Get Our Extension

Giant Pacific octopus

From Wikipedia, in a visual modern way
Giant Pacific octopus
Temporal range: Pleistocene to recent[1]
Enteroctopus dolfeini.jpg
E. dofleini observed off Point Piños, California, at a depth of 65 m (213 ft)
Scientific classification edit
Kingdom: Animalia
Phylum: Mollusca
Class: Cephalopoda
Order: Octopoda
Family: Enteroctopodidae
Genus: Enteroctopus
Species:
E. dofleini
Binomial name
Enteroctopus dofleini
(Wülker [fr], 1910)
Enteroctopus dofleini habitat range.jpg
Distribution of E. dofleini
Synonyms
  • Octopus punctatus Gabb, 1862
  • Octopus dofleini Wülker, 1910
  • Polypus dofleini Wülker, 1910
  • Octopus dofleini dofleini (Wülker, 1910)
  • Polypus apollyon Berry, 1912
  • Octopus dofleini apollyon (Berry, 1912)
  • Polypus gilbertianus Berry, 1912
  • Octopus gilbertianus Berry, 1912
  • Octopus apollyon (Berry, 1913)
  • Octopus madokai Berry, 1921
  • Paroctopus asper Akimushkin, 1963
  • Octopus dofleini martini Pickford, 1964

The giant Pacific octopus (Enteroctopus dofleini), also known as the North Pacific giant octopus, is a large marine cephalopod belonging to the genus Enteroctopus. Its spatial distribution includes the coastal North Pacific, along Mexico (Baja California), The United States (California, Oregon, Washington, and Alaska), Canada (British Columbia), Russia, Eastern China, Japan, and the Korean Peninsula.[3] It can be found from the intertidal zone down to 2,000 m (6,600 ft), and is best adapted to cold, oxygen-rich water. It is the largest octopus species, based on a scientific record of a 71-kilogram (157-pound) individual weighed live.[4]

Discover more about Giant Pacific octopus related topics

Cephalopod

Cephalopod

A cephalopod is any member of the molluscan class Cephalopoda such as a squid, octopus, cuttlefish, or nautilus. These exclusively marine animals are characterized by bilateral body symmetry, a prominent head, and a set of arms or tentacles modified from the primitive molluscan foot. Fishers sometimes call cephalopods "inkfish", referring to their common ability to squirt ink. The study of cephalopods is a branch of malacology known as teuthology.

Genus

Genus

Genus is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus.E.g. Panthera leo (lion) and Panthera onca (jaguar) are two species within the genus Panthera. Panthera is a genus within the family Felidae.

Enteroctopus

Enteroctopus

Enteroctopus is an octopus genus whose members are sometimes known as giant octopus.

Intertidal zone

Intertidal zone

The intertidal zone, also known as the foreshore, is the area above water level at low tide and underwater at high tide. This area can include several types of habitats with various species of life, such as seastars, sea urchins, and many species of coral with regional differences in biodiversity. Sometimes it is referred to as the littoral zone or seashore, although those can be defined as a wider region.

Octopus

Octopus

An octopus is a soft-bodied, eight-limbed mollusc of the order Octopoda. The order consists of some 300 species and is grouped within the class Cephalopoda with squids, cuttlefish, and nautiloids. Like other cephalopods, an octopus is bilaterally symmetric with two eyes and a beaked mouth at the center point of the eight limbs. The soft body can radically alter its shape, enabling octopuses to squeeze through small gaps. They trail their eight appendages behind them as they swim. The siphon is used both for respiration and for locomotion, by expelling a jet of water. Octopuses have a complex nervous system and excellent sight, and are among the most intelligent and behaviourally diverse of all invertebrates.

Etymology

The specific name dofleini was chosen by Gerhard Wülker in honor of German scientist Franz Theodor Doflein.[5] It was moved to genus Enteroctopus by Eric Hochberg in 1998.[6][7][8]

Description

Close-up of E. dofleini showing the longitudinal folds on the body and the paddle-like papillae
Close-up of E. dofleini showing the longitudinal folds on the body and the paddle-like papillae
Close-up of suckers
Close-up of suckers

