Get Our Extension

Cuttlefish

From Wikipedia, in a visual modern way
Cuttlefish
Temporal range: Maastrichtian– recent
Cuttlefish komodo large.jpg
The giant cuttlefish (Sepia apama), above, is the largest species
Scientific classification e
Kingdom: Animalia
Phylum: Mollusca
Class: Cephalopoda
Superorder: Decapodiformes
Order: Sepiida
Zittel, 1895
Suborders and families
Synonyms
  • Sepiolida Fioroni, 1981[1]

Cuttlefish or cuttles[2] are marine molluscs of the order Sepiida. They belong to the class Cephalopoda which also includes squid, octopuses, and nautiluses. Cuttlefish have a unique internal shell, the cuttlebone, which is used for control of buoyancy.

Cuttlefish have large, W-shaped pupils, eight arms, and two tentacles furnished with denticulated suckers, with which they secure their prey. They generally range in size from 15 to 25 cm (6 to 10 in), with the largest species, the giant cuttlefish (Sepia apama), reaching 50 cm (20 in) in mantle length and over 10.5 kg (23 lb) in mass.[3]

Cuttlefish eat small molluscs, crabs, shrimp, fish, octopus, worms, and other cuttlefish. Their predators include dolphins, sharks, fish, seals, seabirds, and other cuttlefish. The typical life expectancy of a cuttlefish is about 1–2 years. Studies are said to indicate cuttlefish to be among the most intelligent invertebrates.[4] Cuttlefish also have one of the largest brain-to-body size ratios of all invertebrates.[4]

The "cuttle" in cuttlefish comes from the Old English name for the species, cudele, which may be cognate with the Old Norse koddi (cushion) and the Middle Low German Kudel (rag).[5] The Greco-Roman world valued the cuttlefish as a source of the unique brown pigment the creature releases from its siphon when it is alarmed. The word for it in both Greek and Latin, sepia, now refers to the reddish-brown color sepia in English.

Discover more about Cuttlefish related topics

Class (biology)

Class (biology)

In biological classification, class is a taxonomic rank, as well as a taxonomic unit, a taxon, in that rank. It is a group of related taxonomic orders. Other well-known ranks in descending order of size are life, domain, kingdom, phylum, order, family, genus, and species, with class fitting between phylum and order.

Cephalopod

Cephalopod

A cephalopod is any member of the molluscan class Cephalopoda such as a squid, octopus, cuttlefish, or nautilus. These exclusively marine animals are characterized by bilateral body symmetry, a prominent head, and a set of arms or tentacles modified from the primitive molluscan foot. Fishers sometimes call cephalopods "inkfish", referring to their common ability to squirt ink. The study of cephalopods is a branch of malacology known as teuthology.

Cuttlebone

Cuttlebone

Cuttlebone, also known as cuttlefish bone, is a hard, brittle internal structure found in all members of the family Sepiidae, commonly known as cuttlefish, within the cephalopods. In other cephalopod families it is called a gladius.

Buoyancy

Buoyancy

Buoyancy, or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

Cephalopod size

Cephalopod size

Cephalopods, which include squids and octopuses, vary enormously in size. The smallest are only about 1 centimetre (0.39 in) long and weigh less than 1 gram (0.035 oz) at maturity, while the largest—the giant and colossal squids—can exceed 10 metres (33 ft) in length and weigh close to half a tonne (1,100 lb), making them the largest living invertebrates. Living species range in mass more than three-billion-fold, or across nine orders of magnitude, from the lightest hatchlings to the heaviest adults. Certain cephalopod species are also noted for having individual body parts of exceptional size. The giant and colossal squids, for example, have the largest known eyes among living animals.

Giant cuttlefish

Giant cuttlefish

Giant cuttlefish also known as the Australian giant cuttlefish, is the world's largest cuttlefish species, growing to 50 cm (20 in) in mantle length and up to 100 cm (39 in) in total length. They can be over 10.5 kg (23 lb) in weight. Using cells known as chromatophores, the cuttlefish can put on spectacular displays, changing color in an instant. The giant cuttlefish is native to temperate and subtropical waters of Australia, from Brisbane in Queensland to Shark Bay in Western Australia and Tasmania to the south. It occurs on rocky reefs, seagrass beds, and sand and mud seafloor to a depth of 100 m (330 ft). In 2009 the species was listed at Near Threatened on the IUCN Red List of Threatened Species due to an observed declining trend at that time.

Mantle (mollusc)

Mantle (mollusc)

The mantle is a significant part of the anatomy of molluscs: it is the dorsal body wall which covers the visceral mass and usually protrudes in the form of flaps well beyond the visceral mass itself.

Cephalopod intelligence

Cephalopod intelligence

Cephalopod intelligence is a measure of the cognitive ability of the cephalopod class of molluscs.

Invertebrate

Invertebrate

Invertebrates are a paraphyletic group of animals that neither possess nor develop a vertebral column, derived from the notochord. This is a grouping including all animals apart from the chordate subphylum Vertebrata. Familiar examples of invertebrates include arthropods, mollusks, annelids, echinoderms and cnidarians.

Middle Low German

Middle Low German

Middle Low German or Middle Saxon is a developmental stage of Low German. It developed from the Old Saxon language in the Middle Ages and has been documented in writing since about 1225/34 (Sachsenspiegel). During the Hanseatic period, Middle Low German was the leading written language in the north of Central Europe and served as a lingua franca in the northern half of Europe. It was used parallel to medieval Latin also for purposes of diplomacy and for deeds.

Greco-Roman world

Greco-Roman world

The Greco-Roman civilization, as understood by modern scholars and writers, includes the geographical regions and countries that culturally—and so historically—were directly and intimately influenced by the language, culture, government and religion of the Greeks and Romans. A better-known term is classical antiquity. In exact terms the area refers to the "Mediterranean world", the extensive tracts of land centered on the Mediterranean and Black Sea Basins, the "swimming pool and spa" of the Greeks and the Romans, in which those peoples' cultural perceptions, ideas, and sensitivities became dominant in classical antiquity.

Greek language

Greek language

Greek is an independent branch of the Indo-European family of languages, native to Greece, Cyprus, southern Italy, southern Albania, and other regions of the Balkans, the Black Sea coast, Asia Minor, and the Eastern Mediterranean. It has the longest documented history of any Indo-European language, spanning at least 3,400 years of written records. Its writing system is the Greek alphabet, which has been used for approximately 2,800 years; previously, Greek was recorded in writing systems such as Linear B and the Cypriot syllabary. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic, and many other writing systems.

Fossil record

The earliest fossils of cuttlefish are from the end of the Cretaceous period,[6][7] represented by Ceratisepia from the Late Maastrichtian Maastricht Formation of the Netherlands.[8] Although the Jurassic Trachyteuthis was historically considered possibly related to cuttlefish,[9] later studies considered to be more closely related to octopus and vampire squid.[10]

Discover more about Fossil record related topics

Cretaceous

Cretaceous

The Cretaceous is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of the entire Phanerozoic. The name is derived from the Latin creta, "chalk", which is abundant in the latter half of the period. It is usually abbreviated K, for its German translation Kreide.

Maastrichtian

Maastrichtian

The Maastrichtian is, in the ICS geologic timescale, the latest age of the Late Cretaceous Epoch or Upper Cretaceous Series, the Cretaceous Period or System, and of the Mesozoic Era or Erathem. It spanned the interval from 72.1 to 66 million years ago. The Maastrichtian was preceded by the Campanian and succeeded by the Danian.

Maastricht Formation

Maastricht Formation

The Maastricht Formation, named after the city of Maastricht in the Netherlands, is a geological formation in the Netherlands and Belgium whose strata date back to the Late Cretaceous, within 500,000 years of the Cretaceous–Paleogene boundary, now dated at 66 million years ago. The formation is part of the Chalk Group and is between 30 and 90 metres thick. It crops out in southern parts of Dutch and Belgian Limburg and adjacent areas in Germany. It can be found in the subsurface of northern Belgium and southeastern Netherlands, especially in the Campine Basin and Roer Valley Graben. Dinosaur remains are among the fossils that have been recovered from the formation.

