Get Our Extension

Denny (hybrid hominin)

From Wikipedia, in a visual modern way
Denny (Denisova 11)
Denisova-111.jpg
Catalog no.DC1227; GenBank Accession = KU131206
Common nameDenny (Denisova 11)
Species1st generation Neanderthal/Denisovan hybrid
Age90,000 years
Place discoveredDenisova Cave in the Altai Mountains, Siberia, Russia
Date discovered2012
Discovered byViviane Slon and Svante Pääbo
Denisova 11, genetic tree of ancestors
Denisova 11, genetic tree of ancestors

Denny (Denisova 11) is a 90,000 year old fossil specimen belonging to a 13-year-old Neanderthal-Denisovan hybrid girl.[1][2] To date, she is the only first-generation hybrid hominin ever discovered.[3] Denny’s remains consist of a single fossilized fragment of a long bone discovered among over 2,000 visually unidentifiable fragments excavated at the Denisova Cave in the Altai Mountains, Russia in 2012.[2]

A team of researchers at Oxford University used a method of collagen peptide mass fingerprinting, called Zooarchaeology by Mass Spectrometry (ZooMS), and mitochondrial DNA (mtDNA) analysis to identify the fragment as belonging to an archaic human with Neanderthal ancestry.[4]

Genomic sequencing and analysis led by paleo-geneticists Viviane Slon and Svante Pääbo of the Max Planck Institute for Evolutionary Anthropology revealed that Denny was the offspring of a Neanderthal mother and a Denisovan father.[1][3] Additionally, her genome suggests that her father also carried a small degree of Neanderthal ancestry from 300 to 600 generations prior to his lifetime.[3]

These surprising genomic data suggest that interspecies mating frequently occurred between Denisovans and Neanderthals during several periods of contact over many thousands of years.[3] Additionally, these findings lend support to the hypothesis that similar patterns of admixture, or interbreeding between archaic and modern humans, may have resulted in the partial absorption of Denisovans and Neanderthals into modern human populations.[3]

Discover more about Denny (hybrid hominin) related topics

Neanderthal

Neanderthal

Neanderthals, also written as Neandertals, are an extinct species or subspecies of archaic humans who lived in Eurasia until about 40,000 years ago. The reasons for Neanderthal extinction remain a topic of discussion, the culprits include: demographic factors such as small population size and inbreeding; competitive replacement or assimilation into the modern human genome ; great climatic change; disease; or a combination of these factors.

Denisovan

Denisovan

The Denisovans or Denisova hominins ( di-NEE-sə-və) are an extinct species or subspecies of archaic human that ranged across Asia during the Lower and Middle Paleolithic. Denisovans are known from few physical remains and consequently, most of what is known about them comes from DNA evidence. No formal species name has been established pending more complete fossil material.

Denisova Cave

Denisova Cave

Denisova Cave is a cave in the Bashelaksky Range of the Altai mountains, Siberia, Russia. The cave has provided items of great paleoarchaeological and paleontological interest. Bone fragments of the Denisova hominin originate from the cave, including artifacts dated to around 40,000 BP. A 32,000-year-old prehistoric species of horse has also been found in the cave.

University of Oxford

University of Oxford

The University of Oxford is a collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the world's second-oldest university in continuous operation. It grew rapidly from 1167 when Henry II banned English students from attending the University of Paris. After disputes between students and Oxford townsfolk in 1209, some academics fled north-east to Cambridge where they established what became the University of Cambridge. The two English ancient universities share many common features and are jointly referred to as Oxbridge. Both are ranked among the most prestigious universities in the world.

Peptide mass fingerprinting

Peptide mass fingerprinting

Peptide mass fingerprinting (PMF) is an analytical technique for protein identification in which the unknown protein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately measured with a mass spectrometer such as MALDI-TOF or ESI-TOF. The method was developed in 1993 by several groups independently. The peptide masses are compared to either a database containing known protein sequences or even the genome. This is achieved by using computer programs that translate the known genome of the organism into proteins, then theoretically cut the proteins into peptides, and calculate the absolute masses of the peptides from each protein. They then compare the masses of the peptides of the unknown protein to the theoretical peptide masses of each protein encoded in the genome. The results are statistically analyzed to find the best match.

