Get Our Extension

Ethidium bromide

From Wikipedia, in a visual modern way
Ethidium bromide
Ethidium bromide.svg
Ethidium-bromide-from-monohydrate-xtal-1971-3D-balls-B.png
Ethidium-bromide-monohydrate-xtal-1971-3D-SF.png
Names
Preferred IUPAC name
3,8-Diamino-5-ethyl-6-phenylphenanthridin-5-ium bromide
Other names
  • 2,7-Diamino-10-ethyl-6-phenylphenanthridinium bromide
  • 2,7-Diamino-10-ethyl-9-phenylphenanthridinium bromide
  • 3,8-Diamino-1-ethyl-6-phenylphenantridinium bromide
  • 5-Ethyl-6-phenyl-phenanthridine-3,8-diamine bromide
  • Ethidium bromide
  • Homidium bromide
  • EtBr
  • EthBr
Identifiers
3D model (JSmol)
3642536
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.013.622 Edit this at Wikidata
EC Number
  • 214-984-6
KEGG
RTECS number
  • SF7950000
UNII
UN number 2811
  • InChI=1S/C21H19N3.BrH/c1-2-24-20-13-16(23)9-11-18(20)17-10-8-15(22)12-19(17)21(24)14-6-4-3-5-7-14;/h3-13,23H,2,22H2,1H3;1H checkY
    Key: ZMMJGEGLRURXTF-UHFFFAOYSA-N checkY
  • InChI=1/C21H19N3.BrH/c1-2-24-20-13-16(23)9-11-18(20)17-10-8-15(22)12-19(17)21(24)14-6-4-3-5-7-14;/h3-13,23H,2,22H2,1H3;1H
    Key: ZMMJGEGLRURXTF-UHFFFAOYAD
  • CC[n+]1c2cc(N)ccc2c3ccc(N)cc3c1c4ccccc4.[Br-]
Properties
C21H20BrN3
Molar mass 394.294 g/mol
Appearance Purple-red solid
Melting point 260 to 262 °C (500 to 504 °F; 533 to 535 K)
~40 g/l
Pharmacology
QP51AX06 (WHO)
Hazards[1]
GHS labelling:
GHS06: ToxicGHS08: Health hazard
Danger
H302, H330, H341
P201, P202, P260, P284, P301+P312, P304+P340+P310
NFPA 704 (fire diamond)
4
1
0
Flash point > 100 °C (212 °F; 373 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Ethidium bromide (or homidium bromide,[2] chloride salt homidium chloride)[3][4] is an intercalating agent commonly used as a fluorescent tag (nucleic acid stain) in molecular biology laboratories for techniques such as agarose gel electrophoresis. It is commonly abbreviated as EtBr, which is also an abbreviation for bromoethane. To avoid confusion, some laboratories have used the abbreviation EthBr for this salt. When exposed to ultraviolet light, it will fluoresce with an orange colour, intensifying almost 20-fold after binding to DNA. Under the name homidium, it has been commonly used since the 1950s in veterinary medicine to treat trypanosomiasis in cattle.[5] The high incidence of antimicrobial resistance makes this treatment impractical in some areas, where the related isometamidium chloride is used instead. Despite its reputation as a mutagen, it is relatively safe to handle.[6]

Discover more about Ethidium bromide related topics

Intercalation (biochemistry)

Intercalation (biochemistry)

In biochemistry, intercalation is the insertion of molecules between the planar bases of deoxyribonucleic acid (DNA). This process is used as a method for analyzing DNA and it is also the basis of certain kinds of poisoning.