Trachyteuthis

Trachyteuthis

Trachyteuthis is a genus of fossil cephalopod, comprising five species: T. hastiformis, T. latipinnis, T. nusplingensis, T. teudopsiformis, T. covacevichi and T. chilensis.

Range and habitat

S. mestus swimming (Australia)
S. mestus swimming (Australia)

The family Sepiidae, which contains all cuttlefish, inhabits tropical and temperate ocean waters. They are mostly shallow-water animals, although they are known to go to depths of about 600 m (2,000 ft).[11] They have an unusual biogeographic pattern; they are present along the coasts of East and South Asia, Western Europe, and the Mediterranean, as well as all coasts of Africa and Australia, but are totally absent from the Americas. By the time the family evolved, ostensibly in the Old World, the North Atlantic possibly had become too cold and deep for these warm-water species to cross.[12] The common cuttlefish (Sepia officinalis), is found in the Mediterranean, North and Baltic seas, although populations may occur as far south as South Africa. They are found in sublittoral depths, between the low tide line and the edge of the continental shelf, to about 180 m (600 ft).[13] The cuttlefish is listed under the Red List category of "least concern" by the IUCN Red List of Threatened Species. This means that while some over-exploitation of the marine animal has occurred in some regions due to large-scale commercial fishing, their wide geographic range prevents them from being too threatened. Ocean acidification, however, caused largely by higher levels of carbon dioxide emitted into the atmosphere, is cited as a potential threat.[14]

Anatomy and physiology

Visual system

The characteristic W-shape of the cuttlefish eye
The characteristic W-shape of the cuttlefish eye
Pupil expansion in Sepia officinalis

Cuttlefish, like other cephalopods, have sophisticated eyes. The organogenesis and the final structure of the cephalopod eye fundamentally differ from those of vertebrates such as humans.[15] Superficial similarities between cephalopod and vertebrate eyes are thought to be examples of convergent evolution. The cuttlefish pupil is a smoothly curving W-shape.[16][17] Although cuttlefish cannot see color,[18] they can perceive the polarization of light, which enhances their perception of contrast. They have two spots of concentrated sensor cells on their retinas (known as foveae), one to look more forward, and one to look more backward. The eye changes focus by shifting the position of the entire lens with respect to the retina, instead of reshaping the lens as in mammals. Unlike the vertebrate eye, no blind spot exists, because the optic nerve is positioned behind the retina. They are capable of using stereopsis, enabling them to discern depth/distance because their brain calculates the input from both eyes.[19][20]

The cuttlefish's eyes are thought to be fully developed before birth, and they start observing their surroundings while still in the egg. In consequence, they may prefer to hunt the prey they saw before hatching.[21]

Circulatory system

The blood of a cuttlefish is an unusual shade of green-blue, because it uses the copper-containing protein haemocyanin to carry oxygen instead of the red, iron-containing protein haemoglobin found in vertebrates' blood. The blood is pumped by three separate hearts: two branchial hearts pump blood to the cuttlefish's pair of gills (one heart for each), and the third pumps blood around the rest of the body. Cuttlefish blood must flow more rapidly than that of most other animals because haemocyanin carries substantially less oxygen than haemoglobin. Unlike most other mollusks, cephalopods like cuttlefish have a closed circulatory system.[22]

Cuttlebone

Top and bottom view of a cuttlebone, the buoyancy organ and internal shell of a cuttlefish
Top and bottom view of a cuttlebone, the buoyancy organ and internal shell of a cuttlefish
Top and bottom view of a cuttlebone, the buoyancy organ and internal shell of a cuttlefish

Cuttlefish possess an internal structure called the cuttlebone, which is porous and is made of aragonite. The pores provide it with buoyancy, which the cuttlefish regulates by changing the gas-to-liquid ratio in the chambered cuttlebone via the ventral siphuncle.[23] Each species' cuttlebone has a distinct shape, size, and pattern of ridges or texture. The cuttlebone is unique to cuttlefish, and is one of the features that distinguish them from their squid relatives.[24]

Ink

Like other marine mollusks, cuttlefish have ink stores that are used for chemical deterrence, phagomimicry, sensory distraction, and evasion when attacked.[25] Its composition results in a dark colored ink, rich in ammonium salts and amino acids that may have a role in phagomimicry defenses.[25] The ink can be ejected to create a "smoke screen" to hide the cuttlefish's escape, or it can be released as a pseudomorph of similar size to the cuttlefish, acting as a decoy while the cuttlefish swims away.[26]

Human use of this substance is wide-ranged. A common use is in cooking with squid ink to darken and flavor rice and pasta. It adds a black tint and a sweet flavor to the food. In addition to food, cuttlefish ink can be used with plastics and staining of materials. The diverse composition of cuttlefish ink, and its deep complexity of colors, allows for dilution and modification of its color. Cuttlefish ink can be used to make noniridescent reds, blues, and greens,[27] subsequently used for biomimetic colors and materials.

Arms and mantle cavity

Cuttlefish have eight arms and two additional elongated tentacles that are used to grasp prey. The elongated tentacles and mantle cavity serve as defense mechanisms; when approached by a predator, the cuttlefish can suck water into its mantle cavity and spread its arms in order to appear larger than normal.[28] Though the mantle cavity is used for jet propulsion, the main parts of the body that are used for basic mobility are the fins, which can maneuver the cuttlefish in all directions.[29]

Suckers

The suckers of cuttlefish extend most of the length of their arms and along the distal portion of their tentacles. Like other cephalopods, cuttlefish have "taste-by-touch" sensitivity in their suckers, allowing them to discriminate among objects and water currents that they contact.[30]

Poison and venom

A common gene between cuttlefish and almost all other cephalopods allows them to produce venom, excreting it through their beak to help kill their prey.[31]

Additionally, the muscles of the flamboyant cuttlefish (Metasepia pfefferi) contain a highly toxic, unidentified compound[4] as lethal as the venom of fellow cephalopod, the blue-ringed octopus.[32] However, this toxin is only found in the muscle and is not injected in any form classifying it as poisonous, not venomous.

Sleep-like behavior

Sleep is a state of immobility characterized by being rapidly reversible, homeostatically controlled, and increasing an organism's arousal threshold.[33][34]

To date one cephalopod species, Octopus vulgaris, has been shown to satisfy these criteria.[35] Another species, Sepia officinalis, satisfies two of the three criteria but has not yet been tested on the third (arousal threshold).[34][33] Recent research shows that the sleep-like state in a common species of cuttlefish, Sepia officinalis, shows predictable periods[34] of rapid eye movement, arm twitching and rapid chromatophore changes.[33]

Discover more about Anatomy and physiology related topics

Organogenesis

Organogenesis

Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation form the internal organs of the organism.

Cephalopod eye

Cephalopod eye

Cephalopods, as active marine predators, possess sensory organs specialized for use in aquatic conditions. They have a camera-type eye which consists of an iris, a circular lens, vitreous cavity, pigment cells, and photoreceptor cells that translate light from the light-sensitive retina into nerve signals which travel along the optic nerve to the brain. For the past 140 years, the camera-type cephalopod eye has been compared with the vertebrate eye as an example of convergent evolution, where both types of organisms have independently evolved the camera-eye trait and both share similar functionality. Contention exists on whether this is truly convergent evolution or parallel evolution. Unlike the vertebrate camera eye, the cephalopods' form as invaginations of the body surface, and consequently the cornea lies over the top of the eye as opposed to being a structural part of the eye. Unlike the vertebrate eye, a cephalopod eye is focused through movement, much like the lens of a camera or telescope, rather than changing shape as the lens in the human eye does. The eye is approximately spherical, as is the lens, which is fully internal.

Convergent evolution

Convergent evolution

Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.