ZooMS

ZooMS

Zooarchaeology by mass spectrometry, commonly referred to by the abbreviation ZooMS, is a scientific method that identifies animal species by means of characteristic peptide sequences in the protein collagen. ZooMS is the most common archaeological application of peptide mass fingerprinting (PMF) and can be used for species identification of bones, teeth, skin and antler. It is commonly used to identify objects that cannot be identified morphologically. In an archaeological context this usually means that the object is too fragmented or that it has been shaped into an artefact. Archaeologists use these species identification to study among others past environments, diet and raw material selection for the production of tools.

Viviane Slon

Viviane Slon

Viviane Slon is a paleogeneticist at the Max Planck Institute for Evolutionary Anthropology. She identified that a teenage girl born 90,000 years ago had both Neanderthal and Denisovan parents. She was selected as one of Nature's 10 in 2018.

Svante Pääbo

Svante Pääbo

Svante Pääbo is a Swedish geneticist and Nobel Laureate who specialises in the field of evolutionary genetics. As one of the founders of paleogenetics, he has worked extensively on the Neanderthal genome. In 1997, he became founding director of the Department of Genetics at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. Since 1999, he has been an honorary professor at Leipzig University; he currently teaches molecular evolutionary biology at the university. He is also an adjunct professor at Okinawa Institute of Science and Technology, Japan.

Max Planck Institute for Evolutionary Anthropology

Max Planck Institute for Evolutionary Anthropology

The Max Planck Institute for Evolutionary Anthropology is a research institute based in Leipzig, Germany, that was founded in 1997. It is part of the Max Planck Society network.

Genetic admixture

Genetic admixture

Genetic admixture occurs when previously diverged or isolated genetic lineages mix. Admixture results in the introduction of new genetic lineages into a population.

Interbreeding between archaic and modern humans

Interbreeding between archaic and modern humans

There is evidence for interbreeding between archaic and modern humans during the Middle Paleolithic and early Upper Paleolithic. The interbreeding happened in several independent events that included Neanderthals and Denisovans, as well as several unidentified hominins.

Overview

Dating analyses in 2016 determined that Denny (Denisova 11) died about 90,000 years ago, and the bone's cortical thickness indicates an age at death of at least 13 years.[3] An analysis of the whole genome sequence (total mitochondrial and nuclear DNA) indicates she was female, with a Neanderthal mother and a Denisovan father.[1][2][3] While previous analyses of other ancient genomes concluded that Denisovans, Neanderthals, and modern humans interbred during the ice age in Europe and Asia, this find is the most direct evidence yet that various ancient hominins mated with each other and had offspring.[2][5][6]

Previous analyses from other fossils found in this Siberian cave have shown that modern humans, Neanderthals, and Denisovans inhabited this site at various times, and that all three human species interbred with each other.[2][6] The genes of both archaic human species are present in many people today, which suggests that when these groups met, gene flow occurred.[2][5] It is not evident if the mating was consensual or if the offspring were fertile.[1] The discovery of Denisova 11 may support the notion that Neanderthals and Denisovans may not have undergone extinction but were partly assimilated into modern human populations.[4][6]

Discovery

Denisova Caveclass=notpageimage| Location of Denisova Cave in the Altai Mountains of Siberia
Denisova Cave
Denisova Cave
Location of Denisova Cave in the Altai Mountains of Siberia
Denisova Cave in the Altai Mountains
Denisova Cave in the Altai Mountains

The finding consists of a single bone fragment about 2 cm long that was unearthed in 2012 by Russian archeologists at the Denisova Cave from layer 12 of the East Gallery.[7] The cave is located in Denisova valley, Altai Mountains in Siberia, Russia.[2][6] At the time, the origin of the bone fragment remained unknown and it was archived along with 2,315 other nondescript bone fragments from the cave for later identification.[4]

In 2016, Samantha Brown, then an MSc student at the University of Oxford, accepted the task of screening the thousands of fragments from the cave for human remains.[4] Using Zooarchaeology by Mass Spectrometry (ZooMS) to rapidly compare the collagen protein fingerprints to animals and humans of known origin, Brown discovered that one of these bones belonged to an archaic human.[4][8][9] A micro-computed tomography (Micro CT) scan of the bone revealed the specimen had acid etching and pitting on its surface indicating it may have passed through the digestion system of an animal, likely a hyena.[4] Direct radiocarbon dating estimated the specimen to be at least 50,000 years old, and the sequencing of its isolated mitochondrial DNA (mtDNA) showed that Denisova 11 is of ancient Neanderthal origin.[4]

