Get Our Extension

Expression vector

From Wikipedia, in a visual modern way
A bacterial expression vector for expressing green fluorescent protein from the T7 promoter.
A bacterial expression vector for expressing green fluorescent protein from the T7 promoter.

An expression vector, otherwise known as an expression construct, is usually a plasmid or virus designed for gene expression in cells. The vector is used to introduce a specific gene into a target cell, and can commandeer the cell's mechanism for protein synthesis to produce the protein encoded by the gene. Expression vectors are the basic tools in biotechnology for the production of proteins.

The vector is engineered to contain regulatory sequences that act as enhancer and promoter regions and lead to efficient transcription of the gene carried on the expression vector.[1] The goal of a well-designed expression vector is the efficient production of protein, and this may be achieved by the production of significant amount of stable messenger RNA, which can then be translated into protein. The expression of a protein may be tightly controlled, and the protein is only produced in significant quantity when necessary through the use of an inducer, in some systems however the protein may be expressed constitutively. Escherichia coli is commonly used as the host for protein production, but other cell types may also be used. An example of the use of expression vector is the production of insulin, which is used for medical treatments of diabetes.

Discover more about Expression vector related topics

Plasmid

Plasmid

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.

Gene expression

Gene expression

Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. Gene expression is summarized in the central dogma of molecular biology first formulated by Francis Crick in 1958, further developed in his 1970 article, and expanded by the subsequent discoveries of reverse transcription and RNA replication.

Gene

Gene

In biology, the word gene can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes.

Protein

Protein

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

Genetic code

Genetic code

The genetic code is the set of rules used by living cells to translate information encoded within genetic material into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.

Biotechnology

Biotechnology

Biotechnology is the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services. The term biotechnology was first used by Károly Ereky in 1919, meaning the production of products from raw materials with the aid of living organisms.

Enhancer (genetics)

Enhancer (genetics)

In genetics, an enhancer is a short region of DNA that can be bound by proteins (activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcription factors. Enhancers are cis-acting. They can be located up to 1 Mbp away from the gene, upstream or downstream from the start site. There are hundreds of thousands of enhancers in the human genome. They are found in both prokaryotes and eukaryotes.

Messenger RNA

Messenger RNA

In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein.

Inducer

Inducer

In molecular biology, an inducer is a molecule that regulates gene expression. An inducer functions in two ways; namely:By disabling repressors. The gene is expressed because an inducer binds to the repressor. The binding of the inducer to the repressor prevents the repressor from binding to the operator. RNA polymerase can then begin to transcribe operon genes. By binding to activators. Activators generally bind poorly to activator DNA sequences unless an inducer is present. Activator binds to an inducer and the complex binds to the activation sequence and activates target gene. Removing the inducer stops transcription.

Escherichia coli

Escherichia coli

Escherichia coli, also known as E. coli, is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes (EPEC, ETEC etc.) can cause serious food poisoning in their hosts, and are occasionally responsible for food contamination incidents that prompt product recalls. Most strains do not cause disease in humans and are part of the normal microbiota of the gut; such strains are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones). For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship — where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh faecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

Insulin

Insulin

Insulin is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the INS gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism of carbohydrates, fats and protein by promoting the absorption of glucose from the blood into liver, fat and skeletal muscle cells. In these tissues the absorbed glucose is converted into either glycogen via glycogenesis or fats (triglycerides) via lipogenesis, or, in the case of the liver, into both. Glucose production and secretion by the liver is strongly inhibited by high concentrations of insulin in the blood. Circulating insulin also affects the synthesis of proteins in a wide variety of tissues. It is therefore an anabolic hormone, promoting the conversion of small molecules in the blood into large molecules inside the cells. Low insulin levels in the blood have the opposite effect by promoting widespread catabolism, especially of reserve body fat.

Diabetes

Diabetes

Diabetes, also known as diabetes mellitus, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough insulin, or the cells of the body not responding properly to the insulin produced. Diabetes, if left untreated, leads to many health complications. Untreated or poorly treated diabetes accounts for approximately 1.5 million deaths per year.

Elements

An expression vector has features that any vector may have, such as an origin of replication, a selectable marker, and a suitable site for the insertion of a gene like the multiple cloning site. The cloned gene may be transferred from a specialized cloning vector to an expression vector, although it is possible to clone directly into an expression vector. The cloning process is normally performed in Escherichia coli. Vectors used for protein production in organisms other than E.coli may have, in addition to a suitable origin of replication for its propagation in E. coli, elements that allow them to be maintained in another organism, and these vectors are called shuttle vectors.

Elements for expression

An expression vector must have elements necessary for gene expression. These may include a promoter, the correct translation initiation sequence such as a ribosomal binding site and start codon, a termination codon, and a transcription termination sequence.[2] There are differences in the machinery for protein synthesis between prokaryotes and eukaryotes, therefore the expression vectors must have the elements for expression that are appropriate for the chosen host. For example, prokaryotes expression vectors would have a Shine-Dalgarno sequence at its translation initiation site for the binding of ribosomes, while eukaryotes expression vectors would contain the Kozak consensus sequence.

The promoter initiates the transcription and is therefore the point of control for the expression of the cloned gene. The promoters used in expression vector are normally inducible, meaning that protein synthesis is only initiated when required by the introduction of an inducer such as IPTG. Gene expression however may also be constitutive (i.e. protein is constantly expressed) in some expression vectors. Low level of constitutive protein synthesis may occur even in expression vectors with tightly controlled promoters.