Size

E. dofleini is distinguished from other species by its large size. Adults usually weigh around 15 kg (33 lb), with an arm span up to 4.3 m (14 ft).[9] The larger individuals have been measured at 50 kg (110 lb) and have a radial span of 6 m (20 ft).[3] American zoologist G. H. Parker found that the largest suckers on a giant Pacific octopus are about 6.4 cm (2.5 in) and can support 16 kg (35 lb) each.[3] The alternative contender for the largest species of octopus is the seven-arm octopus (Haliphron atlanticus) based on a 61-kilogram (134-pound) incomplete carcass estimated to have a live mass of 75 kg (165 lb).[10][11] However, a number of questionable size records would suggest E. dofleini is the largest of all octopus species by a considerable margin,[12] including a report of one up to 272 kg (600 lb) in weight with a 9-metre (30-foot) arm span.[13] Guinness World Records lists the biggest as 136 kg (300 lb) with an arm span of 9.8 m (32 ft).[3][14] A UN catalog of octopuses sizes E. dofleini at 180 kg (400 lb) with an arm length of 3 m (9.8 ft).[15]

Ecology

Diet

E. dofleini preys upon shrimp, crabs, scallop, abalone, cockles, snails, clams, lobsters, fish, squid, and other octopuses.[16][17][18] Food is procured with its suckers and then bitten using its tough beak of chitin. It has also been observed to catch spiny dogfish (Squalus acanthias) up to 1.2 m (4 ft) in length while in captivity.[19] Additionally, consumed carcasses of this same shark species have been found in giant Pacific octopus middens in the wild, providing strong evidence of these octopuses preying on small sharks in their natural habitat.[20] In May 2012, amateur photographer Ginger Morneau was widely reported to have photographed a wild giant Pacific octopus attacking and drowning a seagull, demonstrating that this species is not above eating any available source of food within its size range, even birds.[21]

Predators

Scavengers and other organisms often attempt to eat octopus eggs, even when the female is present to protect them. Giant Pacific octopus paralarvae are preyed upon by many other zooplankton and filter feeders. Marine mammals, such as harbor seals, sea otters, and sperm whales depend upon the giant Pacific octopus as a source of food. Pacific sleeper sharks are also confirmed predators of this species.[22] In addition, the octopus (along with cuttlefish and squid) is a significant source of protein for human consumption. About 3.3 million tonnes (3.6 million short tons) are commercially fished, worth $6 billion annually.[3] Over thousands of years, humans have caught them using lures, spears, pot traps, nets, and bare hands.[23] The octopus is parasitized by the mesozoan Dicyemodeca anthinocephalum [nl], which lives in its renal appendages.[24]

Takoyaki stall in Nishi-Magome, Tokyo
Takoyaki stall in Nishi-Magome, Tokyo

Discover more about Ecology related topics

Chitin

Chitin

Chitin (C8H13O5N)n ( KY-tin) is a long-chain polymer of N-acetylglucosamine, an amide derivative of glucose. Chitin is probably the second most abundant polysaccharide in nature (behind only cellulose); an estimated 1 billion tons of chitin are produced each year in the biosphere. It is a primary component of cell walls in fungi (especially basidiomycetes and filamentous fungi), the exoskeletons of arthropods such as crustaceans and insects, the radulae, cephalopod beaks and gladii of molluscs and in some nematodes and diatoms. It is also synthesised by at least some fish and lissamphibians. Commercially, chitin is extracted from the shells of crabs, shrimps, shellfish and lobsters, which are major by-products of the seafood industry. The structure of chitin is comparable to cellulose, forming crystalline nanofibrils or whiskers. It is functionally comparable to the protein keratin. Chitin has proved useful for several medicinal, industrial and biotechnological purposes.

Spiny dogfish

Spiny dogfish

The spiny dogfish, spurdog, mud shark, or piked dogfish is one of the best known species of the Squalidae (dogfish) family of sharks, which is part of the Squaliformes order.

Zooplankton

Zooplankton

Zooplankton are the animal component of the planktonic community. Plankton are aquatic organisms that are unable to swim effectively against currents. Consequently, they drift or are carried along by currents in the ocean, or by currents in seas, lakes or rivers.

Filter feeder

Filter feeder

Filter feeders are a sub-group of suspension feeding animals that feed by straining suspended matter and food particles from water, typically by passing the water over a specialized filtering structure. Some animals that use this method of feeding are clams, krill, sponges, baleen whales, and many fish. Some birds, such as flamingos and certain species of duck, are also filter feeders. Filter feeders can play an important role in clarifying water, and are therefore considered ecosystem engineers. They are also important in bioaccumulation and, as a result, as indicator organisms.

Harbor seal

Harbor seal

The harbor seal, also known as the common seal, is a true seal found along temperate and Arctic marine coastlines of the Northern Hemisphere. The most widely distributed species of pinniped, they are found in coastal waters of the northern Atlantic, Pacific Oceans, Baltic and North Seas.