Fluorescent tag

Fluorescent tag

In molecular biology and biotechnology, a fluorescent tag, also known as a fluorescent label or fluorescent probe, is a molecule that is attached chemically to aid in the detection of a biomolecule such as a protein, antibody, or amino acid. Generally, fluorescent tagging, or labeling, uses a reactive derivative of a fluorescent molecule known as a fluorophore. The fluorophore selectively binds to a specific region or functional group on the target molecule and can be attached chemically or biologically. Various labeling techniques such as enzymatic labeling, protein labeling, and genetic labeling are widely utilized. Ethidium bromide, fluorescein and green fluorescent protein are common tags. The most commonly labelled molecules are antibodies, proteins, amino acids and peptides which are then used as specific probes for detection of a particular target.

Nucleic acid

Nucleic acid

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is the ribose derivative deoxyribose, the polymer is DNA.

Molecular biology

Molecular biology

Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physical structure of biological macromolecules is known as molecular biology.

Agarose gel electrophoresis

Agarose gel electrophoresis

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size, and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

Bromoethane

Bromoethane

Bromoethane, also known as ethyl bromide, is a chemical compound of the haloalkanes group. It is abbreviated by chemists as EtBr. This volatile compound has an ether-like odor.

Fluorescence

Fluorescence

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

DNA

DNA

Deoxyribonucleic acid is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

Trypanosomiasis

Trypanosomiasis

Trypanosomiasis or trypanosomosis is the name of several diseases in vertebrates caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans this includes African trypanosomiasis and Chagas disease. A number of other diseases occur in other animals.

Antimicrobial resistance

Antimicrobial resistance

Antimicrobial resistance (AMR) occurs when microbes evolve mechanisms that protect them from the effects of antimicrobials. All classes of microbes can evolve resistance. Fungi evolve antifungal resistance. Viruses evolve antiviral resistance. Protozoa evolve antiprotozoal resistance, and bacteria evolve antibiotic resistance. Bacteria that are considered extensively drug resistant (XDR) or totally drug-resistant (TDR) are sometimes referred to as a superbug. Although antimicrobial resistance is a naturally-occurring process, it is often the result of improper usage of the drugs and management of the infections.

Isometamidium chloride

Isometamidium chloride

Isometamidium chloride is a triazene trypanocidal agent used in veterinary medicine.

Structure, chemistry, and fluorescence

Absorption spectrum of ethidium bromide
Absorption spectrum of ethidium bromide

As with most fluorescent compounds, ethidium bromide is aromatic. Its core heterocyclic moiety is generically known as a phenanthridine, an isomer of which is the fluorescent dye acridine. Absorption maxima of EtBr in aqueous solution are at 210 nm and 285 nm, which correspond to ultraviolet light. As a result of this excitation, EtBr emits orange light with wavelength 605 nm.[7][8]

Ethidium bromide's intense fluorescence after binding with DNA is probably not due to rigid stabilization of the phenyl moiety, because the phenyl ring has been shown to project outside the intercalated bases. In fact, the phenyl group is found to be almost perpendicular to the plane of the ring system, as it rotates about its single bond to find a position where it will impinge upon the ring system minimally. Instead, the hydrophobic environment found between the base pairs is believed to be responsible. By moving into this hydrophobic environment and away from the solvent, the ethidium cation is forced to shed any water molecules that were associated with it. As water is a highly efficient fluorescence quencher, the removal of these water molecules allows the ethidium to fluoresce.

Discover more about Structure, chemistry, and fluorescence related topics

Chemical compound

Chemical compound

A chemical compound is a chemical substance composed of many identical molecules containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound. A compound can be transformed into a different substance by a chemical reaction, which may involve interactions with other substances. In this process, bonds between atoms may be broken and/or new bonds formed.

Phenanthridine

Phenanthridine

Phenanthridine is a nitrogen heterocyclic compound that is the basis of DNA-binding fluorescent dyes through intercalation. Examples of such dyes are ethidium bromide and propidium iodide. It is an isomer of acridine.