Protein tags

After the expression of the gene product, it may be necessary to purify the expressed protein; however, separating the protein of interest from the great majority of proteins of the host cell can be a protracted process. To make this purification process easier, a purification tag may be added to the cloned gene. This tag could be histidine (His) tag, other marker peptides, or a fusion partners such as glutathione S-transferase or maltose-binding protein.[3] Some of these fusion partners may also help to increase the solubility of some expressed proteins. Other fusion proteins such as green fluorescent protein may act as a reporter gene for the identification of successful cloned genes, or they may be used to study protein expression in cellular imaging.[4][5]

Other Elements

The expression vector is transformed or transfected into the host cell for protein synthesis. Some expression vectors may have elements for transformation or the insertion of DNA into the host chromosome, for example the vir genes for plant transformation, and integrase sites for chromosomal integration .

Some vectors may include targeting sequence that may target the expressed protein to a specific location such as the periplasmic space of bacteria.

Discover more about Elements related topics

Vector (molecular biology)

Vector (molecular biology)

In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors have an origin of replication, a multicloning site, and a selectable marker.

Origin of replication

Origin of replication

The origin of replication is a particular sequence in a genome at which replication is initiated. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. This can either involve the replication of DNA in living organisms such as prokaryotes and eukaryotes, or that of DNA or RNA in viruses, such as double-stranded RNA viruses. Synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Although the specific replication origin organization structure and recognition varies from species to species, some common characteristics are shared.

Selectable marker

Selectable marker

A selectable marker is a gene introduced into a cell, especially a bacterium or to cells in culture, that confers a trait suitable for artificial selection. They are a type of reporter gene used in laboratory microbiology, molecular biology, and genetic engineering to indicate the success of a transfection or other procedure meant to introduce foreign DNA into a cell. Selectable markers are often antibiotic resistance genes. Bacteria that have been subjected to a procedure to introduce foreign DNA are grown on a medium containing an antibiotic, and those bacterial colonies that can grow have successfully taken up and expressed the introduced genetic material. Normally the genes encoding resistance to antibiotics such as ampicillin, chloramphenicol, tetracycline or kanamycin, etc., are considered useful selectable markers for E. coli.

Multiple cloning site

Multiple cloning site

A multiple cloning site (MCS), also called a polylinker, is a short segment of DNA which contains many restriction sites - a standard feature of engineered plasmids. Restriction sites within an MCS are typically unique, occurring only once within a given plasmid. The purpose of an MCS in a plasmid is to allow a piece of DNA to be inserted into that region.

Shuttle vector

Shuttle vector

A shuttle vector is a vector constructed so that it can propagate in two different host species. Therefore, DNA inserted into a shuttle vector can be tested or manipulated in two different cell types. The main advantage of these vectors is they can be manipulated in E. coli, then used in a system which is more difficult or slower to use.

Translation (biology)

Translation (biology)

In molecular biology and genetics, translation is the process in which ribosomes in the cytoplasm or endoplasmic reticulum synthesize proteins after the process of transcription of DNA to RNA in the cell's nucleus. The entire process is called gene expression.

Promoter (genetics)

Promoter (genetics)

In genetics, a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter. The RNA transcript may encode a protein (mRNA), or can have a function in and of itself, such as tRNA or rRNA. Promoters are located near the transcription start sites of genes, upstream on the DNA . Promoters can be about 100–1000 base pairs long, the sequence of which is highly dependent on the gene and product of transcription, type or class of RNA polymerase recruited to the site, and species of organism.

Start codon

Start codon

The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and Archaea and a N-formylmethionine (fMet) in bacteria, mitochondria and plastids. The most common start codon is AUG.

Terminator (genetics)

Terminator (genetics)

In genetics, a transcription terminator is a section of nucleic acid sequence that marks the end of a gene or operon in genomic DNA during transcription. This sequence mediates transcriptional termination by providing signals in the newly synthesized transcript RNA that trigger processes which release the transcript RNA from the transcriptional complex. These processes include the direct interaction of the mRNA secondary structure with the complex and/or the indirect activities of recruited termination factors. Release of the transcriptional complex frees RNA polymerase and related transcriptional machinery to begin transcription of new mRNAs.

Kozak consensus sequence

Kozak consensus sequence

The Kozak consensus sequence is a nucleic acid motif that functions as the protein translation initiation site in most eukaryotic mRNA transcripts. Regarded as the optimum sequence for initiating translation in eukaryotes, the sequence is an integral aspect of protein regulation and overall cellular health as well as having implications in human disease. It ensures that a protein is correctly translated from the genetic message, mediating ribosome assembly and translation initiation. A wrong start site can result in non-functional proteins. As it has become more studied, expansions of the nucleotide sequence, bases of importance, and notable exceptions have arisen. The sequence was named after the scientist who discovered it, Marilyn Kozak. Kozak discovered the sequence through a detailed analysis of DNA genomic sequences.

Enzyme induction and inhibition

Enzyme induction and inhibition

Enzyme induction is a process in which a molecule induces the expression of an enzyme.

Inducer

Inducer

In molecular biology, an inducer is a molecule that regulates gene expression. An inducer functions in two ways; namely:By disabling repressors. The gene is expressed because an inducer binds to the repressor. The binding of the inducer to the repressor prevents the repressor from binding to the operator. RNA polymerase can then begin to transcribe operon genes. By binding to activators. Activators generally bind poorly to activator DNA sequences unless an inducer is present. Activator binds to an inducer and the complex binds to the activation sequence and activates target gene. Removing the inducer stops transcription.

