged within five extant orders. The hexacorallia are distinguished from another class of Anthozoa, Octocorallia, in having six or fewer axes of symmetry in their body structure; the tentacles are simple and unbranched and normally number more than eight. These organisms are formed of individual soft polyps which in some species live in colonies and can secrete a calcite skeleton. As with all Cnidarians, these organisms have a complex life cycle including a motile planktonic phase and a later characteristic sessile phase. Hexacorallia also include the significant extinct order of rugose corals.

Nematode

Nematode

The nematodes or roundworms constitute the phylum Nematoda, with plant-parasitic nematodes also known as eelworms. They are a diverse animal phylum inhabiting a broad range of environments. Less formally, they are categorized as Helminths, but are taxonomically classified along with arthropods, tardigrades and other moulting animals in the clade Ecdysozoa, and unlike flatworms, have tubular digestive systems with openings at both ends. Like tardigrades, they have a reduced number of Hox genes, but their sister phylum Nematomorpha has kept the ancestral protostome Hox genotype, which shows that the reduction has occurred within the nematode phylum.

Fish

Fish

Fish are aquatic, craniate, gill-bearing animals that lack limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of living fish species are ray-finned fish, belonging to the class Actinopterygii, with around 99% of those being teleosts.

Basal (phylogenetics)

Basal (phylogenetics)

In phylogenetics, basal is the direction of the base of a rooted phylogenetic tree or cladogram. The term may be more strictly applied only to nodes adjacent to the root, or more loosely applied to nodes regarded as being close to the root. Note that extant taxa that lie on branches connecting directly to the root are not more closely related to the root than any other extant taxa.

Clade

Clade

A clade, also known as a monophyletic group or natural group, is a group of organisms that are monophyletic – that is, composed of a common ancestor and all its lineal descendants – on a phylogenetic tree. Rather than the English term, the equivalent Latin term cladus is often used in taxonomical literature.

Use across species

Animals

The term is most often used with animals, in which the species are usually gonochoric.

Gonochorism has been estimated to occur in 95% of animal species.[19] It is very common in vertebrate species, 99% of which are gonochoric.[20][21] 98% of fishes are gonochoric.[22] Mammals (including humans[23][24]) and birds are solely gonochoric.[25]

Tardigrades are almost always gonochoric.[26] 75% of snails are gonochoric.[27]

Most arthropods are gonochoric.[28] For example a majority of crustaceans are gonochoric.[29]

In animals, sex is most often genetically determined, but may be determined by other mechanisms. For example, alligators use temperature-dependent sex determination during egg incubation.

Plants

Plants which have single-sex individuals are typically called dioecious (vascular plants) or dioicous (bryophytes) instead of gonochoric. In flowering plants, individual flowers may be hermaphroditic (i.e. with both stamens and ovaries) or dioecious (unisexual), having either no stamens (i.e. no male parts) or no ovaries (i.e. no female parts). Among flowering plants with unisexual flowers, some also produce hermaphrodite flowers, and the three types may occur in different arrangements on the same or separate plants. Plant species can thus be hermaphrodite, monoecious, dioecious, trioecious, polygamomonoecious, polygamodioecious, andromonoecious, or gynomonoecious.

Unlike most flatworms, schistosomes are gonochoric. The narrow female can be seen emerging from the thicker male's gynecophoral canal below his ventral sucker.
Unlike most flatworms, schistosomes are gonochoric. The narrow female can be seen emerging from the thicker male's gynecophoral canal below his ventral sucker.

Examples of species with gonochoric or dioecious pollination include hollies and kiwifruit. In these plants the male plant that supplies the pollen is referred to as the pollenizer.

Discover more about Use across species related topics

Animal

Animal

Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in which their body consists of a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres (0.00033 in) to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology.

Mammal

Mammal

Mammals are a group of vertebrate animals constituting the class Mammalia, characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex, fur or hair, and three middle ear bones. These characteristics distinguish them from reptiles from which they diverged in the Carboniferous, over 300 million years ago. Around 6,400 extant species of mammals have been described divided into 29 orders. The largest orders, in terms of number of species, are the rodents, bats, and Eulipotyphla. The next three are the Primates, the Artiodactyla, and the Carnivora.

Human

Human

Humans are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture, and language. Humans are highly social and tend to live in complex social structures composed of many cooperating and competing groups, from families and kinship networks to political states. Social interactions between humans have established a wide variety of values, social norms, and rituals, which bolster human society. Its intelligence and its desire to understand and influence the environment and to explain and manipulate phenomena have motivated humanity's development of science, philosophy, mythology, religion, and other fields of study.

