Get Our Extension

Cretaceous–Paleogene extinction event

From Wikipedia, in a visual modern way
Clockwise from top left:
Artist's rendering of an asteroid a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
Bali Khila, an eroded hill from the Deccan Traps, which are another hypothesized cause of the K-Pg extinction event;
Badlands near Drumheller, Alberta, where erosion has exposed the K–Pg boundary;
Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near Geulhem, The Netherlands (finger is below the actual Cretaceous–Paleogene boundary);
Wyoming rock with an intermediate claystone layer that contains 1,000 times more iridium than the upper and lower layers. Picture taken at the San Diego Natural History Museum.
Clockwise from top left:
Artist's rendering of an asteroid a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
Bali Khila, an eroded hill from the Deccan Traps, which are another hypothesized cause of the K-Pg extinction event;
Badlands near Drumheller, Alberta, where erosion has exposed the K–Pg boundary;
Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near Geulhem, The Netherlands (finger is below the actual Cretaceous–Paleogene boundary);
Wyoming rock with an intermediate claystone layer that contains 1,000 times more iridium than the upper and lower layers. Picture taken at the San Diego Natural History Museum.
Clockwise from top left:
Artist's rendering of an asteroid a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
Bali Khila, an eroded hill from the Deccan Traps, which are another hypothesized cause of the K-Pg extinction event;
Badlands near Drumheller, Alberta, where erosion has exposed the K–Pg boundary;
Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near Geulhem, The Netherlands (finger is below the actual Cretaceous–Paleogene boundary);
Wyoming rock with an intermediate claystone layer that contains 1,000 times more iridium than the upper and lower layers. Picture taken at the San Diego Natural History Museum.
Clockwise from top left:
Artist's rendering of an asteroid a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
Bali Khila, an eroded hill from the Deccan Traps, which are another hypothesized cause of the K-Pg extinction event;
Badlands near Drumheller, Alberta, where erosion has exposed the K–Pg boundary;
Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near Geulhem, The Netherlands (finger is below the actual Cretaceous–Paleogene boundary);
Wyoming rock with an intermediate claystone layer that contains 1,000 times more iridium than the upper and lower layers. Picture taken at the San Diego Natural History Museum.
Clockwise from top left:
Artist's rendering of an asteroid a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
Bali Khila, an eroded hill from the Deccan Traps, which are another hypothesized cause of the K-Pg extinction event;
Badlands near Drumheller, Alberta, where erosion has exposed the K–Pg boundary;
Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near Geulhem, The Netherlands (finger is below the actual Cretaceous–Paleogene boundary);
Wyoming rock with an intermediate claystone layer that contains 1,000 times more iridium than the upper and lower layers. Picture taken at the San Diego Natural History Museum.
Clockwise from top left:
  • Artist's rendering of an asteroid a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
  • Bali Khila, an eroded hill from the Deccan Traps, which are another hypothesized cause of the K-Pg extinction event;
  • Badlands near Drumheller, Alberta, where erosion has exposed the K–Pg boundary;
  • Complex Cretaceous–Paleogene clay layer (gray) in the Geulhemmergroeve tunnels near Geulhem, The Netherlands (finger is below the actual Cretaceous–Paleogene boundary);
  • Wyoming rock with an intermediate claystone layer that contains 1,000 times more iridium than the upper and lower layers. Picture taken at the San Diego Natural History Museum.

The Cretaceous–Paleogene (K–Pg) extinction event,[a] also known as the Cretaceous–Tertiary (K–T) extinction,[b] was a sudden mass extinction of three-quarters of the plant and animal species on Earth,[2][3] approximately 66 million years ago. The event caused the extinction of all non-avian dinosaurs. Most other tetrapods weighing more than 25 kilograms (55 pounds) also became extinct, with the exception of some ectothermic species such as sea turtles and crocodilians.[4] It marked the end of the Cretaceous Period, and with it the Mesozoic era, while heralding the beginning of the Cenozoic era, which continues to this day.

In the geologic record, the K–Pg event is marked by a thin layer of sediment called the K–Pg boundary, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal iridium,[5][6][7] which is more common in asteroids than in the Earth's crust.[8]

As originally proposed in 1980[9] by a team of scientists led by Luis Alvarez and his son Walter, it is now generally thought that the K–Pg extinction was caused by the impact of a massive asteroid 10 to 15 km (6 to 9 mi) wide,[10][11] 66 million years ago, which devastated the global environment, mainly through a lingering impact winter which halted photosynthesis in plants and plankton.[12][13] The impact hypothesis, also known as the Alvarez hypothesis, was bolstered by the discovery of the 180 km (112 mi) Chicxulub crater in the Gulf of Mexico's Yucatán Peninsula in the early 1990s,[14] which provided conclusive evidence that the K–Pg boundary clay represented debris from an asteroid impact.[8] The fact that the extinctions occurred simultaneously provides strong evidence that they were caused by the asteroid.[8] A 2016 drilling project into the Chicxulub peak ring confirmed that the peak ring comprised granite ejected within minutes from deep in the earth, but contained hardly any gypsum, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an aerosol into the atmosphere, causing longer-term effects on the climate and food chain. In October 2019, researchers reported that the event rapidly acidified the oceans, producing ecological collapse and, in this way as well, produced long-lasting effects on the climate, and accordingly was a key reason for the mass extinction at the end of the Cretaceous.[15][16]

Other causal or contributing factors to the extinction may have been the Deccan Traps and other volcanic eruptions,[17][18] climate change, and sea level change. However, in January 2020, scientists reported that climate-modeling of the extinction event favored the asteroid impact and not volcanism.[19][20][21]