Acridine

Acridine

Acridine is an organic compound and a nitrogen heterocycle with the formula C13H9N. Acridines are substituted derivatives of the parent ring. It is a planar molecule that is structurally related to anthracene with one of the central CH groups replaced by nitrogen. Like the related molecules pyridine and quinoline, acridine is mildly basic. It is an almost colorless solid, which crystallizes in needles. There are few commercial applications of acridines; at one time acridine dyes were popular, but they are now relegated to niche applications, such as with acridine orange. The name is a reference to the acrid odour and acrid skin-irritating effect of the compound.

Excited state

Excited state

In quantum mechanics, an excited state of a system is any quantum state of the system that has a higher energy than the ground state. Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation.

Quenching (fluorescence)

Quenching (fluorescence)

Quenching refers to any process which decreases the fluorescence intensity of a given substance. A variety of processes can result in quenching, such as excited state reactions, energy transfer, complex-formation and collisional quenching. As a consequence, quenching is often heavily dependent on pressure and temperature. Molecular oxygen, iodide ions and acrylamide are common chemical quenchers. The chloride ion is a well known quencher for quinine fluorescence. Quenching poses a problem for non-instant spectroscopic methods, such as laser-induced fluorescence.

Applications

DNA sample separated using gel electrophoresis of nucleic acids and stained with ethidium bromide, which emits orange light after binding to DNA
DNA sample separated using gel electrophoresis of nucleic acids and stained with ethidium bromide, which emits orange light after binding to DNA

Ethidium bromide is commonly used to detect nucleic acids in molecular biology laboratories. In the case of DNA this is usually double-stranded DNA from PCRs, restriction digests, etc. Single-stranded RNA can also be detected, since it usually folds back onto itself and thus provides local base pairing for the dye to intercalate. Detection typically involves a gel containing nucleic acids placed on or under an ultraviolet lamp. Since ultraviolet light is harmful to eyes and skin, gels stained with ethidium bromide are usually viewed indirectly using an enclosed camera, with the fluorescent images recorded as photographs. Where direct viewing is needed, the viewer's eyes and exposed skin should be protected. In the laboratory the intercalating properties have long been used to minimize chromosomal condensation when a culture is exposed to mitotic arresting agents during harvest. The resulting slide preparations permit a higher degree of resolution, and thus more confidence in determining structural integrity of chromosomes upon microscopic analysis.

Ethidium bromide is also used during DNA fragment separation by agarose gel electrophoresis.[9] It is added to running buffer and binds by intercalating between DNA base pairs. When the agarose gel is illuminated using UV light, DNA bands become visible. Intercalation of EtBr can alter properties of the DNA molecule, such as charge, weight, conformation, and flexibility. Since the mobilities of DNA molecules through the agarose gel are measured relative to a molecular weight standard, the effects of EtBr can be critical to determining the sizes of molecules.[10]

Ethidium bromide has also been used extensively to reduce mitochondrial DNA copy number in proliferating cells.[11] The effect of EtBr on mitochondrial DNA is used in veterinary medicine to treat trypanosomiasis in cattle, as EtBr binds molecules of kinetoplastid DNA and changes their conformation to the Z-DNA form. This form inhibits replication of kinetoplastid DNA, which is lethal for trypanosomes.[12]

The chloride salt homidium chloride has the same applications.[3][4]

Ethidium bromide can be added to YPD media and used as an inhibitor for cell growth.[13]

The binding affinity of the cationic nanoparticles with DNA could be evaluated by competitive binding with ethidium bromide.[14][15]

Alternatives for gel

There are alternatives to ethidium bromide which are advertised as being less dangerous and having better performance.[16][17] For example, several SYBR-based dyes are used by some researchers and there are other emerging stains such as "Novel Juice". SYBR dyes are less mutagenic than EtBr by the Ames test with liver extract.[18] However, SYBR Green I was actually found to be more mutagenic than EtBr to the bacterial cells exposed to UV (which is used to visualize either dye).[19] This may be the case for other "safer" dyes, but while mutagenic and toxicity details are available[20] these have not been published in peer-reviewed journals. The MSDS for SYBR Safe reports an LD50 for rats of over 5 g/kg, which is higher than that of EtBr (1.5 g/kg). Many alternative dyes are suspended in DMSO, which has health implications of its own, including increased skin absorption of organic compounds.[18] Despite the performance advantage of using SYBR dyes instead of EtBr for staining purposes, many researchers still prefer EtBr since it is considerably less expensive.