At this point, the material evidence was referred to the Max Planck Institute for Evolutionary Anthropology, where previous samples of Denisovan DNA had been sequenced and analyzed.[8] The team's analysis uncovered Denny's mixed ancestry by confirming that her mitochondrial DNA, inherited from her mother, came from Neanderthal ancestry and finding that the portion of her nuclear DNA inherited from her father was Denisovan. The publication of their results in 2018 provided the first direct evidence of archaic human interbreeding.[8] It has been called a "landmark find" that is reshaping our understanding of how hominins interacted and could help rewrite the story of archaic and modern humans.[10] According to population geneticist Pontus Skoglund from Harvard Medical School, currently at the Francis Crick Institute in London, "To find a first-generation person of mixed ancestry from [Neanderthal and Denisovan groups] is absolutely extraordinary. ... It’s really great science coupled with a little bit of luck. It’s a really clear-cut case. I think it’s going to go into the textbooks right away.”[1]

Discover more about Discovery related topics

Altai Mountains

Altai Mountains

The Altai Mountains, also spelled Altay Mountains, are a mountain range in Central and East Asia, where Russia, China, Mongolia and Kazakhstan converge, and where the rivers Irtysh and Ob have their headwaters. The massif merges with the Sayan Mountains in the northeast, and gradually becomes lower in the southeast, where it merges into the high plateau of the Gobi Desert. It spans from about 45° to 52° N and from about 84° to 99° E.

Siberia

Siberia

Siberia is an extensive geographical region, constituting all of North Asia, from the Ural Mountains in the west to the Pacific Ocean in the east. It has been a part of Russia since the latter half of the 16th century, after the Russians conquered lands east of the Ural Mountains. Siberia is vast and sparsely populated, covering an area of over 13.1 million square kilometres (5,100,000 sq mi), but home to merely one-fifth of Russia's population. Novosibirsk, Krasnoyarsk and Omsk are the largest cities in the region.

Denisova Cave

Denisova Cave

Denisova Cave is a cave in the Bashelaksky Range of the Altai mountains, Siberia, Russia. The cave has provided items of great paleoarchaeological and paleontological interest. Bone fragments of the Denisova hominin originate from the cave, including artifacts dated to around 40,000 BP. A 32,000-year-old prehistoric species of horse has also been found in the cave.

University of Oxford

University of Oxford

The University of Oxford is a collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the world's second-oldest university in continuous operation. It grew rapidly from 1167 when Henry II banned English students from attending the University of Paris. After disputes between students and Oxford townsfolk in 1209, some academics fled north-east to Cambridge where they established what became the University of Cambridge. The two English ancient universities share many common features and are jointly referred to as Oxbridge. Both are ranked among the most prestigious universities in the world.

ZooMS

ZooMS

Zooarchaeology by mass spectrometry, commonly referred to by the abbreviation ZooMS, is a scientific method that identifies animal species by means of characteristic peptide sequences in the protein collagen. ZooMS is the most common archaeological application of peptide mass fingerprinting (PMF) and can be used for species identification of bones, teeth, skin and antler. It is commonly used to identify objects that cannot be identified morphologically. In an archaeological context this usually means that the object is too fragmented or that it has been shaped into an artefact. Archaeologists use these species identification to study among others past environments, diet and raw material selection for the production of tools.

X-ray microtomography

X-ray microtomography

X-ray microtomography, like tomography and X-ray computed tomography, uses X-rays to create cross-sections of a physical object that can be used to recreate a virtual model without destroying the original object. The prefix micro- is used to indicate that the pixel sizes of the cross-sections are in the micrometre range. These pixel sizes have also resulted in the terms high-resolution X-ray tomography, micro–computed tomography, and similar terms. Sometimes the terms high-resolution CT (HRCT) and micro-CT are differentiated, but in other cases the term high-resolution micro-CT is used. Virtually all tomography today is computed tomography.

Mitochondrial DNA

Mitochondrial DNA

Mitochondrial DNA is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA is only a small portion of the DNA in a eukaryotic cell; most of the DNA can be found in the cell nucleus and, in plants and algae, also in plastids such as chloroplasts.

Max Planck Institute for Evolutionary Anthropology

Max Planck Institute for Evolutionary Anthropology

The Max Planck Institute for Evolutionary Anthropology is a research institute based in Leipzig, Germany, that was founded in 1997. It is part of the Max Planck Society network.