Contrast (vision)

Contrast (vision)

Contrast is the contradiction in luminance or colour that makes an object distinguishable. In visual perception of the real world, contrast is determined by the difference in the colour and brightness of the object and other objects within the same field of view. The human visual system is more sensitive to contrast than absolute luminance; we can perceive the world similarly regardless of the huge changes in illumination over the day or from place to place. The maximum contrast of an image is the contrast ratio or dynamic range. Images with a contrast ratio close to their medium's maximum possible contrast ratio experience a conservation of contrast, wherein any increase in contrast in some parts of the image must necessarily result in a decrease in contrast elsewhere. Brightening an image will increase contrast in dark areas but decrease contrast in bright areas, while darkening the image will have the opposite effect. Bleach bypass destroys contrast in both the darkest and brightest parts of an image while enhancing luminance contrast in areas of intermediate brightness.

Retina

Retina

The retina is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then processes that image within the retina and sends nerve impulses along the optic nerve to the visual cortex to create visual perception. The retina serves a function which is in many ways analogous to that of the film or image sensor in a camera.

Fovea centralis

Fovea centralis

The fovea centralis is a small, central pit composed of closely packed cones in the eye. It is located in the center of the macula lutea of the retina.

Blind spot (vision)

Blind spot (vision)

A blind spot, scotoma, is an obscuration of the visual field. A particular blind spot known as the physiological blind spot, "blind point", or punctum caecum in medical literature, is the place in the visual field that corresponds to the lack of light-detecting photoreceptor cells on the optic disc of the retina where the optic nerve passes through the optic disc. Because there are no cells to detect light on the optic disc, the corresponding part of the field of vision is invisible. Processes in the brain interpolate the blind spot based on surrounding detail and information from the other eye, so it is not normally perceived.

Optic nerve

Optic nerve

In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual information from the retina to the brain. In humans, the optic nerve is derived from optic stalks during the seventh week of development and is composed of retinal ganglion cell axons and glial cells; it extends from the optic disc to the optic chiasma and continues as the optic tract to the lateral geniculate nucleus, pretectal nuclei, and superior colliculus.

Branchial heart

Branchial heart

Branchial hearts are accessory pumps that supplement the action of the systemic heart in a cephalopod's body. They are myogenic in nature. Branchial hearts are always in pairs located at the base of the gills. Each branchial heart consists of a single chamber. They pump blood through the gills via the afferent branchial veins. Since they only circulate venous blood, branchial hearts function under predominantly anaerobic conditions. Branchial hearts also appear to be involved in hemocyanin synthesis.

Cuttlebone

Cuttlebone

Cuttlebone, also known as cuttlefish bone, is a hard, brittle internal structure found in all members of the family Sepiidae, commonly known as cuttlefish, within the cephalopods. In other cephalopod families it is called a gladius.

Aragonite

Aragonite

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

Buoyancy

Buoyancy

Buoyancy, or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

Lifecycle

The lifespan of a cuttlefish is typically around one to two years, depending on the species. They hatch from eggs fully developed, around 6 mm (14 in) long, reaching 25 mm (1 in) around the first two months. Before death, cuttlefish go through senescence when the cephalopod essentially deteriorates, or rots in place. Their eyesight begins to fail, which affects their ability to see, move, and hunt efficiently. Once this process begins, cuttlefish tend to not live long due to predation by other organisms.

Reproduction

Cuttlefish start to actively mate at around five months of age. Male cuttlefish challenge one another for dominance and the best den during mating season. During this challenge, no direct contact is usually made. The animals threaten each other until one of them backs down and swims away. Eventually, the larger male cuttlefish mate with the females by grabbing them with their tentacles, turning the female so that the two animals are face-to-face, then using a specialized tentacle to insert sperm sacs into an opening near the female's mouth. As males can also use their funnels to flush others' sperm out of the female's pouch, the male then guards the female until she lays the eggs a few hours later.[36] After laying her cluster of eggs, the female cuttlefish secretes ink on them making them look very similar to grapes. The egg case is produced through a complex capsule of the female accessory genital glands and the ink bag.[37]

On occasion, a large competitor arrives to threaten the male cuttlefish. In these instances, the male first attempts to intimidate the other male. If the competitor does not flee, the male eventually attacks it to force it away. The cuttlefish that can paralyze the other first, by forcing it near its mouth, wins the fight and the female. Since typically four or five (and sometimes as many as 10) males are available for every female, this behavior is inevitable.[38]

Cuttlefish are indeterminate growers, so smaller cuttlefish always have a chance of finding a mate the next year when they are bigger.[39] Additionally, cuttlefish unable to win in a direct confrontation with a guard male have been observed employing several other tactics to acquire a mate. The most successful of these methods is camouflage; smaller cuttlefish use their camouflage abilities to disguise themselves as a female cuttlefish. Changing their body color, and even pretending to be holding an egg sack, disguised males are able to swim past the larger guard male and mate with the female.[38][40][41]

Discover more about Lifecycle related topics

Senescence

Senescence

Senescence or biological aging is the gradual deterioration of functional characteristics in living organisms. The word senescence can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence involves an increase in death rates and/or a decrease in fecundity with increasing age, at least in the latter part of an organism's life cycle.

Spermatophore

Spermatophore

A spermatophore or sperm ampulla is a capsule or mass containing spermatozoa created by males of various animal species, especially salamanders and arthropods, and transferred in entirety to the female's ovipore during reproduction. Spermatophores may additionally contain nourishment for the female, in which case it is called a nuptial gift, as in the instance of bush crickets. In the case of the toxic moth Utetheisa ornatrix, the spermatophore includes sperm, nutrients, and pyrrolizidine alkaloids which prevent predation because it is poisonous to most organisms. However, in some species such as the Edith's checkerspot butterfly, the "gift" provides little nutrient value. The weight of the spermatophore transferred at mating has little effect on female reproductive output.

Indeterminate growth

Indeterminate growth

In biology and botany, indeterminate growth is growth that is not terminated in contrast to determinate growth that stops once a genetically pre-determined structure has completely formed. Thus, a plant that grows and produces flowers and fruit until killed by frost or some other external factor is called indeterminate. For example, the term is applied to tomato varieties that grow in a rather gangly fashion, producing fruit throughout the growing season, and in contrast to a determinate tomato plant, which grows in a more bushy shape and is most productive for a single, larger harvest, then either tapers off with minimal new growth or fruit, or dies.

Communication

Cephalopods are able to communicate visually using a diverse range of signals. To produce these signals, cephalopods can vary four types of communication element: chromatic (skin coloration), skin texture (e.g. rough or smooth), posture, and locomotion. Changes in body appearance such as these are sometimes called polyphenism. The common cuttlefish can display 34 chromatic, six textural, eight postural and six locomotor elements, whereas flamboyant cuttlefish use between 42 and 75 chromatic, 14 postural, and seven textural and locomotor elements. The Caribbean reef squid (Sepioteuthis sepioidea) is thought to have up to 35 distinct signalling states.[42][43]

Visual signals of the common cuttlefish[42]
Chromic – light Chromic – dark Texture Posture Locomotor
White posterior triangle Anterior transverse mantle line Smooth skin Raised arms Sitting
White square Posterior transverse mantle line Coarse skin Waving arms Bottom suction
White mantle bar Anterior mantle bar Papillate skin Splayed arms Buried
White lateral stripe Posterior mantle bar Wrinkled first arms Drooping arms Hovering
White fin spots Paired mantle spots White square papillae Extended fourth arm Jetting
White fin line Median mantle stripe Major lateral papillae Flattened body Inking
White neck spots Mantle margin stripe Raised head
Iridescent ventral mantle Mantle margin scalloping Flanged fin
White zebra bands Dark fin line
White landmark spots Black zebra bands
White splotches Mottle
White major lateral papillae Lateroventral patches
White head bar Anterior head bar
White arm triangle Posterior head bar
Pink iridophore arm stripes Pupil
White arms spots (males only) Eye ring
Dark arm stripes
Dark arms

Chromatic

This broadclub cuttlefish (Sepia latimanus) can change from camouflage tans and browns (top) to yellow with dark highlights (bottom) in less than one second.
This broadclub cuttlefish (Sepia latimanus) can change from camouflage tans and browns (top) to yellow with dark highlights (bottom) in less than one second.