Bird

Bird

Birds are a group of warm-blooded vertebrates constituting the class Aves, characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. Birds live worldwide and range in size from the 5.5 cm (2.2 in) bee hummingbird to the 2.8 m ostrich. There are about ten thousand living species, more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds. Wings, which are modified forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Arthropod

Arthropod

Arthropods are invertebrate animals with an exoskeleton, a segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and cuticle made of chitin, often mineralised with calcium carbonate. The arthropod body plan consists of segments, each with a pair of appendages. Arthropods are bilaterally symmetrical and their body possesses an external skeleton. In order to keep growing, they must go through stages of moulting, a process by which they shed their exoskeleton to reveal a new one. Some species have wings. They are an extremely diverse group, with up to 10 million species.

Crustacean

Crustacean

Crustaceans form a large, diverse arthropod taxon which includes such animals as decapods, seed shrimp, branchiopods, fish lice, krill, remipedes, isopods, barnacles, copepods, amphipods and mantis shrimp. The crustacean group can be treated as a subphylum under the clade Mandibulata. It is now well accepted that the hexapods emerged deep in the Crustacean group, with the completed group referred to as Pancrustacea. Some crustaceans are more closely related to insects and the other hexapods than they are to certain other crustaceans.

Alligator

Alligator

An alligator is a large reptile in the Crocodilia order in the genus Alligator of the family Alligatoridae. The two extant species are the American alligator and the Chinese alligator. Additionally, several extinct species of alligator are known from fossil remains. Alligators first appeared during the Oligocene epoch about 37 million years ago.

Dioecy

Dioecy

Dioecy is a characteristic of a species, meaning that it has distinct individual organisms (unisexual) that produce male or female gametes, either directly or indirectly. Dioecious reproduction is biparental reproduction. Dioecy has costs, since only about half the population directly produces offspring. It is one method for excluding self-fertilization and promoting allogamy (outcrossing), and thus tends to reduce the expression of recessive deleterious mutations present in a population. Plants have several other methods of preventing self-fertilization including, for example, dichogamy, herkogamy, and self-incompatibility.

Dioicy

Dioicy

Dioicy is a sexual system where archegonia and antheridia are produced on separate gametophytes. It is one of the two main sexual systems in bryophytes. Both dioicous and monoicous gametophytes produce gametes in gametangia by mitosis rather than meiosis, so that sperm and eggs are genetically identical with their parent gametophyte.

Bryophyte

Bryophyte

The Bryophyta s.l. are a proposed taxonomic division containing three groups of non-vascular land plants (embryophytes): the liverworts, hornworts and mosses. Bryophyta s.s. consists of the mosses only. They are characteristically limited in size and prefer moist habitats although they can survive in drier environments. The bryophytes consist of about 20,000 plant species. Bryophytes produce enclosed reproductive structures, but they do not produce flowers or seeds. They reproduce sexually by spores and asexually by fragmentation or the production of gemmae. Though bryophytes were considered a paraphyletic group in recent years, almost all of the most recent phylogenetic evidence supports the monophyly of this group, as originally classified by Wilhelm Schimper in 1879. The term bryophyte comes from Ancient Greek βρύον (brúon) 'tree moss, liverwort', and φυτόν (phutón) 'plant'.

Flowering plant

Flowering plant

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae, commonly called angiosperms. The term "angiosperm" is derived from the Greek words angeion and sperma ('seed'), and refers to those plants that produce their seeds enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta.

Hermaphrodite

Hermaphrodite

In reproductive biology, a hermaphrodite is an organism that has both kinds of reproductive organs and can produce both gametes associated with male and female sexes.

Other reproductive strategies

Gonochorism stands in contrast to other reproductive strategies such as asexual reproduction and hermaphroditism. Closely related taxa can have differing sexual strategies – for example, the genus Ophryotrocha contains species that are gonochoric and species that are hermaphrodites.[30]

The sex of an individual may also change during its lifetime – this sequential hermaphroditism can, for example, be found in parrotfish[31][32] and cockles.

Discover more about Other reproductive strategies related topics

Asexual reproduction

Asexual reproduction

Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent. Asexual reproduction is the primary form of reproduction for single-celled organisms such as archaea and bacteria. Many eukaryotic organisms including plants, animals, and fungi can also reproduce asexually. In vertebrates, the most common form of asexual reproduction is parthenogenesis, which is typically used as an alternative to sexual reproduction in times when reproductive opportunities are limited. Komodo dragons and some monitor lizards can also reproduce asexually.