Nuclear DNA

Nuclear DNA

Nuclear DNA (nDNA), or nuclear deoxyribonucleic acid, is the DNA contained within each cell nucleus of a eukaryotic organism. It encodes for the majority of the genome in eukaryotes, with mitochondrial DNA and plastid DNA coding for the rest. It adheres to Mendelian inheritance, with information coming from two parents, one male and one female—rather than matrilineally as in mitochondrial DNA.

Pontus Skoglund

Pontus Skoglund

Pontus Skoglund is a Swedish population geneticist, currently at the Francis Crick Institute and formerly at Harvard Medical School.

Harvard Medical School

Harvard Medical School

Harvard Medical School (HMS) is the graduate medical school of Harvard University and is located in the Longwood Medical Area of Boston, Massachusetts. Founded in 1782, HMS is one of the oldest medical schools in the United States and is consistently ranked first for research among medical schools by U.S. News & World Report. Unlike most other leading medical schools, HMS does not operate in conjunction with a single hospital but is directly affiliated with several teaching hospitals in the Boston area. Affiliated teaching hospitals and research institutes include Dana–Farber Cancer Institute, Massachusetts General Hospital, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center, Boston Children's Hospital, McLean Hospital, Cambridge Health Alliance, The Baker Center for Children and Families, and Spaulding Rehabilitation Hospital.

Francis Crick Institute

Francis Crick Institute

The Francis Crick Institute is a biomedical research centre in London, which was established in 2010 and opened in 2016. The institute is a partnership between Cancer Research UK, Imperial College London, King's College London (KCL), the Medical Research Council, University College London (UCL) and the Wellcome Trust. The institute has 1,500 staff, including 1,250 scientists, and an annual budget of over £100 million, making it the biggest single biomedical laboratory in Europe.

DNA analysis

The bone fragment, identified by the code DC1227 (GenBank Accession = KU131206) or as Denisova 11, originated from a human arm or leg.[8] Prior to the extraction of material for genetic analysis, DC1227 weighed 1.68 g (0.059 oz), and had maximum dimensions of 24.7 mm (0.97 in) by 8.39 mm (0.330 in).[4] In 2016, a team from the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, led by paleogeneticists Viviane Slon and Svante Pääbo, extracted six DNA samples and produced ten libraries of complete genome sequences to an average coverage of 2.6-fold.[3] Isolated mitochondrial DNA and nuclear DNA indicated the archaic human was of nearly equal proportion Neanderthal and Denisovan.[3] A comparison of the specimen's X chromosomes and autosomes showed it belonged to a female.[2][3] The estimated heterozygosity of Denisova 11, found to be comparable to present day Africans suggests that the girl was a first-generation Neanderthal-Denisovan hybrid.[3]

Subsequent analyses showed a high likelihood that her Denisovan father also had some Neanderthal ancestry introduced into his genome hundreds of generations before his lifetime.[2][3] Denisova 11's genome thus constitutes the first direct evidence for at least two instances of interbreeding between Neanderthals and Denisovans.[3][11] Even more surprising, the researchers determined that the girl's mother's genome was more closely related to Western European Neanderthal DNA, excavated thousands of miles away at the Vindija Cave, Croatia, than the Neanderthals who lived in the Siberian cave where her daughter's remains were found.[2][3][8] This finding suggests that Neanderthals migrated in multiple waves from Western Europe to Central Eurasia and encountered the Denisovans several times over a span of tens of thousands of years, and possibly coexisted with them for periods of time.[2][8][10]

Discover more about DNA analysis related topics

Max Planck Institute for Evolutionary Anthropology

Max Planck Institute for Evolutionary Anthropology

The Max Planck Institute for Evolutionary Anthropology is a research institute based in Leipzig, Germany, that was founded in 1997. It is part of the Max Planck Society network.

Viviane Slon

Viviane Slon

Viviane Slon is a paleogeneticist at the Max Planck Institute for Evolutionary Anthropology. She identified that a teenage girl born 90,000 years ago had both Neanderthal and Denisovan parents. She was selected as one of Nature's 10 in 2018.

Svante Pääbo

Svante Pääbo

Svante Pääbo is a Swedish geneticist and Nobel Laureate who specialises in the field of evolutionary genetics. As one of the founders of paleogenetics, he has worked extensively on the Neanderthal genome. In 1997, he became founding director of the Department of Genetics at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. Since 1999, he has been an honorary professor at Leipzig University; he currently teaches molecular evolutionary biology at the university. He is also an adjunct professor at Okinawa Institute of Science and Technology, Japan.