Sea otter

Sea otter

The sea otter is a marine mammal native to the coasts of the northern and eastern North Pacific Ocean. Adult sea otters typically weigh between 14 and 45 kg, making them the heaviest members of the weasel family, but among the smallest marine mammals. Unlike most marine mammals, the sea otter's primary form of insulation is an exceptionally thick coat of fur, the densest in the animal kingdom. Although it can walk on land, the sea otter is capable of living exclusively in the ocean.

Sperm whale

Sperm whale

The sperm whale or cachalot is the largest of the toothed whales and the largest toothed predator. It is the only living member of the genus Physeter and one of three extant species in the sperm whale family, along with the pygmy sperm whale and dwarf sperm whale of the genus Kogia.

Pacific sleeper shark

Pacific sleeper shark

The Pacific sleeper shark is a sleeper shark of the family Somniosidae, found in the North Pacific on continental shelves and slopes in Arctic and temperate waters between latitudes 70°N and 22°N, from the surface to 2,000 metres (6,600 ft) deep. Records from southern oceans are likely misidentifications of relatives. Its length is up to 4.4 m (14 ft), although it could possibly reach lengths in excess of 7 m (23 ft).

Mesozoa

Mesozoa

The Mesozoa are minuscule, worm-like parasites of marine invertebrates. Generally, these tiny, elusive creatures consist of a somatoderm of ciliated cells surrounding one or more reproductive cells.

Kidney

Kidney

The kidneys are two reddish-brown bean-shaped organs found in vertebrates. They are located on the left and right in the retroperitoneal space, and in adult humans are about 12 centimetres in length. They receive blood from the paired renal arteries; blood exits into the paired renal veins. Each kidney is attached to a ureter, a tube that carries excreted urine to the bladder.

Lifespan and reproduction

Enteroctopus dofleini spawning
Enteroctopus dofleini spawning

The giant Pacific octopus is considered to be long-lived compared to other species, with lifespans typically 3–5 years in the wild. Many other octopuses go through a complete life cycle in one year, from egg to end of life.[3] To help compensate for its relatively short lifespan, the octopus is extremely prolific. It can lay between 120,000 and 400,000 eggs which are coated in chorion, and attached to a hard surface by the female. The spawn is intensively cared for exclusively by the female, who continuously blows water over it and grooms it to remove algae and other growths. While she fulfills her duty of parental care the female stays close to her spawn, never leaving to feed, leading to her death soon after the young have hatched.[25] The female's death is the result of starvation, as she subsists on her own body fats[26] during this period of approximately 6 months.[23] Hatchlings are about the size of a grain of rice,[27] and very few survive to adulthood. Their growth rate is quite rapid: starting from 0.03 g (0.0011 oz) and growing to 20–40 kg (44–88 lb) at adulthood, which is an increase of around 0.9% per day.[3] Because they are cool-blooded, they are able to use most of their consumed energy for body mass, respiration, physical activity, and reproduction.[23] During reproduction, the male octopus deposits a spermatophore (or sperm packet) more than 1 m (3.3 ft) long using his hectocotylus (specialized arm) in the female's mantle. Large spermatophores are characteristic of octopuses in this genus.[12] The female stores the spermatophore in her spermatheca until she is ready to fertilize her eggs. One female at the Seattle Aquarium was observed to retain a spermatophore for seven months before laying fertilized eggs.[23]

Unlike males, only the female giant Pacific octopuses are semelparous, meaning they only breed a single time in their life.[26] After reproduction, they enter a stage called senescence, which involves obvious changes in behavior and appearance, including a reduced appetite, retraction of skin around the eyes giving them a more pronounced appearance, increased activity in uncoordinated patterns, and white lesions all over the body. While the duration of this stage is variable, it typically lasts about one to two months. Death is typically attributed to starvation, as the females have stopped hunting in order to protect their eggs; males often spend more time in the open, making them more likely to be preyed upon.[28]

Discover more about Lifespan and reproduction related topics

Chorion

Chorion

The chorion is the outermost fetal membrane around the embryo in mammals, birds and reptiles (amniotes). It develops from an outer fold on the surface of the yolk sac, which lies outside the zona pellucida, known as the vitelline membrane in other animals. In insects it is developed by the follicle cells while the egg is in the ovary.

Spawn (biology)

Spawn (biology)

Spawn is the eggs and sperm released or deposited into water by aquatic animals. As a verb, to spawn refers to the process of releasing the eggs and sperm, and the act of both sexes is called spawning. Most aquatic animals, except for aquatic mammals and reptiles, reproduce through the process of spawning.