Discover more about Applications related topics

Gel electrophoresis of nucleic acids

Gel electrophoresis of nucleic acids

Nucleic acid electrophoresis is an analytical technique used to separate DNA or RNA fragments by size and reactivity. Nucleic acid molecules which are to be analyzed are set upon a viscous medium, the gel, where an electric field induces the nucleic acids to migrate toward the anode. The separation of these fragments is accomplished by exploiting the mobilities with which different sized molecules are able to pass through the gel. Longer molecules migrate more slowly because they experience more resistance within the gel. Because the size of the molecule affects its mobility, smaller fragments end up nearer to the anode than longer ones in a given period. After some time, the voltage is removed and the fragmentation gradient is analyzed. For larger separations between similar sized fragments, either the voltage or run time can be increased. Extended runs across a low voltage gel yield the most accurate resolution. Voltage is, however, not the sole factor in determining electrophoresis of nucleic acids.

DNA

DNA

Deoxyribonucleic acid is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

Polymerase chain reaction

Polymerase chain reaction

The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it to a large enough amount to study in detail. PCR was invented in 1983 by the American biochemist Kary Mullis at Cetus Corporation; Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.

Restriction digest

Restriction digest

A restriction digest is a procedure used in molecular biology to prepare DNA for analysis or other processing. It is sometimes termed DNA fragmentation. Hartl and Jones describe it this way: This enzymatic technique can be used for cleaving DNA molecules at specific sites, ensuring that all DNA fragments that contain a particular sequence at a particular location have the same size; furthermore, each fragment that contains the desired sequence has the sequence located at exactly the same position within the fragment. The cleavage method makes use of an important class of DNA-cleaving enzymes isolated primarily from bacteria. These enzymes are called restriction endonucleases or restriction enzymes, and they are able to cleave DNA molecules at the positions at which particular short sequences of bases are present.

RNA

RNA

Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid (DNA) are nucleic acids. Along with lipids, proteins, and carbohydrates, nucleic acids constitute one of the four major macromolecules essential for all known forms of life. Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA, RNA is found in nature as a single strand folded onto itself, rather than a paired double strand. Cellular organisms use messenger RNA (mRNA) to convey genetic information that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

Base pair

Base pair

A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" base pairs allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize specific base-pairing patterns that identify particular regulatory regions of genes.

Agarose gel electrophoresis

Agarose gel electrophoresis

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size, and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

Mitochondrial DNA

Mitochondrial DNA

Mitochondrial DNA is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA is only a small portion of the DNA in a eukaryotic cell; most of the DNA can be found in the cell nucleus and, in plants and algae, also in plastids such as chloroplasts.

Trypanosomiasis

Trypanosomiasis

Trypanosomiasis or trypanosomosis is the name of several diseases in vertebrates caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans this includes African trypanosomiasis and Chagas disease. A number of other diseases occur in other animals.

Kinetoplastida

Kinetoplastida

Kinetoplastida is a group of flagellated protists belonging to the phylum Euglenozoa, and characterised by the presence of an organelle with a large massed DNA called kinetoplast. The organisms are commonly referred to as "kinetoplastids" or "kinetoplasts" The group includes a number of parasites responsible for serious diseases in humans and other animals, as well as various forms found in soil and aquatic environments. Their distinguishing feature, the presence of a kinetoplast, is an unusual DNA-containing granule located within the single mitochondrion associated with the base of the cell's flagellum. The kinetoplast contains many copies of the mitochondrial genome.

GelRed

GelRed

GelRed is an intercalating nucleic acid stain used in molecular genetics for agarose gel DNA electrophoresis. GelRed structurally consists of two ethidium subunits that are bridged by a linear oxygenated spacer.