Mitochondrial DNA

Mitochondrial DNA

Mitochondrial DNA is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DNA is only a small portion of the DNA in a eukaryotic cell; most of the DNA can be found in the cell nucleus and, in plants and algae, also in plastids such as chloroplasts.

Nuclear DNA

Nuclear DNA

Nuclear DNA (nDNA), or nuclear deoxyribonucleic acid, is the DNA contained within each cell nucleus of a eukaryotic organism. It encodes for the majority of the genome in eukaryotes, with mitochondrial DNA and plastid DNA coding for the rest. It adheres to Mendelian inheritance, with information coming from two parents, one male and one female—rather than matrilineally as in mitochondrial DNA.

Vindija Cave

Vindija Cave

Vindija Cave is an archaeological site associated with Neanderthals and modern humans, located in the municipality of Donja Voća, northern Croatia. Three of these Neanderthals were selected as the primary sources for the first draft sequence of the Neanderthal genome project.

Eurasia

Eurasia

Eurasia is the largest continental area on Earth, comprising all of Europe and Asia. According to some geographers, physiographically, Eurasia is a single continent. The concepts of Europe and Asia as distinct continents date back to antiquity, but their borders are arbitrary and have historically been subject to change. Eurasia is connected to Africa at the Suez Canal, and the two are sometimes combined to describe the largest contiguous landmass on Earth, Afro-Eurasia.

Context and implications

Since the discovery of Neanderthal remains in the 19th century, many scientists have supported the hypothesis of interbreeding between archaic and modern humans, also known as hybridization, admixture, or hybrid-origin theory.[12] The linear view of human evolution came under scrutiny in the 1970s as different species of humans were discovered that made the simplistic concept increasingly unlikely. With the advent of advanced molecular biotechnology, whole-genome sequencing of Neanderthal and human genomes were performed that confirmed recent admixture between various human species.[13] In 2010, evidence was published revealing unambiguous examples of interbreeding between archaic and modern humans during the Middle Paleolithic and early Upper Paleolithic. Research demonstrates that interbreeding occurred in several independent events that included Neanderthals, Denisovans, as well as several unidentified hominins. Modern day Eurasian genomes contain approximately 2% Neanderthal DNA, with traces of Denisovan heritage, while modern Melanesian people have an average of 4-6% Denisovan DNA.[8] Denny represents the first ancient individual discovered whose parents belonged to two discrete species of humans, which will provide a unique opportunity for future comparative genetic studies.[1][2]

The discovery of Denny and other paleogenetic data acquired since 2010 show that human evolution should not be conceptualized as a simple linear or branched progression, but rather, as a complex interaction between related species over various periods of geographical isolation and convergence.[14][15][16][17] Ackermann, Mackay, and Arnold confirm, "Recent genomic research has shown that hybridization between substantially diverged lineages is the rule, not the exception, in human evolution."[18] Acknowledging that there is still debate over how hybridization shaped human genotypes and phenotypes, the evolutionary biologists assert that hybridization was an essential creative force in the emergence of modern humans.[18]

In January 2019, scientists published a chronology for the Pleistocene deposits in the Denisova Cave concluding that at least two groups of humans, including Denisovans, Neanderthals, and related hybrids, occupied the Siberian site from around 300,000 to 20,000 years ago, but more material evidence is needed to prove whether they ever coexisted there.[19][20] Material data collected at the site, including stone tools, bracelets, and other ornaments suggest that Denisovans may have been capable of higher order thought akin to modern humans.[20]

In February 2019, scientists discovered evidence, based on genetics studies using artificial intelligence (AI), that suggest the existence of an unknown human ancestor species, not Neanderthal, Denisovan or human hybrid (like Denny), in the genome of modern humans.[21][22]

Discover more about Context and implications related topics

Interbreeding between archaic and modern humans

Interbreeding between archaic and modern humans

There is evidence for interbreeding between archaic and modern humans during the Middle Paleolithic and early Upper Paleolithic. The interbreeding happened in several independent events that included Neanderthals and Denisovans, as well as several unidentified hominins.

Genome

Genome

In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA. The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences, and often a substantial fraction of 'junk' DNA with no evident function. Almost all eukaryotes have mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplasts with a chloroplast genome.