Parental care

Parental care

Parental care is a behavioural and evolutionary strategy adopted by some animals, involving a parental investment being made to the evolutionary fitness of offspring. Patterns of parental care are widespread and highly diverse across the animal kingdom. There is great variation in different animal groups in terms of how parents care for offspring, and the amount of resources invested by parents. For example, there may be considerable variation in the amount of care invested by each sex, where females may invest more in some species, males invest more in others, or investment may be shared equally. Numerous hypotheses have been proposed to describe this variation and patterns in parental care that exist between the sexes, as well as among species.

Spermatophore

Spermatophore

A spermatophore or sperm ampulla is a capsule or mass containing spermatozoa created by males of various animal species, especially salamanders and arthropods, and transferred in entirety to the female's ovipore during reproduction. Spermatophores may additionally contain nourishment for the female, in which case it is called a nuptial gift, as in the instance of bush crickets. In the case of the toxic moth Utetheisa ornatrix, the spermatophore includes sperm, nutrients, and pyrrolizidine alkaloids which prevent predation because it is poisonous to most organisms. However, in some species such as the Edith's checkerspot butterfly, the "gift" provides little nutrient value. The weight of the spermatophore transferred at mating has little effect on female reproductive output.

Hectocotylus

Hectocotylus

A hectocotylus is one of the arms of male cephalopods that is specialized to store and transfer spermatophores to the female. Structurally, hectocotyli are muscular hydrostats. Depending on the species, the male may use it merely as a conduit to the female, analogously to a penis in other animals, or he may wrench it off and present it to the female.

Spermatheca

Spermatheca

The spermatheca, also called receptaculum seminis, is an organ of the female reproductive tract in insects, e.g. ants, bees, some molluscs, oligochaeta worms and certain other invertebrates and vertebrates. Its purpose is to receive and store sperm from the male or, in the case of hermaphrodites, the male component of the body. Spermathecae can sometimes be the site of fertilization when the oocytes are sufficiently developed.

Senescence

Senescence

Senescence or biological aging is the gradual deterioration of functional characteristics in living organisms. The word senescence can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence involves an increase in death rates and/or a decrease in fecundity with increasing age, at least in the latter part of an organism's life cycle.

Intelligence

Octopuses are ranked as the most intelligent invertebrates.[29] Giant Pacific octopuses are commonly kept on display at aquariums due to their size and interesting physiology, and have demonstrated the ability to recognize humans whom they frequently come in contact with. These responses include jetting water, changing body texture, and other behaviors that are consistently demonstrated to specific individuals.[30] They have the ability to solve simple puzzles, open childproof bottles and use tools.[23] The octopus brain has folded lobes (a distinct characteristic of complexity), visual and tactile memory centers. They have about 300 million neurons.[23] They have been known to open tank valves, disassemble expensive equipment, and generally wreak havoc in labs and aquaria.[23] Some researchers even claim that they are capable of motor play[31] and having personalities.[32]

Conservation and climate change

Giant Pacific octopuses are not currently under the protection of Convention on International Trade in Endangered Species of Wild Fauna and Flora or evaluated in the IUCN Red List.[33] The giant Pacific octopus has not been assessed by the Monterey Bay Aquarium Seafood Watch, although other octopus species are listed.[34] Combined with lack of assessment and mislabeling, tracking the species's abundance is nearly impossible. Scientists have relied on catch numbers to estimate stock abundance, but the animals are solitary and difficult to find.[23] DNA techniques have assisted in genetic and phylogenetic analysis of the species' evolutionary past. Following its DNA analysis, the giant Pacific octopus may actually prove to be three subspecies (one in Japan, another in Alaska, and a third in Puget Sound).

In Puget Sound, the Washington Fish and Wildlife Commission adopted rules for protecting the harvest of giant Pacific octopuses at seven sites, after a legal harvest caused a public outcry.[35] Populations in Puget Sound are not considered threatened.

Regardless of these data gaps in abundance estimates, future climate change scenarios may affect these organisms in different ways. Climate change is complex, with predicted biotic and abiotic changes to multiple processes including oxygen limitation, reproduction, ocean acidification, toxins, effects on other trophic levels, and RNA editing.

Giant Pacific octopus
Giant Pacific octopus

Oxygen limitation

Octopuses have been found to migrate for a variety of reasons. Using tag and recapture methods, scientists found they move from den to den in response to decreased food availability, change in water quality, increase in predation, or increased population density (or decreased available habitat/den space)[36] Because their blue blood is copper-based (hemocyanin) and not an efficient oxygen carrier, octopuses favor and move toward cooler, oxygen-rich water. This dependency limits octopus habitat, typically to temperate waters 8–12 °C (46–54 °F).[3] If seawater temperatures continue to rise, these organisms may be forced to move to deeper, cooler water.