A wide range of terrestrial species perished in the K–Pg extinction, the best-known being the non-avian dinosaurs, along with many mammals, birds,[22] lizards,[23] insects,[24][25] plants, and all the pterosaurs.[26] In the oceans, the K–Pg extinction killed off plesiosaurs and mosasaurs and devastated teleost fish,[27] sharks, mollusks (especially ammonites, which became extinct), and many species of plankton. It is estimated that 75% or more of all species on Earth vanished.[28] Yet the extinction also provided evolutionary opportunities: in its wake, many groups underwent remarkable adaptive radiation—sudden and prolific divergence into new forms and species within the disrupted and emptied ecological niches. Mammals in particular diversified in the Paleogene,[29] evolving new forms such as horses, whales, bats, and primates. The surviving group of dinosaurs were avians, a few species of ground and water fowl, which radiated into all modern species of birds.[30] Among other groups, teleost fish[31] and perhaps lizards[23] also radiated.

Discover more about Cretaceous–Paleogene extinction event related topics

Animal

Animal

Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres (0.00033 in) to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology.

Cretaceous

Cretaceous

The Cretaceous is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era, as well as the longest. At around 79 million years, it is the longest geological period of the entire Phanerozoic. The name is derived from the Latin creta, "chalk", which is abundant in the latter half of the period. It is usually abbreviated K, for its German translation Kreide.

Cenozoic

Cenozoic

The Cenozoic is Earth's current geological era, representing the last 66 million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configuration of continents. It is the latest of three geological eras since complex life evolved, preceded by the Mesozoic and Paleozoic. It started with the Cretaceous–Paleogene extinction event, when many species, including the non-avian dinosaurs, became extinct in an event attributed by most experts to the impact of a large asteroid or other celestial body, the Chicxulub impactor.

Cretaceous–Paleogene boundary

Cretaceous–Paleogene boundary

The Cretaceous–Paleogene (K–Pg) boundary, formerly known as the Cretaceous–Tertiary (K–T) boundary, is a geological signature, usually a thin band of rock containing much more iridium than other bands. The K–Pg boundary marks the end of the Cretaceous Period, the last period of the Mesozoic Era, and marks the beginning of the Paleogene Period, the first period of the Cenozoic Era. Its age is usually estimated at around 66 million years, with radiometric dating yielding a more precise age of 66.043 ± 0.011 Ma.

Asteroid

Asteroid

An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere.

Alvarez hypothesis

Alvarez hypothesis

The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatán Peninsula, at Chicxulub, Mexico. The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who first suggested it in 1980. Shortly afterwards, and independently, the same was suggested by Dutch paleontologist Jan Smit.

Chicxulub crater

Chicxulub crater

The Chicxulub crater is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore near the community of Chicxulub, after which it is named. It was formed slightly over 66 million years ago when a large asteroid, about ten kilometers in diameter, struck Earth. The crater is estimated to be 180 kilometers in diameter and 20 kilometers in depth. It is the second largest confirmed impact structure on Earth, and the only one whose peak ring is intact and directly accessible for scientific research.

Aerosol

Aerosol

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogenic aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, steam from a kettle, sprayed pesticides, and medical treatments for respiratory illnesses. When a person inhales the contents of a vape pen or e-cigarette, they are inhaling an anthropogenic aerosol.

Deccan Traps

Deccan Traps

The Deccan Traps is a large igneous province of west-central India. It is one of the largest volcanic features on Earth, taking the form of a large shield volcano. It consists of numerous layers of solidified flood basalt that together are more than about 2,000 metres (6,600 ft) thick, cover an area of about 500,000 square kilometres (200,000 sq mi), and have a volume of about 1,000,000 cubic kilometres (200,000 cu mi). Originally, the Deccan Traps may have covered about 1,500,000 square kilometres (600,000 sq mi), with a correspondingly larger original volume. This volume overlies the Archean age Indian Shield, which is likely the lithology the province passed through during eruption. The province is commonly divided into four subprovinces: the main Deccan, the Malwa Plateau, the Mandla Lobe, and the Saurashtran Plateau.

Adaptive radiation

Adaptive radiation

In evolutionary biology, adaptive radiation is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new environmental niches. Starting with a single ancestor, this process results in the speciation and phenotypic adaptation of an array of species exhibiting different morphological and physiological traits. The prototypical example of adaptive radiation is finch speciation on the Galapagos, but examples are known from around the world.

Cetacea

Cetacea

Cetaceans are an infraorder of aquatic mammals that includes whales, dolphins, and porpoises. Key characteristics are their fully aquatic lifestyle, streamlined body shape, often large size and exclusively carnivorous diet. They propel themselves through the water with powerful up-and-down movement of their tail which ends in a paddle-like fluke, using their flipper-shaped forelimbs to maneuver.

Bat

Bat

Bats are mammals of the order Chiroptera. With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their very long spread-out digits covered with a thin membrane or patagium. The smallest bat, and arguably the smallest extant mammal, is Kitti's hog-nosed bat, which is 29–34 millimetres in length, 150 mm (6 in) across the wings and 2–2.6 g in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox, reaching a weight of 1.6 kg and having a wingspan of 1.7 m.