Genetic admixture

Genetic admixture

Genetic admixture occurs when previously diverged or isolated genetic lineages mix. Admixture results in the introduction of new genetic lineages into a population.

Middle Paleolithic

Middle Paleolithic

The Middle Paleolithic is the second subdivision of the Paleolithic or Old Stone Age as it is understood in Europe, Africa and Asia. The term Middle Stone Age is used as an equivalent or a synonym for the Middle Paleolithic in African archeology. The Middle Paleolithic broadly spanned from 300,000 to 30,000 years ago. There are considerable dating differences between regions. The Middle Paleolithic was succeeded by the Upper Paleolithic subdivision which first began between 50,000 and 40,000 years ago. Pettit and White date the Early Middle Paleolithic in Great Britain to about 325,000 to 180,000 years ago, and the Late Middle Paleolithic as about 60,000 to 35,000 years ago.

Upper Paleolithic

Upper Paleolithic

The Upper Paleolithic is the third and last subdivision of the Paleolithic or Old Stone Age. Very broadly, it dates to between 50,000 and 12,000 years ago, according to some theories coinciding with the appearance of behavioral modernity in early modern humans, until the advent of the Neolithic Revolution and agriculture.

Melanesians

Melanesians

Melanesians are the predominant and indigenous inhabitants of Melanesia, in a wide area from New Guinea to the Fiji Islands. Most speak either one of the many languages of the Austronesian language family, especially ones in the Oceanic branch, or from one of the many unrelated families of Papuan languages. Other languages are the several creoles of the region, such as Tok Pisin, Hiri Motu, Solomon Islands Pijin, Bislama, and Papuan Malay.

Genotype

Genotype

The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a specific gene depends on the number of copies of each chromosome found in that species, also referred to as ploidy. In diploid species like humans, two full sets of chromosomes are present, meaning each individual has two alleles for any given gene. If both alleles are the same, the genotype is referred to as homozygous. If the alleles are different, the genotype is referred to as heterozygous.

Phenotype

Phenotype

In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".

Genetics

Genetics

Genetics is the study of genes, genetic variation, and heredity in organisms. It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring over time. He observed that organisms inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.

Artificial intelligence

Artificial intelligence

Artificial intelligence (AI) is intelligence—perceiving, synthesizing, and inferring information—demonstrated by machines, as opposed to intelligence displayed by non-human animals and humans. Example tasks in which this is done include speech recognition, computer vision, translation between (natural) languages, as well as other mappings of inputs.

Source: "Denny (hybrid hominin)", Wikipedia, Wikimedia Foundation, (2023, January 25th), https://en.wikipedia.org/wiki/Denny_(hybrid_hominin).