Expression/Production systems

Different organisms may be used to express a gene's target protein, and the expression vector used will therefore have elements specific for use in the particular organism. The most commonly used organism for protein production is the bacterium Escherichia coli. However, not all proteins can be successfully expressed in E. coli, or be expressed with the correct form of post-translational modifications such as glycosylations, and other systems may therefore be used.

Bacterial

An example of a bacterial expression vector is the pGEX-3x plasmid
An example of a bacterial expression vector is the pGEX-3x plasmid

The expression host of choice for the expression of many proteins is Escherichia coli as the production of heterologous protein in E. coli is relatively simple and convenient, as well as being rapid and cheap. A large number of E. coli expression plasmids are also available for a wide variety of needs. Other bacteria used for protein production include Bacillus subtilis.

Most heterologous proteins are expressed in the cytoplasm of E. coli. However, not all proteins formed may be soluble in the cytoplasm, and incorrectly folded proteins formed in cytoplasm can form insoluble aggregates called inclusion bodies. Such insoluble proteins will require refolding, which can be an involved process and may not necessarily produce high yield.[6] Proteins which have disulphide bonds are often not able to fold correctly due to the reducing environment in the cytoplasm which prevents such bond formation, and a possible solution is to target the protein to the periplasmic space by the use of an N-terminal signal sequence. Another possibility is to manipulate the redox environment of the cytoplasm.[7] Other more sophisticated systems are also being developed; such systems may allow for the expression of proteins previously thought impossible in E. coli, such as glycosylated proteins.[8][9][10]

The promoters used for these vector are usually based on the promoter of the lac operon or the T7 promoter,[11] and they are normally regulated by the lac operator. These promoters may also be hybrids of different promoters, for example, the Tac-Promoter is a hybrid of trp and lac promoters.[12] Note that most commonly used lac or lac-derived promoters are based on the lacUV5 mutant which is insensitive to catabolite repression. This mutant allows for expression of protein under the control of the lac promoter when the growth medium contains glucose since glucose would inhibit gene expression if wild-type lac promoter is used.[13] Presence of glucose nevertheless may still be used to reduce background expression through residual inhibition in some systems.[14]

Examples of E. coli expression vectors are the pGEX series of vectors where glutathione S-transferase is used as a fusion partner and gene expression is under the control of the tac promoter,[15][16][17] and the pET series of vectors which uses a T7 promoter.[18]

It is possible to simultaneously express two or more different proteins in E. coli using different plasmids. However, when 2 or more plasmids are used, each plasmid needs to use a different antibiotic selection as well as a different origin of replication, otherwise one of the plasmids may not be stably maintained. Many commonly used plasmids are based on the ColE1 replicon and are therefore incompatible with each other; in order for a ColE1-based plasmid to coexist with another in the same cell, the other would need to be of a different replicon, e.g. a p15A replicon-based plasmid such as the pACYC series of plasmids.[19] Another approach would be to use a single two-cistron vector or design the coding sequences in tandem as a bi- or poly-cistronic construct.[20][21]

Yeast

A yeast commonly used for protein production is Pichia pastoris.[22] Examples of yeast expression vector in Pichia are the pPIC series of vectors, and these vectors use the AOX1 promoter which is inducible with methanol.[23] The plasmids may contain elements for insertion of foreign DNA into the yeast genome and signal sequence for the secretion of expressed protein. Proteins with disulphide bonds and glycosylation can be efficiently produced in yeast. Another yeast used for protein production is Kluyveromyces lactis and the gene is expressed, driven by a variant of the strong lactase LAC4 promoter.[24]

Saccharomyces cerevisiae is particularly widely used for gene expression studies in yeast, for example in yeast two-hybrid system for the study of protein-protein interaction.[25] The vectors used in yeast two-hybrid system contain fusion partners for two cloned genes that allow the transcription of a reporter gene when there is interaction between the two proteins expressed from the cloned genes.

Baculovirus

Baculovirus, a rod-shaped virus which infects insect cells, is used as the expression vector in this system.[26] Insect cell lines derived from Lepidopterans (moths and butterflies), such as Spodoptera frugiperda, are used as host. A cell line derived from the cabbage looper is of particular interest, as it has been developed to grow fast and without the expensive serum normally needed to boost cell growth.[27][28] The shuttle vector is called bacmid, and gene expression is under the control of a strong promoter pPolh.[29] Baculovirus has also been used with mammalian cell lines in the BacMam system.[30]

Baculovirus is normally used for production of glycoproteins, although the glycosylations may be different from those found in vertebrates. In general, it is safer to use than mammalian virus as it has a limited host range and does not infect vertebrates without modifications.