Extinction patterns

Marine extinction intensity during the Phanerozoic
.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}%
Millions of years ago
(H)
K–Pg
Tr–J
P–Tr
Cap
Late D
O–S



The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised Capitanian mass extinction event are clickable links; see Extinction event for more details. (source and image info)CambrianOrdovicianSilurianDevonianCarboniferousPermianTriassicJurassicCretaceousPaleogeneNeogene
Marine extinction intensity during the Phanerozoic
%
Millions of years ago
Marine extinction intensity during the Phanerozoic
.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}%
Millions of years ago
(H)
K–Pg
Tr–J
P–Tr
Cap
Late D
O–S



The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised Capitanian mass extinction event are clickable links; see Extinction event for more details. (source and image info)CambrianOrdovicianSilurianDevonianCarboniferousPermianTriassicJurassicCretaceousPaleogeneNeogene
The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised Capitanian mass extinction event are clickable links; see Extinction event for more details. (source and image info)

The K–Pg extinction event was severe, global, rapid, and selective, eliminating a vast number of species. Based on marine fossils, it is estimated that 75% or more of all species were made extinct.[28]

The event appears to have affected all continents at the same time. Non-avian dinosaurs, for example, are known from the Maastrichtian of North America, Europe, Asia, Africa, South America, and Antarctica,[32] but are unknown from the Cenozoic anywhere in the world. Similarly, fossil pollen shows devastation of the plant communities in areas as far apart as New Mexico, Alaska, China, and New Zealand.[26]

Despite the event's severity, there was significant variability in the rate of extinction between and within different clades. Species that depended on photosynthesis declined or became extinct as atmospheric particles blocked sunlight and reduced the solar energy reaching the ground. This plant extinction caused a major reshuffling of the dominant plant groups.[33] Omnivores, insectivores, and carrion-eaters survived the extinction event, perhaps because of the increased availability of their food sources. No purely herbivorous or carnivorous mammals seem to have survived. Rather, the surviving mammals and birds fed on insects, worms, and snails, which in turn fed on detritus (dead plant and animal matter).[34][35][36]

In stream communities, few animal groups became extinct, because such communities rely less directly on food from living plants, and more on detritus washed in from the land, protecting them from extinction.[37] Similar, but more complex patterns have been found in the oceans. Extinction was more severe among animals living in the water column than among animals living on or in the sea floor. Animals in the water column are almost entirely dependent on primary production from living phytoplankton, while animals on the ocean floor always or sometimes feed on detritus.[34] Coccolithophorids and mollusks (including ammonites, rudists, freshwater snails, and mussels), and those organisms whose food chain included these shell builders, became extinct or suffered heavy losses. For example, it is thought that ammonites were the principal food of mosasaurs, a group of giant marine reptiles that became extinct at the boundary.[38] The largest air-breathing survivors of the event, crocodyliforms and champsosaurs, were semi-aquatic and had access to detritus. Modern crocodilians can live as scavengers and survive for months without food, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms for their first few years. These characteristics have been linked to crocodilian survival at the end of the Cretaceous.[35]

After the K–Pg extinction event, biodiversity required substantial time to recover, despite the existence of abundant vacant ecological niches.[34]

Microbiota

The K–Pg boundary represents one of the most dramatic turnovers in the fossil record for various calcareous nanoplankton that formed the calcium deposits for which the Cretaceous is named. The turnover in this group is clearly marked at the species level.[39][40] Statistical analysis of marine losses at this time suggests that the decrease in diversity was caused more by a sharp increase in extinctions than by a decrease in speciation.[41] The K–Pg boundary record of dinoflagellates is not so well understood, mainly because only microbial cysts provide a fossil record, and not all dinoflagellate species have cyst-forming stages, which likely causes diversity to be underestimated.[34] Recent studies indicate that there were no major shifts in dinoflagellates through the boundary layer.[42]

Radiolaria have left a geological record since at least the Ordovician times, and their mineral fossil skeletons can be tracked across the K–Pg boundary. There is no evidence of mass extinction of these organisms, and there is support for high productivity of these species in southern high latitudes as a result of cooling temperatures in the early Paleocene.[34] Approximately 46% of diatom species survived the transition from the Cretaceous to the Upper Paleocene, a significant turnover in species but not a catastrophic extinction.[34][43]

The occurrence of planktonic foraminifera across the K–Pg boundary has been studied since the 1930s.[44] Research spurred by the possibility of an impact event at the K–Pg boundary resulted in numerous publications detailing planktonic foraminiferal extinction at the boundary;[34] there is ongoing debate between groups which think the evidence indicates substantial extinction of these species at the K–Pg boundary,[45] and those who think the evidence supports multiple extinctions and expansions through the boundary.[46][47]

Numerous species of benthic foraminifera became extinct during the event, presumably because they depend on organic debris for nutrients, while biomass in the ocean is thought to have decreased. As the marine microbiota recovered, it is thought that increased speciation of benthic foraminifera resulted from the increase in food sources.[34] Phytoplankton recovery in the early Paleocene provided the food source to support large benthic foraminiferal assemblages, which are mainly detritus-feeding. Ultimate recovery of the benthic populations occurred over several stages lasting several hundred thousand years into the early Paleocene.[48][49]

Marine invertebrates

Discoscaphites iris ammonite from the Owl Creek Formation (Upper Cretaceous), Owl Creek, Ripley, Mississippi
Discoscaphites iris ammonite from the Owl Creek Formation (Upper Cretaceous), Owl Creek, Ripley, Mississippi

There is significant variation in the fossil record as to the extinction rate of marine invertebrates across the K–Pg boundary. The apparent rate is influenced by a lack of fossil records, rather than extinctions.[34]

Ostracods, a class of small crustaceans that were prevalent in the upper Maastrichtian, left fossil deposits in a variety of locations. A review of these fossils shows that ostracod diversity was lower in the Paleocene than any other time in the Cenozoic. Current research cannot ascertain whether the extinctions occurred prior to, or during, the boundary interval.[50][51]