As with real chameleons, cuttlefish are sometimes referred to as the "chameleons of the sea" because of their ability to rapidly alter their skin color – this can occur within one second. Cuttlefish change color and pattern (including the polarization of the reflected light waves), and the shape of the skin to communicate to other cuttlefish, to camouflage themselves, and as a deimatic display to warn off potential predators. Under some circumstances, cuttlefish can be trained to change color in response to stimuli, thereby indicating their color changing is not completely innate.[44]

Cuttlefish can also affect the light's polarization, which can be used to signal to other marine animals, many of which can also sense polarization, as well as being able to influence the color of light as it reflects off their skin.[45] Although cuttlefish (and most other cephalopods) lack color vision, high-resolution polarisation vision may provide an alternative mode of receiving contrast information that is just as defined.[46] The cuttlefish's wide pupil may accentuate chromatic aberration, allowing it to perceive color by focusing specific wavelengths onto the retina.[47][48]

The three broad categories of color patterns are uniform, mottle, and disruptive.[49] Cuttlefish can display as many as 12 to 14 patterns,[42] 13 of which have been categorized as seven "acute" (relatively brief) and six "chronic" (long-lasting) patterns.[50] although other researchers suggest the patterns occur on a continuum.[49]

Patterns of the common cuttlefish[42]
Chronic Acute
Uniform light Uniform blanching
Stipple Uniform darkening
Light mottle Acute disruptive
Disruptive Deimatic
Dark mottle Flamboyant
Weak zebra Intense zebra
Passing cloud

The color-changing ability of cuttlefish is due to multiple types of cells. These are arranged (from the skin's surface going deeper) as pigmented chromatophores above a layer of reflective iridophores and below them, leucophores.[51][52]

Chromatophores

The chromatophores are sacs containing hundreds of thousands of pigment granules and a large membrane that is folded when retracted. Hundreds of muscles radiate from the chromatophore. These are under neural control and when they expand, they reveal the hue of the pigment contained in the sac. Cuttlefish have three types of chromatophore: yellow/orange (the uppermost layer), red, and brown/black (the deepest layer). The cuttlefish can control the contraction and relaxation of the muscles around individual chromatophores, thereby opening or closing the elastic sacs and allowing different levels of pigment to be exposed.[43] Furthermore, the chromatophores contain luminescent protein nanostructures in which tethered pigment granules modify light through absorbance, reflection, and fluorescence between 650 and 720 nm.[53][54]

For cephalopods in general, the hues of the pigment granules are relatively constant within a species, but can vary slightly between species. For example, the common cuttlefish and the opalescent inshore squid (Doryteuthis opalescens) have yellow, red, and brown, the European common squid (Alloteuthis subulata) has yellow and red, and the common octopus has yellow, orange, red, brown, and black.[43]

In cuttlefish, activation of a chromatophore can expand its surface area by 500%. Up to 200 chromatophores per mm2 of skin may occur. In Loligo plei, an expanded chromatophore may be up to 1.5 mm in diameter, but when retracted, it can measure as little as 0.1 mm.[53][55][56]

Iridophores

Retracting the chromatophores reveals the iridophores and leucophores beneath them, thereby allowing cuttlefish to use another modality of visual signalling brought about by structural coloration.

Iridophores are structures that produce iridescent colors with a metallic sheen. They reflect light using plates of crystalline chemochromes made from guanine. When illuminated, they reflect iridescent colors because of the diffraction of light within the stacked plates. Orientation of the chemochromes determines the nature of the color observed. By using biochromes as colored filters, iridophores create an optical effect known as Tyndall or Rayleigh scattering, producing bright blue or blue-green colors. Iridophores vary in size, but are generally smaller than 1 mm. Squid at least are able to change their iridescence. This takes several seconds or minutes, and the mechanism is not understood.[57] However, iridescence can also be altered by expanding and retracting the chromatophores above the iridophores. Because chromatophores are under direct neural control from the brain, this effect can be immediate.

Cephalopod iridophores polarize light. Cephalopods have a rhabdomeric visual system which means they are visually sensitive to polarized light. Cuttlefish use their polarization vision when hunting for silvery fish (their scales polarize light). Female cuttlefish exhibit a greater number of polarized light displays than males and also alter their behavior when responding to polarized patterns. The use of polarized reflective patterns has led some to suggest that cephalopods may communicate intraspecifically in a mode that is "hidden" or "private" because many of their predators are insensitive to polarized light.[57][58][56]

Leucophores

The white spots and bands on this cuttlefish are produced by leucophores.
The white spots and bands on this cuttlefish are produced by leucophores.

Leucophores, usually located deeper in the skin than iridophores, are also structural reflectors using crystalline purines, often guanine, to reflect light. Unlike iridophores, however, leucophores have more organized crystals that reduce diffraction. Given a source of white light, they produce a white shine, in red they produce red, and in blue they produce blue. Leucophores assist in camouflage by providing light areas during background matching (e.g. by resembling light-colored objects in the environment) and disruptive coloration (by making the body appear to be composed of high-contrasting patches).[57]

The reflectance spectra of cuttlefish patterns and several natural substrates (stipple, mottle, disruptive) can be measured using an optic spectrometer.[57]

Intraspecific

Cuttlefish sometimes use their color patterns to signal future intent to other cuttlefish. For example, during agonistic encounters, male cuttlefish adopt a pattern called the intense zebra pattern, considered to be an honest signal. If a male is intending to attack, it adopts a "dark face" change, otherwise, it remains pale.[59]

In at least one species, female cuttlefish react to their own reflection in a mirror and to other females by displaying a body pattern called "splotch". However, they do not use this display in response to males, inanimate objects, or prey. This indicates they are able to discriminate same-sex conspecifics, even when human observers are unable to discern the sex of a cuttlefish in the absence of sexual dimorphism.[60]

Female cuttlefish signal their receptivity to mating using a display called precopulatory grey.[60] Male cuttlefish sometimes use deception toward guarding males to mate with females. Small males hide their sexually dimorphic fourth arms, change their skin pattern to the mottled appearance of females, and change the shape of their arms to mimic those of nonreceptive, egg-laying females.[41]

Displays on one side of a cuttlefish can be independent of the other side of the body; males can display courtship signals to females on one side while simultaneously showing female-like displays with the other side to stop rival males interfering with their courtship.[61]

Interspecific

The deimatic display (a rapid change to black and white with dark ‘eyespots’ and contour, and spreading of the body and fins) is used to startle small fish that are unlikely to prey on the cuttlefish, but use the flamboyant display towards larger, more dangerous fish,[62] and give no display at all to chemosensory predators such as crabs and dogfish.[63]

One dynamic pattern shown by cuttlefish is dark mottled waves apparently repeatedly moving down the body of the animals. This has been called the passing cloud pattern. In the common cuttlefish, this is primarily observed during hunting, and is thought to communicate to potential prey – “stop and watch me”[43] – which some have interpreted as a type of "hypnosis".

Camouflage

Juvenile cuttlefish camouflaged against the seafloor
Juvenile cuttlefish camouflaged against the seafloor

Cuttlefish are able to rapidly change the color of their skin to match their surroundings and create chromatically complex patterns,[63] despite their inability to perceive color, through some mechanism which is not completely understood.[64] They have been seen to have the ability to assess their surroundings and match the color, contrast and texture of the substrate even in nearly total darkness.[55]

The color variations in the mimicked substrate and animal skin are similar. Depending on the species, the skin of cuttlefish responds to substrate changes in distinctive ways. By changing naturalistic backgrounds, the camouflage responses of different species can be measured.[65] Sepia officinalis changes color to match the substrate by disruptive patterning (contrast to break up the outline), whereas S. pharaonis matches the substrate by blending in. Although camouflage is achieved in different ways, and in an absence of color vision, both species change their skin colors to match the substrate. Cuttlefish adapt their own camouflage pattern in ways that are specific for a particular habitat. An animal could settle in the sand and appear one way, with another animal a few feet away in a slightly different microhabitat, settled in algae for example, will be camouflaged quite differently.[55]

Cuttlefish are also able to change the texture of their skin. The skin contains bands of circular muscle which as they contract, push fluid up. These can be seen as little spikes, bumps, or flat blades. This can help with camouflage when the cuttlefish becomes texturally as well as chromatically similar to objects in its environment such as kelp or rocks.[55]

Discover more about Communication related topics

Polyphenism

Polyphenism

A polyphenic trait is a trait for which multiple, discrete phenotypes can arise from a single genotype as a result of differing environmental conditions. It is therefore a special case of phenotypic plasticity.