Plant

Many plant expression vectors are based on the Ti plasmid of Agrobacterium tumefaciens.[31] In these expression vectors, DNA to be inserted into plant is cloned into the T-DNA, a stretch of DNA flanked by a 25-bp direct repeat sequence at either end, and which can integrate into the plant genome. The T-DNA also contains the selectable marker. The Agrobacterium provides a mechanism for transformation, integration of into the plant genome, and the promoters for its vir genes may also be used for the cloned genes. Concerns over the transfer of bacterial or viral genetic material into the plant however have led to the development of vectors called intragenic vectors whereby functional equivalents of plant genome are used so that there is no transfer of genetic material from an alien species into the plant.[32]

Plant viruses may be used as vectors since the Agrobacterium method does not work for all plants. Examples of plant virus used are the tobacco mosaic virus (TMV), potato virus X, and cowpea mosaic virus.[33] The protein may be expressed as a fusion to the coat protein of the virus and is displayed on the surface of assembled viral particles, or as an unfused protein that accumulates within the plant. Expression in plant using plant vectors is often constitutive,[34] and a commonly used constitutive promoter in plant expression vectors is the cauliflower mosaic virus (CaMV) 35S promoter.[35][36]

Mammalian

Mammalian expression vectors offer considerable advantages for the expression of mammalian proteins over bacterial expression systems - proper folding, post-translational modifications, and relevant enzymatic activity. It may also be more desirable than other eukaryotic non-mammalian systems whereby the proteins expressed may not contain the correct glycosylations. It is of particular use in producing membrane-associating proteins that require chaperones for proper folding and stability as well as containing numerous post-translational modifications. The downside, however, is the low yield of product in comparison to prokaryotic vectors as well as the costly nature of the techniques involved. Its complicated technology, and potential contamination with animal viruses of mammalian cell expression have also placed a constraint on its use in large-scale industrial production.[37]

Cultured mammalian cell lines such as the Chinese hamster ovary (CHO), COS, including human cell lines such as HEK and HeLa may be used to produce protein. Vectors are transfected into the cells and the DNA may be integrated into the genome by homologous recombination in the case of stable transfection, or the cells may be transiently transfected. Examples of mammalian expression vectors include the adenoviral vectors,[38] the pSV and the pCMV series of plasmid vectors, vaccinia and retroviral vectors,[39] as well as baculovirus.[30] The promoters for cytomegalovirus (CMV) and SV40 are commonly used in mammalian expression vectors to drive gene expression. Non-viral promoter, such as the elongation factor (EF)-1 promoter, is also known.[40]

Cell-free systems

E. coli cell lysate containing the cellular components required for transcription and translation are used in this in vitro method of protein production. The advantage of such system is that protein may be produced much faster than those produced in vivo since it does not require time to culture the cells, but it is also more expensive. Vectors used for E. coli expression can be used in this system although specifically designed vectors for this system are also available. Eukaryotic cell extracts may also be used in other cell-free systems, for example, the wheat germ cell-free expression systems.[41] Mammalian cell-free systems have also been produced.[42]

Discover more about Expression/Production systems related topics

Protein production

Protein production

Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a recombinant gene. This includes the transcription of the recombinant DNA to messenger RNA (mRNA), the translation of mRNA into polypeptide chains, which are ultimately folded into functional proteins and may be targeted to specific subcellular or extracellular locations.

Escherichia coli

Escherichia coli

Escherichia coli, also known as E. coli, is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes (EPEC, ETEC etc.) can cause serious food poisoning in their hosts, and are occasionally responsible for food contamination incidents that prompt product recalls. Most strains do not cause disease in humans and are part of the normal microbiota of the gut; such strains are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones). For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship — where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh faecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

Bacillus subtilis

Bacillus subtilis

Bacillus subtilis, known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus Bacillus, B. subtilis is rod-shaped, and can form a tough, protective endospore, allowing it to tolerate extreme environmental conditions. B. subtilis has historically been classified as an obligate aerobe, though evidence exists that it is a facultative anaerobe. B. subtilis is considered the best studied Gram-positive bacterium and a model organism to study bacterial chromosome replication and cell differentiation. It is one of the bacterial champions in secreted enzyme production and used on an industrial scale by biotechnology companies.

Inclusion bodies

Inclusion bodies

Inclusion bodies are aggregates of specific types of protein found in neurons, a number of tissue cells including red blood cells, bacteria, viruses, and plants. Inclusion bodies of aggregations of multiple proteins are also found in muscle cells affected by inclusion body myositis and hereditary inclusion body myopathy.

Signal peptide

Signal peptide

A signal peptide is a short peptide present at the N-terminus of most newly synthesized proteins that are destined toward the secretory pathway. These proteins include those that reside either inside certain organelles, secreted from the cell, or inserted into most cellular membranes. Although most type I membrane-bound proteins have signal peptides, the majority of type II and multi-spanning membrane-bound proteins are targeted to the secretory pathway by their first transmembrane domain, which biochemically resembles a signal sequence except that it is not cleaved. They are a kind of target peptide.

Lac operon

Lac operon

The lactose operon is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria. Although glucose is the preferred carbon source for most bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of beta-galactosidase. Gene regulation of the lac operon was the first genetic regulatory mechanism to be understood clearly, so it has become a foremost example of prokaryotic gene regulation. It is often discussed in introductory molecular and cellular biology classes for this reason. This lactose metabolism system was used by François Jacob and Jacques Monod to determine how a biological cell knows which enzyme to synthesize. Their work on the lac operon won them the Nobel Prize in Physiology in 1965.

LacUV5

LacUV5

The lacUV5 promoter is a mutated promoter from the Escherichia coli lac operon which is used in molecular biology to drive gene expression on a plasmid. lacUV5 is very similar to the classical lac promoter, containing just 2 base pair mutations in the -10 hexamer region, compared to the lac promoter. LacUV5 is among the most commonly used promoters in molecular biology because it requires no additional activators and it drives high levels of gene expression.

Catabolite repression

Catabolite repression

Carbon catabolite repression, or simply catabolite repression, is an important part of global control system of various bacteria and other microorganisms. Catabolite repression allows microorganisms to adapt quickly to a preferred carbon and energy source first. This is usually achieved through inhibition of synthesis of enzymes involved in catabolism of carbon sources other than the preferred one. The catabolite repression was first shown to be initiated by glucose and therefore sometimes referred to as the glucose effect. However, the term "glucose effect" is actually a misnomer since other carbon sources are known to induce catabolite repression.