Hermaphrodite

Hermaphrodite

In reproductive biology, a hermaphrodite is an organism that has both kinds of reproductive organs and can produce both gametes associated with male and female sexes.

Ophryotrocha

Ophryotrocha

Ophryotrocha is a genus of marine polychaete worms in the family Dorvilleidae.

Sequential hermaphroditism

Sequential hermaphroditism

Sequential hermaphroditism is a type of hermaphroditism that occurs in many fish, gastropods, and plants. Sequential hermaphroditism occurs when the individual changes its sex at some point in its life. In particular, a sequential hermaphrodite produces eggs and sperm at different stages in life. Species that can undergo these changes from one sex to another do so as a normal event within their reproductive cycle that is usually cued by either social structure or the achievement of a certain age or size.

Parrotfish

Parrotfish

Parrotfishes are a group of about 90 fish species regarded as a family (Scaridae), or a subfamily (Scarinae) of the wrasses. With about 95 species, this group's largest species richness is in the Indo-Pacific. They are found in coral reefs, rocky coasts, and seagrass beds, and can play a significant role in bioerosion.

Cockle (bivalve)

Cockle (bivalve)

A cockle is an edible marine bivalve mollusc. Although many small edible bivalves are loosely called cockles, true cockles are species in the family Cardiidae.