Each fall in Washington's Hood Canal, a habitat for many octopuses, phytoplankton and macroalgae die and create a dead zone. As these micro-organisms decompose, oxygen is used up in the process and has been measured to be as low as 2 parts per million (ppm). This is a state of hypoxia. Normal levels are measured at 7–9 ppm.[37] Fish and octopuses move from the deep towards the shallow water for more oxygen. Females do not leave, and die with their eggs at nesting sites. Warming seawater temperatures promote phytoplankton growth, and annual dead zones have been found to be increasing in size.[23] To avoid these dead zones, octopuses must move to shallower waters, which may be warmer in temperature and less oxygen-rich, trapping them between two low-oxygen zones.

Reproduction

Increased seawater temperatures also increase metabolic processes. The warmer the water, the faster octopus eggs develop and hatch.[3] After hatching, the paralarvae swim to the surface to join other plankton, where they are often preyed upon by birds, fish, and other plankton feeders. Quicker hatching time may also affect critical timing for food availability.[38] One study found that higher water temperatures accelerated all aspects of reproduction and even shortened lifespan by up to 20%.[39] Other studies concur that warming climate scenarios should result in higher embryo and paralarvae mortalities.[40]

Ocean acidification

The burning of fossil fuels, deforestation, industrialization, and other land-use changes cause increased carbon dioxide levels in the atmosphere. The ocean absorbs an estimated 30% of emitted anthropogenic CO2.[41] As the ocean absorbs CO2, it becomes more acidic and lowers in pH. Ocean acidification lowers available carbonate ions, which is a building block for calcium carbonate (CaCO3). Calcifying organisms use calcium carbonate to produce shells, skeletons, and tests.[42] The prey base that octopuses prefer (crab, clams, scallops, mussels, etc.) are negatively impacted by ocean acidification, and may decrease in abundance. Shifts in available prey may force a change in octopus diets to other, nonshelled organisms.

Because octopuses have hemocyanin as copper-based blood, a small change in pH can reduce oxygen-carrying capacity. A pH change from 8.0 to 7.7 or 7.5 will have life-or-death effects on cephalopods.[23]

Toxins

Researchers have found high concentrations of heavy metals and PCBs in tissues and digestive glands, which may have come from these octopus' preferred prey, the red rock crab (Cancer productus).[43] These crabs bury themselves in contaminated sediments and eat prey that live nearby.[3] What effects these toxins have on octopuses are unknown, but other exposed animals have been known to show liver damage, changes in immune systems, and death.

Effects on other trophic levels

Potential changes in octopus populations will affect upper and lower trophic levels.[38] Lower trophic levels include all prey items, and may fluctuate inversely with octopus abundance. Higher trophic levels include all predators of octopuses, and may fluctuate with octopus abundance, although many may prey upon a variety of organisms. Protection of other threatened species may affect octopus populations (the sea otter, for example), as they may rely on octopuses for food. Some research suggests that fishing other species has aided octopus populations, by taking out predators and competitors.

Hectocotylus arm of an octopod
Hectocotylus arm of an octopod

RNA editing

Some octopuses exhibit the ability to alter speeds of sodium and potassium ion movement across cell membranes, allowing them to live in very cold water. Researchers at the University of Puerto Rico's Institute of Neurobiology have found that they have altered protein synthesis, and can speed up production of potassium channels in cold water to keep up with sodium ion exchange. They are now looking into whether individuals can alter their protein synthesis in response to changing temperatures, or if this change occurs species-wide, over long-term adaptations. If changes are possible by the individual, these octopuses might be able to adapt quickly to changing climate scenarios.[23]

Discover more about Conservation and climate change related topics

CITES

CITES

CITES is a multilateral treaty to protect endangered plants and animals from the threats of international trade. It was drafted as a result of a resolution adopted in 1963 at a meeting of members of the International Union for Conservation of Nature (IUCN). The convention was opened for signature in 1973 and CITES entered into force on 1 July 1975.

IUCN Red List

IUCN Red List

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, also known as the IUCN Red List or Red Data Book, founded in 1964, is the world's most comprehensive inventory of the global conservation status of biological species. It uses a set of precise criteria to evaluate the extinction risk of thousands of species and subspecies. These criteria are relevant to all species and all regions of the world. With its strong scientific base, the IUCN Red List is recognized as the most authoritative guide to the status of biological diversity. A series of Regional Red Lists are produced by countries or organizations, which assess the risk of extinction to species within a political management unit.