Approximately 60% of late-Cretaceous Scleractinia coral genera failed to cross the K–Pg boundary into the Paleocene. Further analysis of the coral extinctions shows that approximately 98% of colonial species, ones that inhabit warm, shallow tropical waters, became extinct. The solitary corals, which generally do not form reefs and inhabit colder and deeper (below the photic zone) areas of the ocean were less impacted by the K–Pg boundary. Colonial coral species rely upon symbiosis with photosynthetic algae, which collapsed due to the events surrounding the K–Pg boundary,[52][53] but the use of data from coral fossils to support K–Pg extinction and subsequent Paleocene recovery, must be weighed against the changes that occurred in coral ecosystems through the K–Pg boundary.[34]

The numbers of cephalopod, echinoderm, and bivalve genera exhibited significant diminution after the K–Pg boundary. Most species of brachiopods, a small phylum of marine invertebrates, survived the K–Pg extinction event and diversified during the early Paleocene.[34]

Rudist bivalves from the Late Cretaceous of the Omani Mountains, United Arab Emirates. Scale bar is 10 mm.
Rudist bivalves from the Late Cretaceous of the Omani Mountains, United Arab Emirates. Scale bar is 10 mm.

Except for nautiloids (represented by the modern order Nautilida) and coleoids (which had already diverged into modern octopodes, squids, and cuttlefish) all other species of the molluscan class Cephalopoda became extinct at the K–Pg boundary. These included the ecologically significant belemnoids, as well as the ammonoids, a group of highly diverse, numerous, and widely distributed shelled cephalopods. Researchers have pointed out that the reproductive strategy of the surviving nautiloids, which rely upon few and larger eggs, played a role in outsurviving their ammonoid counterparts through the extinction event. The ammonoids utilized a planktonic strategy of reproduction (numerous eggs and planktonic larvae), which would have been devastated by the K–Pg extinction event. Additional research has shown that subsequent to this elimination of ammonoids from the global biota, nautiloids began an evolutionary radiation into shell shapes and complexities theretofore known only from ammonoids.[54][55]

Approximately 35% of echinoderm genera became extinct at the K–Pg boundary, although taxa that thrived in low-latitude, shallow-water environments during the late Cretaceous had the highest extinction rate. Mid-latitude, deep-water echinoderms were much less affected at the K–Pg boundary. The pattern of extinction points to habitat loss, specifically the drowning of carbonate platforms, the shallow-water reefs in existence at that time, by the extinction event.[56]

Other invertebrate groups, including rudists (reef-building clams) and inoceramids (giant relatives of modern scallops), also became extinct at the K–Pg boundary.[57][58]

Fish

There are fossil records of jawed fishes across the K–Pg boundary, which provide good evidence of extinction patterns of these classes of marine vertebrates. While the deep-sea realm was able to remain seemingly unaffected, there was an equal loss between the open marine apex predators and the durophagous demersal feeders on the continental shelf. Within cartilaginous fish, approximately 7 out of the 41 families of neoselachians (modern sharks, skates, and rays) disappeared after this event and batoids (skates and rays) lost nearly all the identifiable species, while more than 90% of teleost fish (bony fish) families survived.[59][60]

In the Maastrichtian age, 28 shark families and 13 batoid families thrived, of which 25 and 9, respectively, survived the K–T boundary event. Forty-seven of all neoselachian genera cross the K–T boundary, with 85% being sharks. Batoids display with 15%, a comparably low survival rate.[59][61] Among elasmobranchs, those species that inhabited higher latitudes and lived pelagic lifestyles were more likely to survive, whereas epibenthic lifestyles and durophagy were strongly associated with the likelihood of perishing during the extinction event.[62]

There is evidence of a mass extinction of bony fishes at a fossil site immediately above the K–Pg boundary layer on Seymour Island near Antarctica, apparently precipitated by the K–Pg extinction event;[63] the marine and freshwater environments of fishes mitigated the environmental effects of the extinction event.[64]

Terrestrial invertebrates

Insect damage to the fossilized leaves of flowering plants from fourteen sites in North America was used as a proxy for insect diversity across the K–Pg boundary and analyzed to determine the rate of extinction. Researchers found that Cretaceous sites, prior to the extinction event, had rich plant and insect-feeding diversity. During the early Paleocene, flora were relatively diverse with little predation from insects, even 1.7 million years after the extinction event.[65][66]

Terrestrial plants

There is overwhelming evidence of global disruption of plant communities at the K–Pg boundary.[26][67][33] Extinctions are seen both in studies of fossil pollen, and fossil leaves.[26] In North America, the data suggests massive devastation and mass extinction of plants at the K–Pg boundary sections, although there were substantial megafloral changes before the boundary.[26][68] In North America, approximately 57% of plant species became extinct. In high southern hemisphere latitudes, such as New Zealand and Antarctica, the mass die-off of flora caused no significant turnover in species, but dramatic and short-term changes in the relative abundance of plant groups.[65][69] Another line of evidence of a major floral extinction is that the divergence rate of subviral pathogens of angiosperms sharply decreased, which indicates an enormous reduction in the number of flowering plants.[70]

Due to the wholesale destruction of plants at the K–Pg boundary, there was a proliferation of saprotrophic organisms, such as fungi, that do not require photosynthesis and use nutrients from decaying vegetation. The dominance of fungal species lasted only a few years while the atmosphere cleared and plenty of organic matter to feed on was present. Once the atmosphere cleared, photosynthetic organisms, initially ferns and other ground-level plants, returned.[71] In some regions, the Paleocene recovery of plants began with recolonizations by fern species, represented as a fern spike in the geologic record; this same pattern of fern recolonization was observed after the 1980 Mount St. Helens eruption.[72] Just two species of fern appear to have dominated the landscape for centuries after the event.[73]