Ames test

Ames test

The Ames test is a widely employed method that uses bacteria to test whether a given chemical can cause mutations in the DNA of the test organism. More formally, it is a biological assay to assess the mutagenic potential of chemical compounds. A positive test indicates that the chemical is mutagenic and therefore may act as a carcinogen, because cancer is often linked to mutation. The test serves as a quick and convenient assay to estimate the carcinogenic potential of a compound because standard carcinogen assays on mice and rats are time-consuming and expensive. However, false-positives and false-negatives are known.

Possible carcinogenic activity

Ethidium bromide intercalated between two adenine–thymine base pairs. The intercalation is said by some[by whom?] to motivate a high mutagenicity of DNA.[6]
Ethidium bromide intercalated between two adenine–thymine base pairs. The intercalation is said by some to motivate a high mutagenicity of DNA.[6]

Most use of ethidium bromide in the laboratory (0.25–1 µg/ml) is naturally below the LD50 dosage. Testing in humans and longer studies in any mammalian system would be required to fully understand the long-term potential risk ethidium bromide poses to lab workers, but it is clear that ethidium bromide thoroughly mutates and kills both mammalian and bacterial cells.[21]

Handling and disposal

Ethidium bromide is not regulated as hazardous waste at low concentrations,[22] but is treated as hazardous waste by many organizations. Material should be handled according to the manufacturer's Safety Data Sheet (SDS).

The disposal of laboratory ethidium bromide remains a controversial subject.[23] Ethidium bromide can be degraded chemically, or collected and incinerated. It is common for ethidium bromide waste below a mandated concentration to be disposed of normally (such as pouring it down a drain). A common practice is to treat ethidium bromide with sodium hypochlorite (bleach) before disposal.[24] According to Lunn and Sansone, chemical degradation using bleach yields compounds which are mutagenic by the Ames test. Data are lacking on the mutagenic effects of degradation products. Lunn and Sansone describe more effective methods for degradation.[25] Elsewhere, ethidium bromide removal from solutions with activated charcoal or ion exchange resin is recommended.[26] Various commercial products are available for this use.[27]

Discover more about Handling and disposal related topics

Sodium hypochlorite

Sodium hypochlorite

Sodium hypochlorite, commonly known in a dilute solution as (chlorine) bleach, is an inorganic chemical compound with the formula NaOCl, comprising a sodium cation and a hypochlorite anion. It may also be viewed as the sodium salt of hypochlorous acid. The anhydrous compound is unstable and may decompose explosively. It can be crystallized as a pentahydrate NaOCl·5H2O, a pale greenish-yellow solid which is not explosive and is stable if kept refrigerated.

Ames test

Ames test

The Ames test is a widely employed method that uses bacteria to test whether a given chemical can cause mutations in the DNA of the test organism. More formally, it is a biological assay to assess the mutagenic potential of chemical compounds. A positive test indicates that the chemical is mutagenic and therefore may act as a carcinogen, because cancer is often linked to mutation. The test serves as a quick and convenient assay to estimate the carcinogenic potential of a compound because standard carcinogen assays on mice and rats are time-consuming and expensive. However, false-positives and false-negatives are known.

Activated carbon

Activated carbon

Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the surface area available for adsorption or chemical reactions. Activation is analogous to making popcorn from dried corn kernels: popcorn is light, fluffy, and its kernels have a high surface-area-to-volume ratio. Activated is sometimes replaced by active.

Drug resistance

Trypanosomes in the Gibe River Valley in southwest Ethiopia showed universal resistance between July 1989 and February 1993.[28] This likely indicates a permanent loss of function in this area against the tested target, T. congolense isolated from Boran cattle.[28]

Discover more about Drug resistance related topics

Gibe River

Gibe River

The Gibe River is by far the largest tributary of the Omo River in Ethiopia and typically flowing south-southeast. The confluence of the large Gibe River at 8°19′N 37°28′E with the smaller Wabe River forms the even larger Omo River. Consequently, the whole drainage basin is sometimes called the Omo-Gibe River Basin with the Gibe and the Omo draining the upper and lower reaches, respectively.