Growth medium

Growth medium

A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss Physcomitrella patens. Different types of media are used for growing different types of cells.

Glutathione S-transferase

Glutathione S-transferase

Glutathione S-transferases (GSTs), previously known as ligandins, are a family of eukaryotic and prokaryotic phase II metabolic isozymes best known for their ability to catalyze the conjugation of the reduced form of glutathione (GSH) to xenobiotic substrates for the purpose of detoxification. The GST family consists of three superfamilies: the cytosolic, mitochondrial, and microsomal—also known as MAPEG—proteins. Members of the GST superfamily are extremely diverse in amino acid sequence, and a large fraction of the sequences deposited in public databases are of unknown function. The Enzyme Function Initiative (EFI) is using GSTs as a model superfamily to identify new GST functions.

ColE1

ColE1

ColE1 is a plasmid found in bacteria. Its name derives from the fact that it carries a gene for colicin E1. It also codes for immunity from this product with the imm gene. In addition, the plasmid has a series of mobility (mob) genes. Its size and the presence of a single EcoRI recognition site caused it to be considered as a vector candidate.

Pichia pastoris

Pichia pastoris

Pichia pastoris is a species of methylotrophic yeast. It was found in the 1960s, with its feature of using methanol as a source of carbon and energy. After years of study, P. pastoris was widely used in biochemical research and biotech industries. With strong potential for being an expression system for protein production, as well as being a model organism for genetic study, P. pastoris has become important for biological research and biotech applications. In the last decade, some reports reassigned P. pastoris to the genus Komagataella with phylogenetic analysis, by genome sequencing of P. pastoris. The genus was split into K. phaffii, K. pastoris, and K. pseudopastoris.

Applications

Laboratory use

Expression vector in an expression host is now the usual method used in laboratories to produce proteins for research. Most proteins are produced in E. coli, but for glycosylated proteins and those with disulphide bonds, yeast, baculovirus and mammalian systems may be used.

Production of peptide and protein pharmaceuticals

Most protein pharmaceuticals are now produced through recombinant DNA technology using expression vectors. These peptide and protein pharmaceuticals may be hormones, vaccines, antibiotics, antibodies, and enzymes.[43] The first human recombinant protein used for disease management, insulin, was introduced in 1982.[43] Biotechnology allows these peptide and protein pharmaceuticals, some of which were previously rare or difficult to obtain, to be produced in large quantity. It also reduces the risks of contaminants such as host viruses, toxins and prions. Examples from the past include prion contamination in growth hormone extracted from pituitary glands harvested from human cadavers, which caused Creutzfeldt–Jakob disease in patients receiving treatment for dwarfism,[44] and viral contaminants in clotting factor VIII isolated from human blood that resulted in the transmission of viral diseases such as hepatitis and AIDS.[45][46] Such risk is reduced or removed completely when the proteins are produced in non-human host cells.

Transgenic plant and animals

In recent years, expression vectors have been used to introduce specific genes into plants and animals to produce transgenic organisms, for example in agriculture it is used to produce transgenic plants. Expression vectors have been used to introduce a vitamin A precursor, beta-carotene, into rice plants. This product is called golden rice. This process has also been used to introduce a gene into plants that produces an insecticide, called Bacillus thuringiensis toxin or Bt toxin which reduces the need for farmers to apply insecticides since it is produced by the modified organism. In addition expression vectors are used to extend the ripeness of tomatoes by altering the plant so that it produces less of the chemical that causes the tomatoes to rot.[47] There have been controversies over using expression vectors to modify crops due to the fact that there might be unknown health risks, possibilities of companies patenting certain genetically modified food crops, and ethical concerns. Nevertheless, this technique is still being used and heavily researched.

Transgenic animals have also been produced to study animal biochemical processes and human diseases, or used to produce pharmaceuticals and other proteins. They may also be engineered to have advantageous or useful traits. Green fluorescent protein is sometimes used as tags which results in animal that can fluoresce, and this have been exploited commercially to produce the fluorescent GloFish.

Gene therapy

Gene therapy is a promising treatment for a number of diseases where a "normal" gene carried by the vector is inserted into the genome, to replace an "abnormal" gene or supplement the expression of particular gene. Viral vectors are generally used but other nonviral methods of delivery are being developed. The treatment is still a risky option due to the viral vector used which can cause ill-effects, for example giving rise to insertional mutation that can result in cancer.[48][49] However, there have been promising results.[50][51]

Discover more about Applications related topics

Prion

Prion

A prion is a misfolded protein that can transmit its misfolded shape onto normal variants of the same protein. Prions are the causative agent of several transmissible and fatal neurodegenerative diseases in humans and other animals. It remains unknown what causes a normal protein to misfold into a prion; however, its consequent abnormal three-dimensional structure confers infectious properties by collapsing nearby protein molecules into the same shape in a chain reaction.

Growth hormone

Growth hormone

Growth hormone (GH) or somatotropin, also known as human growth hormone in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in human development. GH also stimulates production of IGF-1 and increases the concentration of glucose and free fatty acids. It is a type of mitogen which is specific only to the receptors on certain types of cells. GH is a 191-amino acid, single-chain polypeptide that is synthesized, stored and secreted by somatotropic cells within the lateral wings of the anterior pituitary gland.