Hemocyanin

Hemocyanin

Hemocyanins (also spelled haemocyanins and abbreviated Hc) are proteins that transport oxygen throughout the bodies of some invertebrate animals. These metalloproteins contain two copper atoms that reversibly bind a single oxygen molecule (O2). They are second only to hemoglobin in frequency of use as an oxygen transport molecule. Unlike the hemoglobin in red blood cells found in vertebrates, hemocyanins are not confined in blood cells but are instead suspended directly in the hemolymph. Oxygenation causes a color change between the colorless Cu(I) deoxygenated form and the blue Cu(II) oxygenated form.

Hood Canal

Hood Canal

Hood Canal is a fjord forming the western lobe, and one of the four main basins, of Puget Sound in the US state of Washington. It is one of the minor bodies of water that constitute the Salish Sea. Hood Canal is not a canal in the sense of being a man-made waterway—it is a natural waterway.

Phytoplankton

Phytoplankton

Phytoplankton are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words φυτόν, meaning 'plant', and πλαγκτός, meaning 'wanderer' or 'drifter'.

Dead zone (ecology)

Dead zone (ecology)

Dead zones are hypoxic (low-oxygen) areas in the world's oceans and large lakes. Hypoxia occurs when dissolved oxygen (DO) concentration falls to or below 2 mg of O2/liter. When a body of water experiences hypoxic conditions, aquatic flora and fauna begin to change behavior in order to reach sections of water with higher oxygen levels. Once DO declines below 0.5 ml O2/liter in a body of water, mass mortality occurs. With such a low concentration of DO, these bodies of water fail to support the aquatic life living there. Historically, many of these sites were naturally occurring. However, in the 1970s, oceanographers began noting increased instances and expanses of dead zones. These occur near inhabited coastlines, where aquatic life is most concentrated.

Hypoxia (environmental)

Hypoxia (environmental)

Hypoxia refers to low oxygen conditions. Normally, 20.9% of the gas in the atmosphere is oxygen. The partial pressure of oxygen in the atmosphere is 20.9% of the total barometric pressure. In water, oxygen levels are much lower, approximately 7 ppm or 0.0007% in good quality water, and fluctuate locally depending on the presence of photosynthetic organisms and relative distance to the surface.

Plankton

Plankton

Plankton are the diverse collection of organisms found in water that are unable to propel themselves against a current. The individual organisms constituting plankton are called plankters. In the ocean, they provide a crucial source of food to many small and large aquatic organisms, such as bivalves, fish and whales.

Ocean acidification

Ocean acidification

Ocean acidification is the decrease in the pH of the Earth’s ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 410 ppm (in 2020). CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO−3) and a hydrogen ion (H+). The presence of free hydrogen ions (H+) lowers the pH of the ocean, increasing acidity (this does not mean that seawater is acidic yet; it is still alkaline, with a pH higher than 8). Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons.

Calcium carbonate

Calcium carbonate

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite and is the main component of eggshells, gastropod shells, shellfish skeletons and pearls. Things containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is created when calcium ions in hard water react with carbonate ions to create limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.

Polychlorinated biphenyl

Polychlorinated biphenyl

Polychlorinated biphenyls (PCBs) are highly carcinogenic chemical compounds, formerly used in industrial and consumer products, whose production was banned in the United States by the Toxic Substances Control Act in 1979 and internationally by the Stockholm Convention on Persistent Organic Pollutants in 2001. They are organic chlorine compounds with the formula C12H10−xClx; they were once widely used in the manufacture of carbonless copy paper, as heat transfer fluids, and as dielectric and coolant fluids for electrical equipment.

Cancer productus

Cancer productus

Cancer productus, one of several species known as red rock crabs, is a crab of the genus Cancer found on the western coast of North America. This species is commonly nicknamed the Pearl of the Pacific Northwest.