Polyploidy appears to have enhanced the ability of flowering plants to survive the extinction, probably because the additional copies of the genome such plants possessed allowed them to more readily adapt to the rapidly changing environmental conditions that followed the impact.[74]

Fungi

While it appears that many fungi were wiped out at the K-Pg boundary, it is worth noting that evidence has been found indicating that some fungal species thrived in the years after the extinction event. Microfossils from that period indicate a great increase in fungal spores, long before the resumption of plentiful fern spores in the recovery after the impact. Monoporisporites and hypha are almost exclusive microfossils for a short span during and after the iridium boundary. These saprophytes would not need sunlight, allowing them to survive during a period when the atmosphere was likely clogged with dust and sulfur aerosols.[71]

The proliferation of fungi has occurred after several extinction events, including the Permian–Triassic extinction event, the largest known mass extinction in Earth's history, with up to 96% of all species suffering extinction.[75]

Amphibians

There is limited evidence for extinction of amphibians at the K–Pg boundary. A study of fossil vertebrates across the K–Pg boundary in Montana concluded that no species of amphibian became extinct.[76] Yet there are several species of Maastrichtian amphibian, not included as part of this study, which are unknown from the Paleocene. These include the frog Theatonius lancensis[77] and the albanerpetontid Albanerpeton galaktion;[78] therefore, some amphibians do seem to have become extinct at the boundary. The relatively low levels of extinction seen among amphibians probably reflect the low extinction rates seen in freshwater animals.[37]

Non-archosaurs

Turtles

More than 80% of Cretaceous turtle species passed through the K–Pg boundary. All six turtle families in existence at the end of the Cretaceous survived into the Paleogene and are represented by living species.[79]

Lepidosauria

The living non-archosaurian reptile taxa, lepidosaurians (snakes, lizards and tuataras), survived across the K–Pg boundary.[34]

The rhynchocephalians were a widespread and relatively successful group of lepidosaurians during the early Mesozoic, but began to decline by the mid-Cretaceous, although they were very successful in South America.[80] They are represented today by a single genus (the Tuatara), located exclusively in New Zealand.[81]

Kronosaurus Hunt, a rendering by Dmitry Bogdanov in 2008. Large marine reptiles, including plesiosaurians such as these, became extinct at the end of the Cretaceous.
Kronosaurus Hunt, a rendering by Dmitry Bogdanov in 2008. Large marine reptiles, including plesiosaurians such as these, became extinct at the end of the Cretaceous.

The order Squamata, which is represented today by lizards, snakes and amphisbaenians (worm lizards), radiated into various ecological niches during the Jurassic and was successful throughout the Cretaceous. They survived through the K–Pg boundary and are currently the most successful and diverse group of living reptiles, with more than 6,000 extant species. Many families of terrestrial squamates became extinct at the boundary, such as monstersaurians and polyglyphanodonts, and fossil evidence indicates they suffered very heavy losses in the K–Pg event, only recovering 10 million years after it.[23]

Non-archosaurian marine reptiles

Giant non-archosaurian aquatic reptiles such as mosasaurs and plesiosaurs, which were the top marine predators of their time, became extinct by the end of the Cretaceous.[82][83][84] The ichthyosaurs had disappeared from fossil records before the mass extinction occurred.[85]

Archosaurs

The archosaur clade includes two surviving groups, crocodilians and birds, along with the various extinct groups of non-avian dinosaurs and pterosaurs.[86]

Crocodyliforms

Ten families of crocodilians or their close relatives are represented in the Maastrichtian fossil records, of which five died out prior to the K–Pg boundary.[87] Five families have both Maastrichtian and Paleocene fossil representatives. All of the surviving families of crocodyliforms inhabited freshwater and terrestrial environments—except for the Dyrosauridae, which lived in freshwater and marine locations. Approximately 50% of crocodyliform representatives survived across the K–Pg boundary, the only apparent trend being that no large crocodiles survived.[34] Crocodyliform survivability across the boundary may have resulted from their aquatic niche and ability to burrow, which reduced susceptibility to negative environmental effects at the boundary.[64] Jouve and colleagues suggested in 2008 that juvenile marine crocodyliforms lived in freshwater environments as do modern marine crocodile juveniles, which would have helped them survive where other marine reptiles became extinct; freshwater environments were not so strongly affected by the K–Pg extinction event as marine environments were.[88]

Pterosaurs

Two families of pterosaurs, Azhdarchidae and Nyctosauridae, were definitely present in the Maastrichtian, and they likely became extinct at the K–Pg boundary. Several other pterosaur lineages may have been present during the Maastrichtian, such as the ornithocheirids, pteranodontids, a possible tapejarid, a possible thalassodromid and a basal toothed taxon of uncertain affinities, though they are represented by fragmentary remains that are difficult to assign to any given group.[89][90] While this was occurring, modern birds were undergoing diversification; traditionally it was thought that they replaced archaic birds and pterosaur groups, possibly due to direct competition, or they simply filled empty niches,[64][91][92] but there is no correlation between pterosaur and avian diversities that are conclusive to a competition hypothesis,[93] and small pterosaurs were present in the Late Cretaceous.[94] At least some niches previously held by birds were reclaimed by pterosaurs prior to the K–Pg event.[95]