Pituitary gland

Pituitary gland

In vertebrate anatomy, the pituitary gland, or hypophysis, is an endocrine gland, about the size of a chickpea and weighing, on average, 0.5 grams (0.018 oz) in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain. The hypophysis rests upon the hypophyseal fossa of the sphenoid bone in the center of the middle cranial fossa and is surrounded by a small bony cavity covered by a dural fold.

Creutzfeldt–Jakob disease

Creutzfeldt–Jakob disease

Creutzfeldt–Jakob disease (CJD), also known as subacute spongiform encephalopathy or neurocognitive disorder due to prion disease, is an invariably fatal degenerative brain disorder. Early symptoms include memory problems, behavioral changes, poor coordination, and visual disturbances. Later symptoms include dementia, involuntary movements, blindness, weakness, and coma. About 70% of people die within a year of diagnosis. The name Creutzfeldt–Jakob disease was introduced by Walther Spielmeyer in 1922, after the German neurologists Hans Gerhard Creutzfeldt and Alfons Maria Jakob.

Dwarfism

Dwarfism

Dwarfism is a condition wherein an organism is exceptionally small, and mostly occurs in the animal kingdom. In humans, it is sometimes defined as an adult height of less than 147 centimetres, regardless of sex; the average adult height among people with dwarfism is 122 centimetres, although some individuals with dwarfism are slightly taller. Disproportionate dwarfism is characterized by either short limbs or a short torso. In cases of proportionate dwarfism, both the limbs and torso are unusually small. Intelligence is usually normal, and most have a nearly normal life expectancy. People with dwarfism can usually bear children, though there are additional risks to the mother and child dependent upon the underlying condition.

Factor VIII

Factor VIII

Factor VIII (FVIII) is an essential blood-clotting protein, also known as anti-hemophilic factor (AHF). In humans, factor VIII is encoded by the F8 gene. Defects in this gene result in hemophilia A, a recessive X-linked coagulation disorder. Factor VIII is produced in liver sinusoidal cells and endothelial cells outside the liver throughout the body. This protein circulates in the bloodstream in an inactive form, bound to another molecule called von Willebrand factor, until an injury that damages blood vessels occurs. In response to injury, coagulation factor VIII is activated and separates from von Willebrand factor. The active protein interacts with another coagulation factor called factor IX. This interaction sets off a chain of additional chemical reactions that form a blood clot.

Hepatitis

Hepatitis

Hepatitis is inflammation of the liver tissue. Some people or animals with hepatitis have no symptoms, whereas others develop yellow discoloration of the skin and whites of the eyes (jaundice), poor appetite, vomiting, tiredness, abdominal pain, and diarrhea. Hepatitis is acute if it resolves within six months, and chronic if it lasts longer than six months. Acute hepatitis can resolve on its own, progress to chronic hepatitis, or (rarely) result in acute liver failure. Chronic hepatitis may progress to scarring of the liver (cirrhosis), liver failure, and liver cancer.

Agriculture

Agriculture

Agriculture encompasses crop and livestock production, aquaculture, fisheries and forestry for food and non-food products. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. While humans started gathering grains at least 105,000 years ago, nascent farmers only began planting them around 11,500 years ago. Sheep, goats, pigs and cattle were domesticated around 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. In the twentieth century, industrial agriculture based on large-scale monocultures came to dominate agricultural output.

Golden rice

Golden rice

Golden rice is a variety of rice produced through genetic engineering to biosynthesize beta-carotene, a precursor of vitamin A, in the edible parts of the rice. It is intended to produce a fortified food to be grown and consumed in areas with a shortage of dietary vitamin A. Vitamin A deficiency causes xerophthalmia, a range of eye conditions from night blindness to more severe clinical outcomes such as keratomalacia and corneal scars, and permanent blindness. Additionally, vitamin A deficiency also increases risk of mortality from measles and diarrhea in children. In 2013, the prevalence of deficiency was the highest in sub-Saharan Africa, and South Asia.

Insecticide

Insecticide

Insecticides are substances used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

Bacillus thuringiensis

Bacillus thuringiensis

Bacillus thuringiensis is a gram-positive, soil-dwelling bacterium, the most commonly used biological pesticide worldwide. B. thuringiensis also occurs naturally in the gut of caterpillars of various types of moths and butterflies, as well on leaf surfaces, aquatic environments, animal feces, insect-rich environments, and flour mills and grain-storage facilities. It has also been observed to parasitize other moths such as Cadra calidella—in laboratory experiments working with C. calidella, many of the moths were diseased due to this parasite.

Genetically modified food controversies

Genetically modified food controversies

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

Source: "Expression vector", Wikipedia, Wikimedia Foundation, (2022, November 16th), https://en.wikipedia.org/wiki/Expression_vector.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