Caribbean reef squid

Caribbean reef squid

The Caribbean reef squid, commonly called the reef squid, is a species of small, torpedo-shaped squid with undulating fins that extend nearly the entire length of the body, approximately 20 cm (8 in) in length. In 2001, marine biologist Silvia Maciá discovered that squid were able to propel themselves up out of the water about 2 m (6.6 ft) and fly approximately 10 m (33 ft) before re-entry; a discovery which led to the identification of six species of flying squid.

Camouflage

Camouflage

Camouflage is the use of any combination of materials, coloration, or illumination for concealment, either by making animals or objects hard to see, or by disguising them as something else. Examples include the leopard's spotted coat, the battledress of a modern soldier, and the leaf-mimic katydid's wings. A third approach, motion dazzle, confuses the observer with a conspicuous pattern, making the object visible but momentarily harder to locate, as well as making general aiming easier. The majority of camouflage methods aim for crypsis, often through a general resemblance to the background, high contrast disruptive coloration, eliminating shadow, and countershading. In the open ocean, where there is no background, the principal methods of camouflage are transparency, silvering, and countershading, while the ability to produce light is among other things used for counter-illumination on the undersides of cephalopods such as squid. Some animals, such as chameleons and octopuses, are capable of actively changing their skin pattern and colours, whether for camouflage or for signalling. It is possible that some plants use camouflage to evade being eaten by herbivores.

Pigment

Pigment

A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compounds. Pigments of prehistoric and historic value include ochre, charcoal, and lapis lazuli.

Chromatophore

Chromatophore

Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast, have a class of cells called melanocytes for coloration.

Fluorescence

Fluorescence

Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum, while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light. Fluorescent materials cease to glow nearly immediately when the radiation source stops, unlike phosphorescent materials, which continue to emit light for some time after.

Doryteuthis opalescens

Doryteuthis opalescens

Doryteuthis opalescens, the opalescent inshore squid or market squid, is a small squid in the family Loliginidae. It is a myopsid squid, which is the near shore group and that means that they have corneas over their eyes. The species lives in the eastern Pacific Ocean from Mexico's Baja California peninsula to Alaska, United States, and as an inshore squid it can be found with a range of 200 miles (320 km) off the coast.

Alloteuthis subulata

Alloteuthis subulata

Alloteuthis subulata, the European common squid, is a species of squid in the family Loliginidae.

Common octopus

Common octopus

The common octopus is a mollusc belonging to the class Cephalopoda. Octopus vulgaris is one of the most studied of all octopus species, and also one of the most intelligent. It ranges from the eastern Atlantic, extends from the Mediterranean Sea and the southern coast of England, to the southern coast of South Africa. It also occurs off the Azores, Canary Islands, and Cape Verde Islands. The species is also common in the Western Atlantic. Training experiments have shown the common octopus can distinguish the brightness, size, shape, and horizontal or vertical orientation of objects.

Structural coloration

Structural coloration

Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination with pigments. For example, peacock tail feathers are pigmented brown, but their microscopic structure makes them also reflect blue, turquoise, and green light, and they are often iridescent.

Iridescence

Iridescence

Iridescence is the phenomenon of certain surfaces that appear to gradually change color as the angle of view or the angle of illumination changes. Examples of iridescence include soap bubbles, feathers, butterfly wings and seashell nacre, and minerals such as opal. It is a kind of structural coloration that is due to wave interference of light in microstructures or thin films.

Diet

Video of S. mestus in Sydney waters, hunting and catching prey

While the preferred diet of cuttlefish is crabs and fish, they feed on small shrimp shortly after hatching.[66]

Taxonomy

Illustration of Sepia officinalis
Illustration of Sepia officinalis
Video of a cuttlefish in its natural habitat

Over 120 species of cuttlefish are currently recognised, grouped into six families divided between two suborders. One suborder and three families are extinct.

Discover more about Taxonomy related topics

Wikispecies

Wikispecies

Wikispecies is a wiki-based online project supported by the Wikimedia Foundation. Its aim is to create a comprehensive open content catalogue of all species; the project is directed at scientists, rather than at the general public. Jimmy Wales stated that editors are not required to fax in their degrees, but that submissions will have to pass muster with a technical audience. Wikispecies is available under the GNU Free Documentation License and CC BY-SA 3.0.

Species

Species

In biology, a species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.

Family (biology)

Family (biology)

Family is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy. It is classified between order and genus. A family may be divided into subfamilies, which are intermediate ranks between the ranks of family and genus. The official family names are Latin in origin; however, popular names are often used: for example, walnut trees and hickory trees belong to the family Juglandaceae, but that family is commonly referred to as the "walnut family".

Belosaepiidae

Belosaepiidae

Belosaepiidae is an extinct family of cephalopods known from the Eocene epoch, and bearing close similarity to the sepiid cuttlefish, whilst retaining the remnants of a belemnite-like guard. It is thought that this species was most common for its time.

Sepiadariidae

Sepiadariidae

Sepiadariidae is a family of cuttlefish, cephalopods in the order Sepiida.

Sepiidae

Sepiidae

Sepiidae is a family of cephalopods in the order Sepiida.

Sepiolidae

Sepiolidae

Sepiolidae is a family of bobtail squid encompassing 15 genera in three or four subfamilies.

Common cuttlefish

Common cuttlefish

The common cuttlefish or European common cuttlefish is one of the largest and best-known cuttlefish species. They are a migratory species that spend the summer and spring inshore for spawning and then move to depths of 100 to 200m during autumn and winter. They grow to 49 cm in mantle length (ML) and 4 kg in weight. Animals from subtropical seas are smaller and rarely exceed 30 cm in ML.

Albertus Seba

Albertus Seba

Albertus or Albert Seba was a Dutch pharmacist, zoologist, and collector. Seba accumulated one of the largest cabinets of curiosities in the Netherlands during his time. He sold one of his cabinets in 1717 to Peter the Great of Russia. His later collections were auctioned after his death. He published descriptions of his collections in a lavishly illustrated 4 volume Thesaurus. His early work on taxonomy and natural history influenced Linnaeus.

Human uses

As food

Linguine with cuttlefish and ink sauce served at a Venetian osteria
Linguine with cuttlefish and ink sauce served at a Venetian osteria

Cuttlefish are caught for food in the Mediterranean, East Asia, the English Channel, and elsewhere.

In East Asia, dried, shredded cuttlefish is a popular snack food. In the Qing Dynasty manual of Chinese gastronomy, the Suiyuan shidan, the roe of the cuttlefish, is considered a difficult-to-prepare, but sought-after delicacy.[67]

Cuttlefish are quite popular in Europe. For example, in northeast Italy, they are used in risotto al nero di seppia (risotto with cuttlefish ink), also found in Croatia and Montenegro as crni rižot (black risotto). Catalan cuisine, especially that of the coastal regions, uses cuttlefish and squid ink in a variety of tapas and dishes such as arròs negre. Breaded and deep-fried cuttlefish is a popular dish in Andalusia. In Portugal, cuttlefish is present in many popular dishes. Chocos com tinta (cuttlefish in black ink), for example, is grilled cuttlefish in a sauce of its own ink. Cuttlefish is also popular in the region of Setúbal, where it is served as deep-fried strips or in a variant of feijoada, with white beans. Black pasta is often made using cuttlefish ink.