Source: "Gonochorism", Wikipedia, Wikimedia Foundation, (2022, November 25th), https://en.wikipedia.org/wiki/Gonochorism.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ King RC, Stansfield WD, Mulligan PK (2006-07-27). "Gonochorism". A Dictionary of Genetics. Oxford University Press. p. 187. ISBN 978-0-19-976957-5.
  2. ^ Kliman R (2016). "Hermaphrodites". In Schärer L, Ramm S (eds.). Encyclopedia of Evolutionary Biology. Vol. 2. Academic Press. pp. 212–222. ISBN 978-0-12-800426-5. Archived from the original on 2016.
  3. ^ Holub AM, Shackelford TK (2020). "Gonochorism". In Vonk J, Shackelford TK (eds.). Encyclopedia of Animal Cognition and Behavior (PDF). Cham: Springer International Publishing. pp. 1–3. doi:10.1007/978-3-319-47829-6_305-1. ISBN 978-3-319-47829-6. S2CID 240938739.
  4. ^ West S (2009-09-28). Sex Allocation. Princeton University Press. p. 1. ISBN 978-1-4008-3201-9.
  5. ^ Fusco G, Minelli A (2019-10-10). The Biology of Reproduction. Cambridge University Press. pp. 116–117. ISBN 978-1-108-49985-9.
  6. ^ Winn, Philip (2003-09-02). Dictionary of Biological Psychology. Routledge. p. 698. ISBN 978-1-134-77815-7.
  7. ^ "Definition of GONOCHORISM". www.merriam-webster.com. Retrieved 2021-09-29.
  8. ^ Bachtrog, Doris; Mank, Judith E.; Peichel, Catherine L.; Kirkpatrick, Mark; Otto, Sarah P.; Ashman, Tia-Lynn; Hahn, Matthew W.; Kitano, Jun; Mayrose, Itay; Ming, Ray; Perrin, Nicolas (2014-07-01). "Sex Determination: Why So Many Ways of Doing It?". PLOS Biology. 12 (7): e1001899. doi:10.1371/journal.pbio.1001899. ISSN 1544-9173. PMC 4077654. PMID 24983465.
  9. ^ Leonard, Janet L. (2013-10-01). "Williams' Paradox and the Role of Phenotypic Plasticity in Sexual Systems". Integrative and Comparative Biology. 53 (4): 671–688. doi:10.1093/icb/ict088. ISSN 1540-7063. PMID 23970358.
  10. ^ Leonard JL (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. ISBN 978-3-319-94139-4.
  11. ^ Barnes, R. S. K.; Hughes, R. N. (1999-06-02). An Introduction to Marine Ecology. John Wiley & Sons. p. 202. ISBN 978-0-86542-834-8.
  12. ^ Kliman, Richard (2016). Encyclopedia of Evolutionary Biology. Vol. 2. Academic Press. pp. 212–224. ISBN 978-0-12-800426-5. Archived from the original on 2016.
  13. ^ Leonard, Janet L. (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. ISBN 978-3-319-94139-4.
  14. ^ Dubinsky, Zvy; Stambler, Noga (2010-12-02). Coral Reefs: An Ecosystem in Transition. Springer Science & Business Media. ISBN 978-94-007-0114-4.
  15. ^ Schmidt-Rhaesa, Andreas (2013-12-18). Nematoda. Walter de Gruyter. ISBN 978-3-11-027425-7.
  16. ^ Erisman BE, Petersen CW, Hastings PA, Warner RR (October 2013). "Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes". Integrative and Comparative Biology. 53 (4): 736–54. doi:10.1093/icb/ict077. PMID 23817661.
  17. ^ Weeks, Stephen C. (18 June 2012). "The Role of Androdioecy and Gynodioecy in Mediating Evolutionary Transitions Between Dioecy and Hermaphroditism in the Animalia". Evolution. 66 (12): 3670–3686. doi:10.1111/j.1558-5646.2012.01714.x. PMID 23206127. S2CID 3198554.
  18. ^ Sasson DA, Ryan JF (December 2017). "A reconstruction of sexual modes throughout animal evolution". BMC Evolutionary Biology. 17 (1): 242. doi:10.1186/s12862-017-1071-3. PMC 5717846. PMID 29207942.
  19. ^ Muyle A, Bachtrog D, Marais GA, Turner JM (June 2021). "Epigenetics drive the evolution of sex chromosomes in animals and plants". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 376 (1826): 20200124. doi:10.1098/rstb.2020.0124. PMC 8059572. PMID 33866802.
  20. ^ Skinner M (2018-06-29). "Evolution of Sex Determining Genes in Fish". In Pan Q, Guiguen Y, Herpin A (eds.). Encyclopedia of Reproduction. Academic Press. p. 168. ISBN 978-0-12-815145-7.
  21. ^ Kuwamura T, Sunobe T, Sakai Y, Kadota T, Sawada K (2020-07-01). "Hermaphroditism in fishes: an annotated list of species, phylogeny, and mating system". Ichthyological Research. 67 (3): 341–360. doi:10.1007/s10228-020-00754-6. ISSN 1616-3915.
  22. ^ Pandian, T. J. (2011-09-02). Sex Determination in Fish. CRC Press. p. 8. ISBN 978-1-4398-7919-1.
  23. ^ Pierce BA (2012). Genetics: A Conceptual Approach. Macmillan. p. 75. ISBN 978-1-4292-3252-4.
  24. ^ Muehlenbein MP (2010-07-29). Jones J (ed.). Human Evolutionary Biology. Cambridge University Press. p. 74. ISBN 978-0-521-87948-4.
  25. ^ Kobayashi K, Kitano T, Iwao Y, Kondo M (June 2018). Reproductive and Developmental Strategies: The Continuity of Life. Springer. p. 290. ISBN 978-4-431-56609-0.
  26. ^ Thorp, James H.; Covich, Alan P. (2010). Ecology and Classification of North American Freshwater Invertebrates. Academic Press. p. 468. ISBN 978-0-12-374855-3.
  27. ^ Encyclopedia of Evolutionary Biology. Vol. 4. Academic Press. 2016-04-14. p. 50. ISBN 978-0-12-800426-5.
  28. ^ Giribet, Gonzalo; Edgecombe, Gregory D. (2020-03-03). The Invertebrate Tree of Life. Princeton University Press. p. 249. ISBN 978-0-691-19706-7.
  29. ^ Subramoniam, Thanumalaya (2016-09-27). Sexual Biology and Reproduction in Crustaceans. Academic Press. pp. 57–58. ISBN 978-0-12-809606-2.
  30. ^ Prevedelli D, N'Siala GM, Simonini R (January 2006). "Gonochorism vs. hermaphroditism: relationship between life history and fitness in three species of Ophryotrocha (Polychaeta: Dorvilleidae) with different forms of sexuality". The Journal of Animal Ecology. 75 (1): 203–12. doi:10.1111/j.1365-2656.2006.01040.x. PMID 16903057.
  31. ^ Bester C. "Stoplight parrotfish". Florida Museum of Natural History, Ichthyology Department. Archived from the original on 6 December 2009. Retrieved 15 December 2009.
  32. ^ Afonso P, Morato T, Santos RS (2008). "Spatial patterns in reproductive traits of the temperate parrotfish Sparisoma cretense". Fisheries Research. 90 (1–3): 92–99. doi:10.1016/j.fishres.2007.09.029.

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.