References
  1. ^ sci.sdsu.edu
  2. ^ RW Old, SB Primrose (1994). "Chapter 8: Expression E. coli of cloned DNA molecules". Principles of Gene Manipulation. Blackwell Scientific Publications. ISBN 9780632037124.{{cite book}}: CS1 maint: uses authors parameter (link)
  3. ^ Michelle E. Kimple, Allison L. Brill, and Renee L. Pasker (24 September 2013). "Overview of Affinity Tags for Protein Purification". Current Protocols in Protein Science. 73 (Unit-9.9): 9.9.1–9.9.23. doi:10.1002/0471140864.ps0909s73. ISBN 9780471140863. PMC 4527311. PMID 24510596.{{cite journal}}: CS1 maint: uses authors parameter (link)
  4. ^ Erik Snapp (July 2005). "Design and Use of Fluorescent Fusion Proteins in Cell Biology". Current Protocols in Cell Biology. Chapter 21:21.4.1-21.4.13. 27: 21.4.1–21.4.13. doi:10.1002/0471143030.cb2104s27. PMC 2875081. PMID 18228466.{{cite journal}}: CS1 maint: location (link)
  5. ^ Georgeta Crivat and Justin W. Taraska (January 2012). "Imaging proteins inside cells with fluorescent tags". Trends in Biotechnology. 30 (1): 8–16. doi:10.1016/j.tibtech.2011.08.002. PMC 3246539. PMID 21924508.{{cite journal}}: CS1 maint: uses authors parameter (link)
  6. ^ Burgess RR (2009). "Refolding solubilized inclusion body proteins". Methods in Enzymology. 463: 259–82. doi:10.1016/S0076-6879(09)63017-2. ISBN 9780123745361. PMID 19892177.
  7. ^ Julie Lobstein, Charlie A Emrich, Chris Jeans, Melinda Faulkner, Paul Riggs, and Mehmet Berkmen (2012). "SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm". Microbial Cell Factories. 11: 56. doi:10.1186/1475-2859-11-56. PMC 3526497. PMID 22569138.{{cite journal}}: CS1 maint: uses authors parameter (link)
  8. ^ Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002). "N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli". Science. 298 (5599): 1790–1793. Bibcode:2002Sci...298.1790W. doi:10.1126/science.298.5599.1790. PMID 12459590.
  9. ^ Huang CJ, Lin H, Yang X (2012). "Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements". J Ind Microbiol Biotechnol. 39 (3): 383–99. doi:10.1007/s10295-011-1082-9. PMID 22252444. S2CID 15584320.
  10. ^ Germán L. Rosano1, and Eduardo A. Ceccarelli (2014). "Recombinant protein expression in Escherichia coli: advances and challenges". Frontiers in Microbiology. 5: 172. doi:10.3389/fmicb.2014.00172. PMC 4029002. PMID 24860555.{{cite journal}}: CS1 maint: uses authors parameter (link)
  11. ^ Dubendorff JW, Studier FW (1991). "Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor". Journal of Molecular Biology. 219 (1): 45–59. doi:10.1016/0022-2836(91)90856-2. PMID 1902522.
  12. ^ deBoer H. A., Comstock, L. J., Vasser, M. (1983). "The tac promoter: a functional hybrid derived from trp and lac promoters". Proceedings of the National Academy of Sciences USA. 80 (1): 21–25. Bibcode:1983PNAS...80...21D. doi:10.1073/pnas.80.1.21. PMC 393301. PMID 6337371.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Silverstone AE, Arditti RR, Magasanik B (1970). "Catabolite-insensitive revertants of lac promoter mutants". Proceedings of the National Academy of Sciences USA. 66 (3): 773–9. Bibcode:1970PNAS...66..773S. doi:10.1073/pnas.66.3.773. PMC 283117. PMID 4913210.
  14. ^ Robert Novy; Barbara Morris. "Use of glucose to control basal expression in the pET System" (PDF). InNovations (13): 6–7.
  15. ^ Smith DB, Johnson KS (1988). "Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase". Gene. 67 (1): 31–40. doi:10.1016/0378-1119(88)90005-4. PMID 3047011.
  16. ^ "GST Gene Fusion System" (PDF). Amersham Pharmacia biotech.
  17. ^ "pGEX Vectors". GE Healthcare Lifesciences.
  18. ^ "pET System manual" (PDF). Novagen.
  19. ^ Nicola Casali; Andrew Preston (2003-07-03). E. coli Plasmid Vectors: Methods and Applications. Methods in Molecular Biology. Vol. No.: 235. p. 22. ISBN 978-1-58829-151-6.
  20. ^ "Cloning Methods - Di- or multi-cistronic Cloning". EMBL.
  21. ^ Schoner BE, Belagaje RM, Schoner RG (1986). "Translation of a synthetic two-cistron mRNA in Escherichia coli". Proc Natl Acad Sci U S A. 83 (22): 8506–10. Bibcode:1986PNAS...83.8506S. doi:10.1073/pnas.83.22.8506. PMC 386959. PMID 3534891.
  22. ^ Cregg JM, Cereghino JL, Shi J, Higgins DR (2000). "Recombinant protein expression in Pichia pastoris". Molecular Biotechnology. 16 (1): 23–52. doi:10.1385/MB:16:1:23. PMID 11098467. S2CID 35874864.
  23. ^ "Pichia pastoris Expression System" (PDF). Invitrogen.
  24. ^ "K. lactis Protein Expression Kit" (PDF). New England BioLabs Inc.
  25. ^ Fields S, Song O (1989). "A novel genetic system to detect protein-protein interactions". Nature. 340 (6230): 245–6. Bibcode:1989Natur.340..245F. doi:10.1038/340245a0. PMID 2547163. S2CID 4320733.