Source: "Giant Pacific octopus", Wikipedia, Wikimedia Foundation, (2023, March 22nd), https://en.wikipedia.org/wiki/Giant_Pacific_octopus.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ "Distribution of Recent Cephalopoda and implications for Plio-Pleistocene events". Retrieved 4 April 2022.
  2. ^ Allcock, L., Taite, M. & Allen, G. 2018. Enteroctopus dofleini. The IUCN Red List of Threatened Species 2018: e.T162958A958049. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T162958A958049.en. Accessed on 30 October 2022.
  3. ^ a b c d e f g h i j Cosgrove, James (2009). Super Suckers, The Giant Pacific octopus. BC: Harbour Publishing. ISBN 978-1-55017-466-3.
  4. ^ Cosgrove, J. A. 1987. Aspects of the Natural History of Octopus dofleini, the Giant Pacific Octopus. M.Sc. Thesis. Department of Biology, University of Victoria (Canada), 101 pp.
  5. ^ Hansson, Hans G. (14 November 1997). "BEMON. D". Biographical Etymology of Marine Organism Names. Retrieved 9 December 2022.
  6. ^ Hochberg, Frederick (Eric) George (1998). "Enteroctopus; Enteroctopus dofleini Wülker, 1910 new combination". In Valentich Scott, Paul; Blake, James A. (eds.). Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and the Western Santa Barbara Channel. Vol. 8. Santa Barbara, CA: Santa Barbara Museum of Natural History. pp. 203–208. ISBN 0-936494-13-1.
  7. ^ AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (September 2014). "Giant Pacific Octopus (Enteroctopus dofleini) Care Manual" (PDF). Silver Spring, MD: Association of Zoos and Aquariums. p. 5.
  8. ^ Anderson, Roland C. (January 2001). "Name Change of the Giant Pacific Octopus" (PDF). Drum And Croaker. Vol. 32. p. 46.
  9. ^ Smithsonian National Zoological Park: Giant Pacific Octopus Archived 23 February 2014 at the Wayback Machine.
  10. ^ O'Shea, S. (2004). "The giant octopus Haliphron atlanticus (Mollusca : Octopoda) in New Zealand waters". New Zealand Journal of Zoology. 31 (1): 7–13. doi:10.1080/03014223.2004.9518353. S2CID 84954869.
  11. ^ O'Shea, S. (2002). "Haliphron atlanticus – a giant gelatinous octopus" (PDF). Biodiversity Update. 5: 1.
  12. ^ a b Norman, M. 2000. Cephalopods: A World Guide. Hackenheim, ConchBooks, p. 214. ISBN 3-925919-32-5.
  13. ^ High, W. L. (1976). "The Giant Pacific Octopus". U.S. National Marine Fisheries Service, Marine Fisheries Review. 38 (9): 17–22.
  14. ^ McClain, Craig R.; Balk, Meghan A.; Benfield, Mark C.; Branch, Trevor A.; Chen, Catherine; Cosgrove, James; Dove, Alistair D.M.; Gaskins, Lindsay C.; Helm, Rebecca R. (13 January 2015). "Sizing ocean giants: patterns of intraspecific size variation in marine mega fauna". PeerJ. 3: e715. doi:10.7717/peerj.715. ISSN 2167-8359. PMC 4304853. PMID 25649000.
  15. ^ Jereb, Patrizia; Roper, Clyde; Norman, Mark; Finn, Julian (2016). Cephalopods of the World: An annotated and Illustrated Catalogue of cephalopod species known to date (PDF). Food and Agriculture Organization of the United Nations. p. 124. ISBN 978-92-5-107989-8. Retrieved 23 February 2017.
  16. ^ Hartis, Colleen (2 February 2011). "ADW: Enteroctopus dofleini: INFORMATION". Animaldiversity.org. Retrieved 4 April 2022.
  17. ^ "Giant Pacific Octopus". Giant Pacific Octopus - Oceana.
  18. ^ "Giant Pacific octopus facts". www.animalspot.com. 21 February 2018.
  19. ^ "Octopus Eats Shark". Google Video. Retrieved 13 November 2012.
  20. ^ Walla Walla University Marine Invertebrates Key: Giant Pacific Octopus Archived 14 January 2009 at the Wayback Machine
  21. ^ Young, Gayne C. (8 May 2012). "PHOTOS: Pacific Octopus Eats Seagull, First Time Ever Photographed". Outdoor Life.
  22. ^ Sigler, M. F.; L. B. Hulbert; C. R. Lunsford; N. H. Thompson; K. Burek; G. O'Corry-Crowe; A. C. Hirons (24 July 2006). "Diet of Pacific sleeper shark, a potential Steller sea lion predator, in the north-east Pacific Ocean" (PDF). Journal of Fish Biology. 69 (2): 392–405. CiteSeerX 10.1.1.330.8593. doi:10.1111/j.1095-8649.2006.01096.x. Archived from the original (PDF) on 29 May 2010.