Sepia

Cuttlefish ink was formerly an important dye, called sepia. To extract the sepia pigment from a cuttlefish (or squid), the ink sac is removed and dried then dissolved in a dilute alkali. The resulting solution is filtered to isolate the pigment, which is then precipitated with dilute hydrochloric acid. The isolated precipitate is the sepia pigment. It is relatively chemically inert, which contributes to its longevity. Today, artificial dyes have mostly replaced natural sepia.

Metal casting

Cuttlebone has been used since antiquity to make casts for metal. A model is pushed into the cuttlebone and removed, leaving an impression. Molten gold, silver or pewter can then be poured into the cast.[68][69]

Smart clothing

Research into replicating biological color-changing has led to engineering artificial chromatophores out of small devices known as dielectric elastomer actuators. Engineers at the University of Bristol have engineered soft materials that mimic the color-changing skin of animals like cuttlefish,[70] paving the way for "smart clothing" and camouflage applications.[71]

Pets

Though cuttlefish are rarely kept as pets, due in part to their fairly short life spans, the most commonly kept are Sepia officinalis and Sepia bandensis.[72] Cuttlefish may fight or even eat each other if there is inadequate tank space for multiple individuals.[28]

Discover more about Human uses related topics

Osteria

Osteria

An osteria in Italy was originally a place serving wine and simple food. Lately, the emphasis has shifted to the food, but menus tend to be short, with the emphasis on local specialities such as pasta and grilled meat or fish, often served at shared tables. Osterie tend to be cheap, and they also focus on after work and evening refreshment. Osterie vary greatly in practice: some only serve drinks and clients are allowed to bring in their own food, and some have retained a predominantly male clientele whilst others have reached out to students and young professionals. Some provide music and other entertainment. Similar to osterie are bottiglierie, where customers can take a bottle or flask to be re-filled from a barrel, and enoteche which generally pride themselves on the range and quality of their wine. In Emilia-Romagna are located three of the oldest Italian osterie: "Osteria del Sole" and "Osteria del Cappello" in Bologna, and "Osteria al Brindisi" in Ferrara, established between the 14th and 15th century.

Dried shredded squid

Dried shredded squid

Dried shredded squid is a dried, shredded, seasoned, seafood product, made from squid or cuttlefish, commonly found in coastal Asian countries, Russia, and Hawaii. The snack is also referred to as dried shredded cuttlefish.

Gastronomy

Gastronomy

Gastronomy is the study of the relationship between food and culture, the art of preparing and serving rich or delicate and appetizing food, the cooking styles of particular regions, and the science of good eating. One who is well versed in gastronomy is called a gastronome, while a gastronomist is one who unites theory and practice in the study of gastronomy. Practical gastronomy is associated with the practice and study of the preparation, production, and service of the various foods and beverages, from countries around the world. Theoretical gastronomy supports practical gastronomy. It is related with a system and process approach, focused on recipes, techniques and cookery books. Food gastronomy is connected with food and beverages and their genesis. Technical gastronomy underpins practical gastronomy, introducing a rigorous approach to evaluation of gastronomic topics.

Roe

Roe

Roe or hard roe is the fully ripe internal egg masses in the ovaries, or the released external egg masses, of fish and certain marine animals such as shrimp, scallop, sea urchins and squid. As a seafood, roe is used both as a cooked ingredient in many dishes, and as a raw ingredient for delicacies such as caviar.

Risotto

Risotto

Risotto is a northern Italian rice dish cooked with broth until it reaches a creamy consistency. The broth can be derived from meat, fish, or vegetables. Many types of risotto contain butter, onion, white wine, and Parmigiano-Reggiano. It is one of the most common ways of cooking rice in Italy. Saffron was originally used for flavour and its signature yellow colour.

Catalan cuisine

Catalan cuisine

Catalan cuisine is the cuisine from Catalonia. It may also refer to the shared cuisine of Northern Catalonia and Andorra, the second of which has a similar cuisine to that of the neighbouring Alt Urgell and Cerdanya comarques and which is often referred to as "Catalan mountain cuisine". It is considered a part of western Mediterranean cuisine.

Arròs negre

Arròs negre

Arròs negre is a Valencian and Catalan dish made with cuttlefish and rice, somewhat similar to seafood paella. Some call it paella negra, although it is traditionally not called a paella even though it is prepared in a similar manner.

Andalusia

Andalusia

Andalusia is the southernmost autonomous community in Peninsular Spain. It is the most populous and the second-largest autonomous community in the country. It is officially recognised as a "historical nationality". The territory is divided into eight provinces: Almería, Cádiz, Córdoba, Granada, Huelva, Jaén, Málaga, and Seville. Its capital city is Seville. The seat of the High Court of Justice of Andalusia is located in the city of Granada.

Portugal

Portugal

Portugal, officially the Portuguese Republic, is a country located on the Iberian Peninsula, in southwestern Europe, and whose territory also includes the Atlantic archipelagos of the Azores and Madeira. It features the westernmost point in continental Europe, and its Iberian portion is bordered to the west and south by the Atlantic Ocean and to the north and east by Spain, the sole country to have a land border with Portugal. Its two archipelagos form two autonomous regions with their own regional governments. Lisbon is the capital and largest city by population.

Feijoada

Feijoada

Feijoada is a stew of beans with beef and pork. The name feijoada comes from feijão, 'bean' in Portuguese. It is widely prepared in the Portuguese-speaking world, with slight variations.

Sepia (color)

Sepia (color)

Sepia is a reddish-brown color, named after the rich brown pigment derived from the ink sac of the common cuttlefish Sepia. The word sepia is the Latinized form of the Greek σηπία, sēpía, cuttlefish.

Dielectric elastomers

Dielectric elastomers

Dielectric elastomers (DEs) are smart material systems that produce large strains. They belong to the group of electroactive polymers (EAP). DE actuators (DEA) transform electric energy into mechanical work. They are lightweight and have a high elastic energy density. They have been investigated since the late 1990s. Many prototype applications exist. Every year, conferences are held in the US and Europe.