  26. ^ Mckenzie, Samuel (February 26, 2019). "The Baculovirus Expression Vector System (BEVS)". news-medical.net.
  27. ^ HINK, W. F. (1970-05-02). "Established Insect Cell Line from the Cabbage Looper, Trichoplusia ni". Nature. 226 (5244): 466–467. Bibcode:1970Natur.226..466H. doi:10.1038/226466b0. ISSN 1476-4687. PMID 16057320. S2CID 4225642.
  28. ^ Zheng GL, Zhou HX, Li CY (2014). "Serum-free culture of the suspension cell line QB-Tn9-4s of the cabbage looper, Trichoplusia ni, is highly productive for virus replication and recombinant protein expression". Journal of Insect Science. 14 (1): 24. doi:10.1093/jis/14.1.24. PMC 4199540. PMID 25373171.
  29. ^ "Guide to Baculovirus Expression Vector Systems (BEVS) and Insect Cell Culture Techniques" (PDF). Invitrogen.
  30. ^ a b Kost, T; Condreay, JP (2002). "Recombinant baculoviruses as mammalian cell gene-delivery vectors". Trends in Biotechnology. 20 (4): 173–180. doi:10.1016/S0167-7799(01)01911-4. PMID 11906750.
  31. ^ Walden R, Schell J (1990). "Techniques in plant molecular biology--progress and problems". European Journal of Biochemistry. 192 (3): 563–76. doi:10.1111/j.1432-1033.1990.tb19262.x. PMID 2209611.
  32. ^ George Acquaah (16 August 2012). Principles of Plant Genetics and Breeding. John Wiley & Sons Inc. ISBN 9781118313695.
  33. ^ M Carmen Cañizares; Liz Nicholson; George P Lomonossoff (2005). "Use of viral vectors for vaccine production in plants". Immunology and Cell Biology. 83 (3): 263–270. doi:10.1111/j.1440-1711.2005.01339.x. PMC 7165799. PMID 15877604.
  34. ^ "How Do You Make A Transgenic Plant?". Department of Soil and Crop Sciences at Colorado State University.
  35. ^ Fütterer J.; Bonneville J. M.; Hohn T (May 1990). "Cauliflower mosaic virus as a gene expression vector for plants". Physiologia Plantarum. 79 (1): 154–157. doi:10.1111/j.1399-3054.1990.tb05878.x.
  36. ^ Benfey PN, Chua NH (1990). "The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants" (PDF). Science. 250 (4983): 959–66. Bibcode:1990Sci...250..959B. doi:10.1126/science.250.4983.959. PMID 17746920. S2CID 35471862.
  37. ^ Kishwar Hayat Khan (2013). "Gene Expression in Mammalian Cells and its Applications". Adv Pharm Bull. 3 (2): 257–263. doi:10.5681/apb.2013.042. PMC 3848218. PMID 24312845.
  38. ^ Berkner KL (1992). "Expression of heterologous sequences in adenoviral vectors". Current Topics in Microbiology and Immunology. 158: 39–66. doi:10.1007/978-3-642-75608-5_3. ISBN 978-3-642-75610-8. PMID 1582245.
  39. ^ Hruby, DE (1990). "Vaccinia virus vectors: new strategies for producing recombinant vaccines". Clin Microbiol Rev. 3 (2): 153–170. doi:10.1128/cmr.3.2.153. PMC 358149. PMID 2187593.
  40. ^ Kim DW1, Uetsuki T, Kaziro Y, Yamaguchi N, Sugano S (1990). "Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system". Gene. 91 (2): 217–23. doi:10.1016/0378-1119(90)90091-5. PMID 2210382.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Vinarov DA, Newman CL, Tyler EM, Markley JL, Shahan MN (2006). "Chapter 5:Unit 5.18. Wheat Germ Cell-Free Expression System for Protein Production". Current Protocols in Protein Science. Vol. Chapter 5. pp. 5.18.1–5.18.18. doi:10.1002/0471140864.ps0518s44. ISBN 9780471140863. PMID 18429309. S2CID 12057689.
  42. ^ Brödel AK1, Wüstenhagen DA, Kubick S (2015). "Cell-free protein synthesis systems derived from cultured mammalian cells". Structural Proteomics. Methods in Molecular Biology. Vol. 1261. pp. 129–40. doi:10.1007/978-1-4939-2230-7_7. ISBN 978-1-4939-2229-1. PMID 25502197.{{cite book}}: CS1 maint: multiple names: authors list (link)
  43. ^ a b Shayne Cox Gad (2007). Handbook of Pharmaceutical Biotechnology. John Wiley & Sons. p. 693. ISBN 978-0-471-21386-4.
  44. ^ Alexander Dorozynski (2002). "Parents sue over contaminated human growth hormone". British Medical Journal. 324 (7349): 1294. doi:10.1136/bmj.324.7349.1294/b. PMC 1123268. PMID 12039815.
  45. ^ Shayne Cox Gad (2007-05-25). Handbook of Pharmaceutical Biotechnology. John Wiley & Sons. p. 738. ISBN 978-0-471-21386-4.
  46. ^ Bogdanich W, Koli E (2003-05-22). "2 Paths of Bayer Drug in 80's: Riskier One Steered Overseas". The New York Times: A1, C5. PMID 12812170.
  47. ^ "bionetonline.org". Archived from the original on 2010-06-17. Retrieved 2010-06-12.
  48. ^ "Gene therapy". Human Genome Project.
  49. ^ Ian Sample (17 October 2003). "Doctors discover why gene therapy gave boys cancer". Guardian.
  50. ^ Sarah Boseley (30 April 2013). "Pioneering gene therapy trials offer hope for heart patients". Guardian.
  51. ^ Fischer, A.; Hacein-Bey-Abina, S.; Cavazzana-Calvo, M. (2010). "20 years of gene therapy for SCID". Nature Immunology. 11 (6): 457–460. doi:10.1038/ni0610-457. PMID 20485269. S2CID 11300348.

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.