Ethiopia

Ethiopia

Ethiopia, officially the Federal Democratic Republic of Ethiopia, is a landlocked country in the Horn of Africa. It shares borders with Eritrea to the north, Djibouti to the northeast, Somalia to the east and northeast, Kenya to the south, South Sudan to the west, and Sudan to the northwest. Ethiopia has a total area of 1,100,000 square kilometres. As of 2022, it is home to around 113.5 million inhabitants, making it the 13th-most populous country in the world and the 2nd-most populous in Africa after Nigeria. The national capital and largest city, Addis Ababa, lies several kilometres west of the East African Rift that splits the country into the African and Somali tectonic plates.

Trypanosoma congolense

Trypanosoma congolense

Trypanosoma congolense is a species of trypanosomes and is the major pathogen responsible for the disease nagana in cattle and other animals including sheep, pigs, goats, horses and camels, dogs, as well as laboratory mice. It is the most common cause of nagana in east Africa, but is also a major cause of nagana in west Africa. This parasite is spread by tsetse flies. In its mammalian host, Trypanosoma congolense only lives in blood vessels, and causes in particular anaemia.

Boran

Boran

Boran was Sasanian queen of Iran from 630 to 632, with an interruption of some months. She was the daughter of king Khosrow II and the Byzantine princess Maria. She is the second of only three women to rule in Iranian history, the others being Musa of Parthia, and Boran's sister Azarmidokht.