Birds

Most paleontologists regard birds as the only surviving dinosaurs (see Origin of birds). It is thought that all non-avian theropods became extinct, including then-flourishing groups such as enantiornithines and hesperornithiforms.[96] Several analyses of bird fossils show divergence of species prior to the K–Pg boundary, and that duck, chicken, and ratite bird relatives coexisted with non-avian dinosaurs.[97] Large collections of bird fossils representing a range of different species provide definitive evidence for the persistence of archaic birds to within 300,000 years of the K–Pg boundary. The absence of these birds in the Paleogene is evidence that a mass extinction of archaic birds took place there.[22]

The most successful and dominant group of avialans, enantiornithes, were wiped out. Only a small fraction of ground and water-dwelling Cretaceous bird species survived the impact, giving rise to today's birds.[22][98] The only bird group known for certain to have survived the K–Pg boundary is the Aves.[22] Avians may have been able to survive the extinction as a result of their abilities to dive, swim, or seek shelter in water and marshlands. Many species of avians can build burrows, or nest in tree holes, or termite nests, all of which provided shelter from the environmental effects at the K–Pg boundary. Long-term survival past the boundary was assured as a result of filling ecological niches left empty by extinction of non-avian dinosaurs.[64] The open niche space and relative scarcity of predators following the K-Pg extinction allowed for adaptive radiation of various avian groups. Ratites, for example, rapidly diversified in the early Paleogene and are believed to have convergently developed flightlessness at least three to six times, often fulfilling the niche space for large herbivores once occupied by non-avian dinosaurs.[30][99][100]

Non-avian dinosaurs

Tyrannosaurus was among the dinosaurs living on Earth before the extinction.
Tyrannosaurus was among the dinosaurs living on Earth before the extinction.

Excluding a few controversial claims, scientists agree that all non-avian dinosaurs became extinct at the K–Pg boundary. The dinosaur fossil record has been interpreted to show both a decline in diversity and no decline in diversity during the last few million years of the Cretaceous, and it may be that the quality of the dinosaur fossil record is simply not good enough to permit researchers to distinguish between the options.[101] There is no evidence that late Maastrichtian non-avian dinosaurs could burrow, swim, or dive, which suggests they were unable to shelter themselves from the worst parts of any environmental stress that occurred at the K–Pg boundary. It is possible that small dinosaurs (other than birds) did survive, but they would have been deprived of food, as herbivorous dinosaurs would have found plant material scarce and carnivores would have quickly found prey in short supply.[64]

The growing consensus about the endothermy of dinosaurs (see dinosaur physiology) helps to understand their full extinction in contrast with their close relatives, the crocodilians. Ectothermic ("cold-blooded") crocodiles have very limited needs for food (they can survive several months without eating), while endothermic ("warm-blooded") animals of similar size need much more food to sustain their faster metabolism. Thus, under the circumstances of food chain disruption previously mentioned, non-avian dinosaurs died out,[33] while some crocodiles survived. In this context, the survival of other endothermic animals, such as some birds and mammals, could be due, among other reasons, to their smaller needs for food, related to their small size at the extinction epoch.[102]

Whether the extinction occurred gradually or suddenly has been debated, as both views have support from the fossil record. A study of 29 fossil sites in Catalan Pyrenees of Europe in 2010 supports the view that dinosaurs there had great diversity until the asteroid impact, with more than 100 living species.[103] More recent research indicates that this figure is obscured by taphonomic biases and the sparsity of the continental fossil record. The results of this study, which were based on estimated real global biodiversity, showed that between 628 and 1,078 non-avian dinosaur species were alive at the end of the Cretaceous and underwent sudden extinction after the Cretaceous–Paleogene extinction event.[104] Alternatively, interpretation based on the fossil-bearing rocks along the Red Deer River in Alberta, Canada, supports the gradual extinction of non-avian dinosaurs; during the last 10 million years of the Cretaceous layers there, the number of dinosaur species seems to have decreased from about 45 to approximately 12. Other scientists have made the same assessment following their research.[105]

Several researchers support the existence of Paleocene non-avian dinosaurs. Evidence of this existence is based on the discovery of dinosaur remains in the Hell Creek Formation up to 1.3 m (4 ft 3.2 in) above and 40,000 years later than the K–Pg boundary.[106] Pollen samples recovered near a fossilized hadrosaur femur recovered in the Ojo Alamo Sandstone at the San Juan River in Colorado, indicate that the animal lived during the Cenozoic, approximately 64.5 Ma (about 1 million years after the K–Pg extinction event). If their existence past the K–Pg boundary can be confirmed, these hadrosaurids would be considered a dead clade walking.[107] The scientific consensus is that these fossils were eroded from their original locations and then re-buried in much later sediments (also known as reworked fossils).[108]

Choristodere

The choristoderes (semi-aquatic archosauromorphs) survived across the K–Pg boundary[34] but would die out in the early Miocene.[109] Studies on Champsosaurus' palatal teeth suggest that there were dietary changes among the various species across the K–Pg event.[110]

Mammals

All major Cretaceous mammalian lineages, including monotremes (egg-laying mammals), multituberculates, metatherians, eutherians, dryolestoideans,[111] and gondwanatheres[112] survived the K–Pg extinction event, although they suffered losses. In particular, metatherians largely disappeared from North America, and the Asian deltatheroidans became extinct (aside from the lineage leading to Gurbanodelta).[113] In the Hell Creek beds of North America, at least half of the ten known multituberculate species and all eleven metatherians species are not found above the boundary.[101] Multituberculates in Europe and North America survived relatively unscathed and quickly bounced back in the Paleocene, but Asian forms were devastated, never again to represent a significant component of mammalian fauna.[114] A recent study indicates that metatherians suffered the heaviest losses at the K–Pg event, followed by multituberculates, while eutherians recovered the quickest.[115]