Source: "Cuttlefish", Wikipedia, Wikimedia Foundation, (2023, March 8th), https://en.wikipedia.org/wiki/Cuttlefish.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
References
  1. ^ Philippe Bouchet (2018). "Sepiida". World Register of Marine Species. Flanders Marine Institute. Retrieved 17 February 2019.
  2. ^ "The Cephalopoda". University of California Museum of Paleontology. Retrieved 2017-06-27.
  3. ^ Reid, A., P. Jereb, & C. F. E. Roper (2005). "Family Sepiidae". In: P. Jereb & C. F. E. Roper, eds. Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 1. Rome, FAO. pp. 57–152.
  4. ^ a b c NOVA, 2007. Cuttlefish: Kings of Camouflage. (television program) NOVA, PBS, April 3, 2007.
  5. ^ Stevenson, Angus (20 September 2007). Shorter Oxford English Dictionary. Oxford University Press. p. 3804. ISBN 978-0-19-920687-2.
  6. ^ Whiteaves, J.F. (1897). "On some remains of a Sepia-like cuttle-fish from the Cretaceous rocks of the South Saskatchewan". The Canadian Record of Science. 7: 459–462.
  7. ^ Hewitt, R.; Pedley, H. M. (1978). "The preservation of the shells of Sepia in the middle Miocene of Malta". Proceedings of the Geologists' Association. 89 (3): 227–237. doi:10.1016/S0016-7878(78)80013-3.
  8. ^ "Maastrichtian Ceratisepia and Mesozoic cuttlebone homeomorphs - Acta Palaeontologica Polonica". www.app.pan.pl. Retrieved 2020-12-17.
  9. ^ Fuchs, Dirk; Stinnesbeck, Wolfgang; Ifrim, Christina; Giersch, Samuel; Padilla Gutierrez, José Manuel; Frey, Eberhard (2010). "Glyphiteuthis rhinophora n. sp., a trachyteuthidid (Coleoidea, Cephalopoda) from the Cenomanian (Late Cretaceous) of Mexico". Paläontologische Zeitschrift. 84 (4): 523–32. doi:10.1007/s12542-010-0066-9. S2CID 129754736.
  10. ^ Fuchs, Dirk; Iba, Yasuhiro; Tischlinger, Helmut; Keupp, Helmut; Klug, Christian (October 2016). "The locomotion system of Mesozoic Coleoidea (Cephalopoda) and its phylogenetic significance". Lethaia. 49 (4): 433–454. doi:10.1111/let.12155.
  11. ^ Lu, C. C. and Roper, C. F. E. (1991). "Aspects of the biology of Sepia cultrata from southeastern Australia", p. 192 in: La Seiche, The Cuttlefish. Boucaud-Camou, E. (Ed). Caen, France; Centre de Publications de l'Université de Caen.
  12. ^ Young, R. E., Vecchione, M. and Donovan, D. (1998). "The evolution of coleoid cephalopods and their present biodiversity and ecology". South African Journal of Marine Science. 20: 393–420. doi:10.2989/025776198784126287.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Common Cuttlefishes, Sepia officinalis. marinebio.org
  14. ^ Barratt, I.; Allcock, L. (2012). "Sepia officinalis". IUCN Red List of Threatened Species. 2012: e.T162664A939991. doi:10.2305/IUCN.UK.2012-1.RLTS.T162664A939991.en. Retrieved 11 November 2021.
  15. ^ Muller, Matthew. "Development of the Eye in Vertebrates and Cephalopods and Its Implications for Retinal Structure". The Cephalopod Eye. Davidson College Biology Department. Archived from the original on 2003-11-21. Retrieved 2007-04-06.
  16. ^ Schaeffel, F.; Murphy, C. J.; Howland, H. C. (1999). "Accommodation in the cuttlefish (Sepia officinalis)". The Journal of Experimental Biology. 202 (22): 3127–3134. doi:10.1242/jeb.202.22.3127. PMID 10539961.
  17. ^ Murphy, C. J.; Howland, H. C. (1990). "The functional significance of crescent-shaped pupils and multiple pupillary apertures". Journal of Experimental Zoology. 256: 22–28. doi:10.1002/jez.1402560505.
  18. ^ Mäthger LM, Barbosa A, Miner S, Hanlon RT (2006). "Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay". Vision Research. 46 (11): 1746–53. doi:10.1016/j.visres.2005.09.035. PMID 16376404. S2CID 16247757.
  19. ^ Feord, R. C.; Sumner, M. E.; Pusdekar, S.; Kalra, L.; Gonzalez-Bellido, P. T.; Wardill, Trevor J. (2020). "Cuttlefish use stereopsis to strike at prey". Science Advances. 6 (2): eaay6036. Bibcode:2020SciA....6.6036F. doi:10.1126/sciadv.aay6036. ISSN 2375-2548. PMC 6949036. PMID 31934631.
  20. ^ Prior, Ryan (9 January 2020). "Scientists put 3D glasses on cuttlefish and showed them film clips. The results were surprising". CNN. Retrieved 2020-01-09.
  21. ^ "Cuttlefish spot target prey early". BBC News. 2008-06-05. Retrieved 2008-05-06.
  22. ^ Fowler, Samantha; Roush, Rebecca; Wise, James (2013-04-25). "Mollusks and Annelids". BCcampus Open Publishing. Retrieved 2022-02-21.
  23. ^ Rexfort, A.; Mutterlose, J. (2006). "Stable isotope records from Sepia officinalis—a key to understanding the ecology of belemnites?". Earth and Planetary Science Letters. 247 (3–4): 212. Bibcode:2006E&PSL.247..212R. doi:10.1016/j.epsl.2006.04.025.
  24. ^ Staaf, Danna (2017). Squid Empire: The Rise and Fall of the Cephalopods. University Press of New England. pp. 112–. ISBN 978-1-5126-0128-2.
  25. ^ a b Derby, Charles D.; Kicklighter, Cynthia E.; Johnson, P. M.; Zhang, Xu (2007-05-01). "Chemical Composition of Inks of Diverse Marine Molluscs Suggests Convergent Chemical Defenses". Journal of Chemical Ecology. 33 (5): 1105–1113. doi:10.1007/s10886-007-9279-0. ISSN 0098-0331. PMID 17393278. S2CID 92064.
  26. ^ "NOVA | Kings of Camouflage | Anatomy of a Cuttlefish (non-Flash) | PBS". www.pbs.org. Retrieved 2019-04-15.
  27. ^ Zhang, Yafeng; Dong, Biqin; Chen, Ang; Liu, Xiaohan; Shi, Lei; Zi, Jian (2015). "Using Cuttlefish Ink as an Additive to Produce Non‐iridescent Structural Colors of High-Color Visibility". Advanced Materials. 27 (32): 4719–24. Bibcode:2015AdM....27.4719Z. doi:10.1002/adma.201501936. PMID 26175211. S2CID 10974421.
  28. ^ a b "Sepia bandensis: husbandry and breeding". The Octopus News Magazine Online. Retrieved 2019-04-15.
  29. ^ Karson, Miranda A.; Boal, Jean Geary; Hanlon, Roger T. (2003). "Experimental evidence for spatial learning in cuttlefish (Sepia officinalis)". Journal of Comparative Psychology. American Psychological Association (APA). 117 (2): 149–155. doi:10.1037/0735-7036.117.2.149. ISSN 1939-2087. PMID 12856785.
  30. ^ Hanlon, Roger T. Verfasser (2018-03-22). Cephalopod behaviour. ISBN 978-0521897853. OCLC 1040658735. {{cite book}}: |last= has generic name (help)
  31. ^ "All Octopuses Are Venomous, Study Says". Animals. 2009-04-17. Retrieved 2019-08-06.
  32. ^ "Kings of Camouflage". www.pbs.org. Retrieved 2019-08-06.
  33. ^ a b c Frank, M.G.; Waldrop, R.H.; Dumoulin, M.; Aton, S.; Boal, J.G. (2012). "A Preliminary Analysis of Sleep-Like States in the Cuttlefish Sepia officinalis". PLOS ONE. 7 (6): e38125. Bibcode:2012PLoSO...738125F. doi:10.1371/journal.pone.0038125. PMC 3368927. PMID 22701609.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ a b c Iglesias, T.L.; Boal, J.G.; Frank, M.G.; Zeil, J.; Hanlon, R.T. (2019). "Cyclic nature of the REM sleep-like state in the cuttlefish Sepia officinalis". Journal of Experimental Biology. 222 (1): jeb174862. doi:10.1242/jeb.174862. PMID 30446538.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Meisel, D.V.; Byrne, R.A.; Mather, J.A.; Kuba, M. (2011). "Behavioral sleep in Octopus vulgaris". Vie et Milieu Life and Environment. 61 (4).{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. ^ Bavendam, Fred (1995) "The Giant Cuttlefish Chameleon of the Reef". National Geographic, pp. 94–107. Print.
  37. ^ Zatylny-Gaudin, Céline; Corre, Erwan; Corguillé, Gildas Le; Bernay, Benoit; Duval, Emilie; Goux, Didier; Henry, Joël; Cornet, Valérie (2015-07-13). "How Egg Case Proteins Can Protect Cuttlefish Offspring?". PLOS ONE. 10 (7): e0132836. Bibcode:2015PLoSO..1032836C. doi:10.1371/journal.pone.0132836. ISSN 1932-6203. PMC 4500399. PMID 26168161.