Source: "Ethidium bromide", Wikipedia, Wikimedia Foundation, (2022, November 24th), https://en.wikipedia.org/wiki/Ethidium_bromide.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ "GESTIS-Stoffdatenbank". gestis.dguv.de (in German). Retrieved 22 November 2021.
  2. ^ "Homidium bromide". PubChem. NCBI, NLM, US NIH. Retrieved 2020-09-08. CID 14710 from PubChem
  3. ^ a b Kinabo LD (September 1993). "Pharmacology of existing drugs for animal trypanosomiasis". Acta Tropica. Elsevier. 54 (3–4): 169–183. doi:10.1016/0001-706x(93)90091-o. PMID 7902656. S2CID 27564786.
  4. ^ a b "Homidium chloride". PubChem. NCBI, NLM, US NIH. Retrieved 2021-03-14. CID 11765 from PubChem
  5. ^ Stevenson P, Sones KR, Gicheru MM, Mwangi EK (May 1995). "Comparison of isometamidium chloride and homidium bromide as prophylactic drugs for trypanosomiasis in cattle at Nguruman, Kenya". Acta Tropica. 59 (2): 77–84. doi:10.1016/0001-706X(94)00080-K. PMID 7676909.
  6. ^ a b Lowe, Derek (2016-04-18). "The Myth of Ethidium Bromide". In the Pipeline. Retrieved 2019-02-28.
  7. ^ Sabnis RW (2010). Handbook of Biological Dyes and Stains: Synthesis and Industrial Application. Hoboken, NJ: Wiley. ISBN 978-0-470-40753-0.
  8. ^ "Application Note: Ethidium Bromide" (PDF). Retrieved 6 April 2014.
  9. ^ Borst P (November 2005). "Ethidium DNA agarose gel electrophoresis: how it started". IUBMB Life. 57 (11): 745–747. doi:10.1080/15216540500380855. PMID 16511967.
  10. ^ Sigmon J, Larcom LL (October 1996). "The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis". Electrophoresis. 17 (10): 1524–1527. doi:10.1002/elps.1150171003. PMID 8957173. S2CID 10593378.
  11. ^ Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT (November 2002). "Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control". Nucleic Acids Research. 30 (21): 4626–4633. doi:10.1093/nar/gkf602. PMC 135822. PMID 12409452.
  12. ^ Roy Chowdhury A, Bakshi R, Wang J, Yildirir G, Liu B, Pappas-Brown V, et al. (December 2010). "The killing of African trypanosomes by ethidium bromide". PLOS Pathogens. 6 (12): e1001226. doi:10.1371/journal.ppat.1001226. PMC 3002999. PMID 21187912.
  13. ^ Caesar R, Warringer J, Blomberg A (February 2006). "Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB". Eukaryotic Cell. 5 (2): 368–378. doi:10.1128/EC.5.2.368-378.2006. PMC 1405896. PMID 16467477.
  14. ^ Liang H, Peng B, Dong C, Liu L, Mao J, Wei S, et al. (October 2018). "Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation". Nature Communications. 9 (1): 4291. Bibcode:2018NatCo...9.4291L. doi:10.1038/s41467-018-06603-5. PMC 6191420. PMID 30327464.
  15. ^ Olmsted J, Kearns DR (August 1977). "Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids". Biochemistry. 16 (16): 3647–3654. doi:10.1021/bi00635a022. PMID 889813.
  16. ^ Huang Q, Fu WL (2005). "Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis". Clinical Chemistry and Laboratory Medicine. 43 (8): 841–842. doi:10.1515/CCLM.2005.141. PMID 16201894. S2CID 27423672.
  17. ^ Madden D. "Safer stains for DNA". Retrieved 2009-12-08.
  18. ^ a b Singer VL, Lawlor TE, Yue S (February 1999). "Comparison of SYBR Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test)". Mutation Research. 439 (1): 37–47. doi:10.1016/s1383-5718(98)00172-7. PMID 10029672.
  19. ^ Ohta T, Tokishita S, Yamagata H (May 2001). "Ethidium bromide and SYBR Green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E. coli". Mutation Research. 492 (1–2): 91–97. doi:10.1016/S1383-5718(01)00155-3. PMID 11377248.
  20. ^ "Novel Juice testing report" (PDF). Newmarket Scientific.
  21. ^ National Toxicology Program (2005-08-15). "Executive Summary Ethidium Bromide: Evidence for Possible Carcinogenic Activity" (PDF). Retrieved 2009-09-30.
  22. ^ "Executive Summary Ethidium Bromide" (PDF). National Toxicology Program. 2005-08-15. Retrieved 2009-09-30.
  23. ^ Hengen PN (June 1994). "Disposal of ethidium bromide". Trends in Biochemical Sciences. 19 (6): 257–258. doi:10.1016/0968-0004(94)90152-X. PMID 8073504.
  24. ^ Armour MA (2003). Hazardous Laboratory Chemicals Disposal Guide (3rd ed.). CRC. pp. 222–223. ISBN 1-56670-567-3.
  25. ^ Lunn G, Sansone EB (May 1987). "Ethidium bromide: destruction and decontamination of solutions". Analytical Biochemistry. 162 (2): 453–458. doi:10.1016/0003-2697(87)90419-2. PMID 3605608.
  26. ^ Quillardet, P.; Hofnung, M. (April 1988). "Ethidium bromide and safety--readers suggest alternative solutions". Trends in Genetics. 4 (4): 89–90. doi:10.1016/0168-9525(88)90092-3. PMID 3238760.
  27. ^ "Ethidium Bromide Disposal". Archived from the original on 2015-04-15. Retrieved 2006-10-03.
  28. ^ a b Mulugeta W, Wilkes J, Mulatu W, Majiwa PA, Masake R, Peregrine AS (April 1997). "Long-term occurrence of Trypanosoma congolense resistant to diminazene, isometamidium and homidium in cattle at Ghibe, Ethiopia". Acta Tropica. Elsevier. 64 (3–4): 205–217. doi:10.1016/s0001-706x(96)00645-6. PMID 9107367. S2CID 23878484.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.