Mammalian species began diversifying approximately 30 million years prior to the K–Pg boundary. Diversification of mammals stalled across the boundary.[116] Current research indicates that mammals did not explosively diversify across the K–Pg boundary, despite the ecological niches made available by the extinction of dinosaurs.[117] Several mammalian orders have been interpreted as diversifying immediately after the K–Pg boundary, including Chiroptera (bats) and Cetartiodactyla (a diverse group that today includes whales and dolphins and even-toed ungulates),[117] although recent research concludes that only marsupial orders diversified soon after the K–Pg boundary.[116]

K–Pg boundary mammalian species were generally small, comparable in size to rats; this small size would have helped them find shelter in protected environments. It is postulated that some early monotremes, marsupials, and placentals were semiaquatic or burrowing, as there are multiple mammalian lineages with such habits today. Any burrowing or semiaquatic mammal would have had additional protection from K–Pg boundary environmental stresses.[64]

Discover more about Extinction patterns related topics

Holocene extinction

Holocene extinction

The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event during the Holocene epoch. The extinctions span numerous families of plants and animals, including mammals, birds, reptiles, amphibians, fish, invertebrates, and affecting not just terrestrial species but also large sectors of marine life. With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded. The current rate of extinction of species is estimated at 100 to 1,000 times higher than natural background extinction rates, and is increasing.

Capitanian mass extinction event

Capitanian mass extinction event

The Capitanian mass extinction event, also known as the end-Guadalupian extinction event, the Guadalupian-Lopingian boundary mass extinction, or the pre-Lopingian crisis was an extinction event that predated the end-Permian extinction event. The mass extinction occurred during a period of decreased species richness and increased extinction rates near the end of the Middle Permian, also known as the Guadalupian epoch. It is often called the end-Guadalupian extinction event because of its initial recognition between the Guadalupian and Lopingian series; however, more refined stratigraphic study suggests that extinction peaks in many taxonomic groups occurred within the Guadalupian, in the latter half of the Capitanian age. The extinction event has been argued to have begun around 262 million years ago with the Late Guadalupian crisis, though its most intense pulse occurred 259 million years ago in what is known as the Guadalupian-Lopingian boundary event.

Late Devonian extinction

Late Devonian extinction

The Late Devonian extinction consisted of several extinction events in the Late Devonian Epoch, which collectively represent one of the five largest mass extinction events in the history of life on Earth. The term primarily refers to a major extinction, the Kellwasser event, also known as the Frasnian-Famennian extinction, which occurred around 372 million years ago, at the boundary between the Frasnian stage and the Famennian stage, the last stage in the Devonian Period. Overall, 19% of all families and 50% of all genera became extinct. A second mass extinction called the Hangenberg event, also known as the end-Devonian extinction, occurred 359 million years ago, bringing an end to the Famennian and Devonian, as the world transitioned into the Carboniferous Period.

Animal

Animal

Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres (0.00033 in) to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology.

Genus

Genus

Genus is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus.E.g. Panthera leo (lion) and Panthera onca (jaguar) are two species within the genus Panthera. Panthera is a genus within the family Felidae.

Extinction event

Extinction event

An extinction event is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp change in the diversity and abundance of multicellular organisms. It occurs when the rate of extinction increases with respect to the background extinction rate and the rate of speciation. Estimates of the number of major mass extinctions in the last 540 million years range from as few as five to more than twenty. These differences stem from disagreement as to what constitutes a "major" extinction event, and the data chosen to measure past diversity.

Dinosaur

Dinosaur

Dinosaurs are a diverse group of reptiles of the clade Dinosauria. They first appeared during the Triassic period, between 245 and 233.23 million years ago (mya), although the exact origin and timing of the evolution of dinosaurs is a subject of active research. They became the dominant terrestrial vertebrates after the Triassic–Jurassic extinction event 201.3 mya and their dominance continued throughout the Jurassic and Cretaceous periods. The fossil record shows that birds are feathered dinosaurs, having evolved from earlier theropods during the Late Jurassic epoch, and are the only dinosaur lineage known to have survived the Cretaceous–Paleogene extinction event approximately 66 mya. Dinosaurs can therefore be divided into avian dinosaurs—birds—and the extinct non-avian dinosaurs, which are all dinosaurs other than birds.

Europe

Europe

Europe is a continent comprising the westernmost peninsulas of Eurasia, located entirely in the Northern Hemisphere and mostly in the Eastern Hemisphere. It shares the continental landmass of Afro-Eurasia with both Africa and Asia. It is bordered by the Arctic Ocean to the north, the Atlantic Ocean to the west, the Mediterranean Sea to the south, and Asia to the east. Europe is commonly considered to be separated from Asia by the watershed of the Ural Mountains, the Ural River, the Caspian Sea, the Greater Caucasus, the Black Sea and the waterways of the Turkish Straits.

Africa

Africa

Africa is the world's second-largest and second-most populous continent, after Asia in both aspects. At about 30.3 million km2 including adjacent islands, it covers 20% of Earth's land area and 6% of its total surface area. With 1.4 billion people as of 2021, it accounts for about 18% of the world's human population. Africa's population is the youngest amongst all the continents; the median age in 2012 was 19.7, when the worldwide median age was 30.4. Despite a wide range of natural resources, Africa is the least wealthy continent per capita and second-least wealthy by total wealth, behind Oceania. Scholars have attributed this to different factors including geography, climate, tribalism, colonialism, the Cold War, neocolonialism, lack of democracy, and corruption. Despite this low concentration of wealth, recent economic expansion and the large and young population make Africa an important economic market in the broader global context.