  23. ^ a b c d e f g h i j k Courage, Katherine Harmon (2013). Octopus!. USA: The Penguin Group. ISBN 978-1-59184-527-0.
  24. ^ Furuya, Hidetaka; Tsuneki, Kazuhiko (2003). "Biology of Dicyemid Mesozoans". Zoological Science. 20 (5): 519–532. doi:10.2108/zsj.20.519. PMID 12777824. S2CID 29839345.
  25. ^ Scheel, David. "Giant Octopus: Fact Sheet". Alaska Pacific University. Archived from the original on 15 November 2012. Retrieved 13 November 2012.
  26. ^ a b "Giant Pacific Octopus by Shawn Laidlaw". 3 November 2020. Retrieved 28 March 2021.
  27. ^ "Giant Pacific Octopus (Octopus dofleini)". NPCA. Archived from the original on 21 November 2008. Retrieved 13 November 2012.
  28. ^ Anderson, R. C.; Wood, J. B.; Byrne, R. A. (2002). "Octopus Senescence: The Beginning of the End". Journal of Applied Animal Welfare Science. 5 (4): 275–283. CiteSeerX 10.1.1.567.3108. doi:10.1207/S15327604JAWS0504_02. PMID 16221078. S2CID 28355735.
  29. ^ Anderson, R. C. (2005). "How smart are octopuses?". Coral Magazine. 2: 44–48.
  30. ^ Anderson, R. C.; Mather, J. A.; Monette, M. Q.; Zimsen, S. R. M. (2010). "Octopuses (Enteroctopus dofleini) Recognize Individual Humans". Journal of Applied Animal Welfare Science. 13 (3): 261–272. doi:10.1080/10888705.2010.483892. PMID 20563906. S2CID 21910661.
  31. ^ Tzar, Jennifer. "Through the Eye of an Octopus". Archived from the original on 26 August 2020.
  32. ^ Mather, J. A.; Kuba, M. J. (2013). "The cephalopod specialties: complex nervous system, learning and cognition". Canadian Journal of Zoology. 91 (6): 431–449. doi:10.1139/cjz-2013-0009.
  33. ^ "IUCN Red List of Threatened Species. Version 2013.2". Archived from the original on 27 June 2014. Retrieved 12 May 2014.
  34. ^ "Monterey Bay Seafood Watch". Archived from the original on 13 May 2014.
  35. ^ "Giant Pacific Octopus Rulemaking Process". Retrieved 12 May 2014.
  36. ^ Mather, J. A.; Resler, S.; Cosgrove, J. A. (1985). "Activity and Movement patterns of Octopus dofleini". Journal of Marine Behavior and Physiology. 11 (4): 301–14. doi:10.1080/10236248509387055.
  37. ^ Mather, J. A. (2010). Octopus: The Ocean's Intelligent Invertebrate. Portland. London.: J.B. Timber Press. ISBN 978-1-60469-067-5.
  38. ^ a b Andre, J; Haddon, M.; Pecl, G.T. (2010). "Modeling climate-change induced nonlinear thresholds in cephalopod population dynamics". Global Change Biology. 16 (10): 2866–2875. Bibcode:2010GCBio..16.2866A. doi:10.1111/j.1365-2486.2010.02223.x. S2CID 83960161.
  39. ^ Forsythe, J.W.; Hanlon, R.T. (1988). "Effect of temperature on laboratory growth, reproduction, and life span of Octopus bimaculoides" (PDF). Marine Biology. 98 (3): 369–379. doi:10.1007/bf00391113. S2CID 83708339.
  40. ^ Repolho, Tiago (2014). "Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming". Journal of Comparative Physiology B. 184 (1): 55–64. doi:10.1007/s00360-013-0783-y. PMID 24100467. S2CID 8647158.
  41. ^ Guinotte, J. M.; Fabry, V. J. (2008). "Ocean acidification and its potential effects on marine ecosystems". Annals of the New York Academy of Sciences. 1134 (1): 320–342. Bibcode:2008NYASA1134..320G. CiteSeerX 10.1.1.316.7909. doi:10.1196/annals.1439.013. PMID 18566099. S2CID 15009920.
  42. ^ Gazeau, F.; Quiblier, C.; Jansen, J. M.; Gattuso, J. P.; Middelburg, J. J.; Heip, C. H. (2007). "Impact of elevated CO2 on shellfish calcification". Geophysical Research Letters. 34 (7): L07603. Bibcode:2007GeoRL..34.7603G. doi:10.1029/2006gl028554. hdl:20.500.11755/a8941c6a-6d0b-43d5-ba0d-157a7aa05668. S2CID 130190489.
  43. ^ Scheel, D.; Anderson, R. (2012). "Variability in the diet specialization of Enteroctopus dofleini (Cephalopoda: Octopodidae) in the eastern Pacific examined from midden contents". American Malacological Bulletin. 30 (2): 267–279. doi:10.4003/006.030.0206. S2CID 86739608.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.