  38. ^ a b Mating Trick: Science Videos. Science News – ScienCentral
  39. ^ Life: Cuttlefish Wards Off Rivals : Video : Discovery Channel. Dsc.discovery.com (2012-03-22). Retrieved on 2013-09-18.
  40. ^ Ebert, Jessica (2005). "Cuttlefish win mates with transvestite antics". [email protected]. doi:10.1038/news050117-9.
  41. ^ a b Hanlon, R.T.; Naud, M.J.; Shaw, P.W.; Havenhand, J.N. (2005). "Behavioural ecology: Transient sexual mimicry leads to fertilization" (PDF). Nature. 433 (7023): 212. Bibcode:2005Natur.433..212H. doi:10.1038/433212a. PMID 15662403. S2CID 1128929. Archived from the original (PDF) on November 14, 2012.
  42. ^ a b c d Crook, A.C., Baddeley, R. and Osorio, D. (2002). "Identifying the structure in cuttlefish visual signals". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 357 (1427): 1617–1624. doi:10.1098/rstb.2002.1070. PMC 1693061. PMID 12495518.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ a b c d Thomas, A.; MacDonald, C. (2016). "Investigating body patterning in aquarium-raised flamboyant cuttlefish (Metasepia pfefferi)". PeerJ. 4: e2035. doi:10.7717/peerj.2035. PMC 4878381. PMID 27231657.
  44. ^ Hough, A.R., Case, J. and Boal, J.G. (2016). "Learned control of body patterning in cuttlefish Sepia officinalis (Cephalopoda)". Journal of Molluscan Studies. 82 (3): 427–431. doi:10.1093/mollus/eyw006.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ Mäthger, L. M., Shashar, N. and Hanlon, R. T. (2009). "Do cephalopods communicate using polarized light reflections from their skin?". Journal of Experimental Biology. 212 (14): 2133–40. doi:10.1242/jeb.020800. PMID 19561202.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. ^ Temple, S.E., Pignatelli, V., Cook, T., How, M.J., Chiou, T.H., Roberts, N.W. and Marshall, N.J. (2012). "High-resolution polarisation vision in a cuttlefish". Current Biology. 22 (4): R121–R122. doi:10.1016/j.cub.2012.01.010. PMID 22361145.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ Douglas, Ronald H. (2018). "The pupillary light responses of animals; a review of their distribution, dynamics, mechanisms and functions" (PDF). Progress in Retinal and Eye Research. Wolters Kluwer. 66: 17–48. doi:10.1016/j.preteyeres.2018.04.005. ISSN 1350-9462. PMID 29723580. S2CID 19936214.
  48. ^ Stubbs, A.; Stubbs, C. (2016). "Spectral discrimination in color-blind animals via chromatic aberration and pupil shape". Proceedings of the National Academy of Sciences. 113 (29): 8206–8211. Bibcode:2016PNAS..113.8206S. doi:10.1073/pnas.1524578113. PMC 4961147. PMID 27382180.
  49. ^ a b Chiao, C.C., Chubb, C., Buresch, K.C., Barbosa, A., Allen, J.J., Mäthger, L.M. and Hanlon, R.T. (2010). "Mottle camouflage patterns in cuttlefish: quantitative characterization and visual background stimuli that evoke them". The Journal of Experimental Biology. 213 (2): 187–199. doi:10.1242/jeb.030247. PMID 20038652.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  50. ^ Hanlon, R.T.; Messenger, J.B. (1988). "Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 320 (1200): 437–487. Bibcode:1988RSPTB.320..437H. doi:10.1098/rstb.1988.0087. JSTOR 2396667.
  51. ^ Messenger J.B. (2001). "Cephalopod chromatophores: neurobiology and natural history". Biological Reviews. 76 (4): 473–528. doi:10.1017/S1464793101005772. PMID 11762491. S2CID 17172396.
  52. ^ NOVA | Kings of Camouflage | Anatomy of a Cuttlefish (non-Flash). PBS. Retrieved on 2013-09-18.
  53. ^ a b Karoff, P. (2014). "'Chameleon of the sea' reveals its secrets". Harvard. Retrieved May 26, 2014.
  54. ^ Deravi, L.F.; et al. (2014). "The structure–function relationships of a natural nanoscale photonic device in cuttlefish chromatophores". Journal of the Royal Society Interface. 11 (93): 20130942. doi:10.1098/rsif.2013.0942. PMC 3928930. PMID 24478280.
  55. ^ a b c d Hansford, D. (2008). "Cuttlefish change color, shape-shift to elude predators". National Geographic.
  56. ^ a b Mäthger, L. M.; Denton, E. J.; Marshall, N. J.; Hanlon, R. T. (2009). "Mechanisms and behavioural functions of structural coloration in cephalopods". Journal of the Royal Society Interface. 6 Suppl 2 (Suppl 2): S149–63. doi:10.1098/rsif.2008.0366.focus. PMC 2706477. PMID 19091688.
  57. ^ a b c d Mathger, L. M.; Chiao, C.; Barbosa, A. & Hanlon, R. T. (2008). "Color matching on natural substrates in cuttlefish, Sepia officinalis". Journal of Comparative Physiology A. 194 (6): 577–85. doi:10.1007/s00359-008-0332-4. PMID 18414874. S2CID 25111630.
  58. ^ Mäthger, L.M., Shashar, N. and Hanlon, R.T. (2009). "Do cephalopods communicate using polarized light reflections from their skin?". Journal of Experimental Biology. 212 (14): 2133–2140. doi:10.1242/jeb.020800. PMID 19561202.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. ^ Adamo, S.A.; Hanlon, R.T. (1996). "Do cuttlefish (Cephalopoda) signal their intentions to conspecifics during agonistic encounters?". Animal Behaviour. 52 (1): 73–81. doi:10.1006/anbe.1996.0153. S2CID 53186029.
  60. ^ a b Palmer, M.E., Calvé, M.R. and Adamo, S.A. (2006). "Response of female cuttlefish Sepia officinalis (Cephalopoda) to mirrors and conspecifics: evidence for signaling in female cuttlefish". Animal Cognition. 9 (2): 151–155. doi:10.1007/s10071-005-0009-0. PMID 16408230. S2CID 19047398.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  61. ^ Hutton, P., Seymoure, B.M., McGraw, K.J., Ligon, R.A. and Simpson, R.K. (2015). "Dynamic color communication". Current Opinion in Behavioral Sciences. 6: 41–49. doi:10.1016/j.cobeha.2015.08.007. S2CID 53195786.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  62. ^ Langridge, K.V. (2009). "Cuttlefish use startle displays, but not against large predators". Animal Behaviour. 77 (4): 847–856. doi:10.1016/j.anbehav.2008.11.023. S2CID 53144246.
  63. ^ a b Stuart-Fox, D.; Moussalli, A. (2009). "Camouflage, communication and thermoregulation: Lessons from color changing organisms". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 364 (1516): 463–70. doi:10.1098/rstb.2008.0254. PMC 2674084. PMID 19000973.
  64. ^ Mäthger, Lydia M.; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T. (May 2006). "Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay". Vision Research. 46 (11): 1746–1753. doi:10.1016/j.visres.2005.09.035. PMID 16376404. S2CID 16247757.
  65. ^ Shohet, A.; Baddeley, R.; Anderson, J. & Osorio, D. (2007). "Cuttlefish camouflage: A quantitative study of patterning". Biological Journal of the Linnean Society. 92 (2): 335–345. doi:10.1111/j.1095-8312.2007.00842.x.
  66. ^ Cuttlefish Basics. Tonmo.com (2003-02-12). Retrieved on 2011-09-18.
  67. ^ "Seafoods 7: Cuttlefish roe (烏魚蛋)". Translating the Suiyuan Shidan. 2014.
  68. ^ "[Ganoksin] Cuttlefish Casting – Theory and Practice of Goldsmithing". www.ganoksin.com. Retrieved 2016-09-03.
  69. ^ Morris Bywater Limited (2014-02-26), Cuttlefish Casting: The Making of a Gold Signet Ring, archived from the original on 2021-12-15, retrieved 2016-09-03
  70. ^ Rossiter, Jonathan; Yap, Bryan; Conn, Andrew (2012). "Biomimetic chromatophores for camouflage and soft active surfaces". Bioinspiration & Biomimetics. 7 (3): 036009. Bibcode:2012BiBi....7c6009R. doi:10.1088/1748-3182/7/3/036009. PMID 22549047. S2CID 14392264.
  71. ^ Anthes, Emily (12 September 2012). "Cuttlefish provide smart fashion tips". BBC.com.
  72. ^ Ceph Care | TONMO.com: The Octopus News Magazine Online Archived 2015-05-12 at the Wayback Machine. TONMO.com. Retrieved on 2015-09-25.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.