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ a b c d e f Warren, Matthew (22 August 2018). "Mum's a Neanderthal, Dad's a Denisovan: First discovery of an ancient-human hybrid". Nature. 560 (7719): 417–418. Bibcode:2018Natur.560..417W. doi:10.1038/d41586-018-06004-0. PMID 30135540.
  2. ^ a b c d e f g h i j k l Vogel, Gretchen (22 August 2018). "This ancient bone belonged to a child of two extinct human species". Science. doi:10.1126/science.aav1858. S2CID 188160693. Retrieved 22 August 2018.
  3. ^ a b c d e f g h i j k l m n Slon, Viviane; Mafessoni, Fabrizio; Vernot, Benjamin; de Filippo, Cesare; Grote, Steffi; Viola, Bence; Hajdinjak, Mateja; Peyrégne, Stéphane; Nagel, Sarah; Brown, Samantha; Douka, Katerina (6 September 2018). "The genome of the offspring of a Neanderthal mother and a Denisovan father". Nature. 561 (7721): 113–116. doi:10.1038/s41586-018-0455-x. ISSN 1476-4687. PMC 6130845. PMID 30135579.
  4. ^ a b c d e f g h Brown, Samantha; Higham, Thomas; Slon, Viviane; Pääbo, Svante; Meyer, Matthias; Douka, Katerina; Brock, Fiona; Comeskey, Daniel; Procopio, Noemi; Shunkov, Michael; Derevianko, Anatoly (29 March 2016). "Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis". Scientific Reports. 6 (1): 23559. doi:10.1038/srep23559. ISSN 2045-2322. PMC 4810434. PMID 27020421.
  5. ^ a b Zimmer, Carl (22 August 2018). "A Blended Family: Her Mother Was Neanderthal, Her Father Something Else Entirely". The New York Times. Retrieved 22 August 2018.
  6. ^ a b c d Marshall, Michael (22 August 2018). "Prehistoric girl had parents belonging to different human species". New Scientist. Retrieved 22 August 2018.
  7. ^ Hood, Marlowe (22 August 2018). "Neandertal mother, Denisovan father—Newly-sequenced genome sheds light on interactions between ancient hominins". Phys.org. Retrieved 22 August 2018.
  8. ^ a b c d e f g Wei-Haas, Maya (22 August 2018). "Ancient Girl's Parents Were Two Different Human Species". National Geographic. Retrieved 22 August 2018.
  9. ^ "Novel collagen fingerprinting identifies a Neanderthal bone among 2,000 fragments". University of Oxford. University of Oxford. 29 March 2016. Retrieved 1 April 2016.
  10. ^ a b Zhang, Sarah (22 August 2018). "Scientists Stunned By a Neanderthal Hybrid Discovered in a Siberian Cave". The Atlantic. Retrieved 22 August 2018.
  11. ^ Scharping, Nathaniel (22 August 2018). "Hybrid Hominin: This Girl's Mother and Father Came From Two Different Species". Discover. Retrieved 22 August 2018.
  12. ^ Huxley, T. (1890). "The Aryan Question and Pre-Historic Man". Collected Essays: Volume VII, Man's Place in Nature.
  13. ^ Green, R.E.; Krause, J.; Briggs, A.W.; Maricic, T.; Stenzel, U.; Kircher, M.; et al. (2010). "A Draft Sequence of the Neandertal Genome". Science. 328 (5979): 710–22. Bibcode:2010Sci...328..710G. doi:10.1126/science.1188021. PMC 5100745. PMID 20448178.
  14. ^ Reich, D.; Green, R.E.; Kircher, M.; et al. (2010). "Genetic history of an archaic hominin group from Denisova Cave in Siberia" (PDF). Nature. 468 (7327): 1053–60. Bibcode:2010Natur.468.1053R. doi:10.1038/nature09710. hdl:10230/25596. PMC 4306417. PMID 21179161.
  15. ^ Antrosio, Jason (2011). "Denisovans & Neandertals". Living Anthropologically.
  16. ^ Hammer, Michael F. (May 2013). "Human Hybrids" (PDF). Scientific American. 308 (5): 66–71. Bibcode:2013SciAm.308e..66H. doi:10.1038/scientificamerican0513-66. PMID 23627222. Archived from the original (PDF) on 24 August 2018 – via grochbiology.org.
  17. ^ Yong, Ed (2011). "Mosaic humans, the hybrid species". New Scientist. 211 (2823): 34–38. Bibcode:2011NewSc.211...34Y. doi:10.1016/S0262-4079(11)61839-3.
  18. ^ a b Rogers Ackermann, Rebecca; Mackay, Alex; Arnold, Michael L. (2016). "The Hybrid Origin of 'Modern' Humans". Evolutionary Biology. 43: 1–11. doi:10.1007/s11692-015-9348-1. S2CID 14329491.
  19. ^ Jacobs, Zenobia; Li, Bo; Shunkov, Michael V.; Kozlikin, Maxim B.; Bolikhovskaya, Nataliya S.; Agadjanian, Alexander K.; Uliyanov, Vladimir A.; Vasiliev, Sergei K.; O’Gorman, Kieran; Derevianko, Anatoly P.; Roberts, Richard G. (2019). "Timing of archaic hominin occupation of Denisova Cave in southern Siberia". Nature. 565 (7741): 594–599. doi:10.1038/s41586-018-0843-2. ISSN 1476-4687. S2CID 59525956.
  20. ^ a b Zimmer, Carl (30 January 2019). "High Ceilings and a Lovely View: Denisova Cave Was Home to a Lost Branch of Humanity". The New York Times. Retrieved 31 January 2019.
  21. ^ Mondal, Mayukh; Bertranpedt, Jaume; Leo, Oscar (16 January 2019). "Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania". Nature Communications. 10 (246): 246. Bibcode:2019NatCo..10..246M. doi:10.1038/s41467-018-08089-7. PMC 6335398. PMID 30651539.
  22. ^ Dockrill, Peter (11 February 2019). "Artificial Intelligence Has Found an Unknown 'Ghost' Ancestor in The Human Genome". ScienceAlert.com. Retrieved 11 February 2019.

Further reading

External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.