Antarctica

Antarctica

Antarctica is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean, it contains the geographic South Pole. Antarctica is the fifth-largest continent, being about 40% larger than Europe, and has an area of 14,200,000 km2 (5,500,000 sq mi). Most of Antarctica is covered by the Antarctic ice sheet, with an average thickness of 1.9 km (1.2 mi).

Alaska

Alaska

Alaska is a U.S. state on the northwest extremity of North America. A semi-exclave of the U.S., it borders British Columbia and the Yukon in Canada to the east, and it shares a western maritime border in the Bering Strait with the Russian Federation's Chukotka Autonomous Okrug. To the north are the Chukchi and Beaufort Seas of the Arctic Ocean, and the Pacific Ocean lies to the south and southwest.

China

China

China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and borders fourteen countries by land, the most of any country in the world, tied with Russia. With an area of approximately 9.6 million square kilometres (3,700,000 sq mi), it is the world's third largest country by total land area. The country consists of 22 provinces, five autonomous regions, four municipalities, and two special administrative regions. The national capital is Beijing, and the most populous city and largest financial center is Shanghai.

Evidence

North American fossils

In North American terrestrial sequences, the extinction event is best represented by the marked discrepancy between the rich and relatively abundant late-Maastrichtian pollen record and the post-boundary fern spike.[67] A highly informative sequence of dinosaur-bearing rocks from the K–Pg boundary is found in western North America, particularly the late Maastrichtian-age Hell Creek Formation of Montana.[118] Comparison with the older Judith River Formation (Montana) and Dinosaur Park Formation (Alberta), which both date from approximately 75 Ma, provides information on the changes in dinosaur populations over the last 10 million years of the Cretaceous. These fossil beds are geographically limited, covering only part of one continent.[101]

The middle–late Campanian formations show a greater diversity of dinosaurs than any other single group of rocks. The late Maastrichtian rocks contain the largest members of several major clades: Tyrannosaurus, Ankylosaurus, Pachycephalosaurus, Triceratops, and Torosaurus, which suggests food was plentiful immediately prior to the extinction.[119]

Plant fossils illustrate the reduction in plant species across the K–Pg boundary. In the sediments below the K–Pg boundary the dominant plant remains are angiosperm pollen grains, but the boundary layer contains little pollen and is dominated by fern spores.[120] More usual pollen levels gradually resume above the boundary layer. This is reminiscent of areas blighted by modern volcanic eruptions, where the recovery is led by ferns, which are later replaced by larger angiosperm plants.[121] A study of ossilized fish bones found at Tanis in North Dakota suggests that the Cretaceous-Paleogene mass extinction happened during the Northern Hemisphere spring.[122][123][124]

Marine fossils

The mass extinction of marine plankton appears to have been abrupt and right at the K–Pg boundary.[125] Ammonite genera became extinct at or near the K–Pg boundary; there was a smaller and slower extinction of ammonite genera prior to the boundary associated with a late Cretaceous marine regression. The gradual extinction of most inoceramid bivalves began well before the K–Pg boundary, and a small, gradual reduction in ammonite diversity occurred throughout the very late Cretaceous.[126]

Further analysis shows that several processes were in progress in the late Cretaceous seas and partially overlapped in time, then ended with the abrupt mass extinction.[126] The diversity of marine life decreased when the climate near the K–Pg boundary increased in temperature. The temperature increased about three to four degrees very rapidly between 65.4 and 65.2 million years ago, which is very near the time of the extinction event. Not only did the climate temperature increase, but the water temperature decreased, causing a drastic decrease in marine diversity.[127]

Megatsunamis

The scientific consensus is that the asteroid impact at the K–Pg boundary left megatsunami deposits and sediments around the area of the Caribbean Sea and Gulf of Mexico, from the colossal waves created by the impact.[128] These deposits have been identified in the La Popa basin in northeastern Mexico,[129] platform carbonates in northeastern Brazil,[130] in Atlantic deep-sea sediments,[131] and in the form of the thickest-known layer of graded sand deposits, around 100 m (330 ft), in the Chicxulub crater itself, directly above the shocked granite ejecta. The megatsunami has been estimated at more than 100 m (330 ft) tall, as the asteroid fell into relatively shallow seas; in deep seas it would have been 4.6 km (2.9 mi) tall.[132]

Fossils in sedimentary rocks deposited during the impact

Fossiliferous sedimentary rocks deposited during the K–Pg impact have been found in the Gulf of Mexico area, including tsunami wash deposits carrying remains of a mangrove-type ecosystem, evidence that after the impact water sloshed back and forth repeatedly in the Gulf of Mexico, and dead fish left in shallow water but not disturbed by scavengers.[133][134][135][136][137]

Discover more about Evidence related topics

Hell Creek Formation

Hell Creek Formation

The Hell Creek Formation is an intensively studied division of mostly Upper Cretaceous and some lower Paleocene rocks in North America, named for exposures studied along Hell Creek, near Jordan, Montana. The formation stretches over portions of Montana, North Dakota, South Dakota, and Wyoming. In Montana, the Hell Creek Formation overlies the Fox Hills Formation. The site of Pompeys Pillar National Monument is a small isolated section of the Hell Creek Formation. In 1966, the Hell Creek Fossil Area was designated as a National Natural Landmark by the National Park Service.

Montana

Montana

Montana is a state in the Mountain West division of the Western United States. It is bordered by Idaho to the west, North Dakota and South Dakota to the east, Wyoming to the south, and the Canadian provinces of Alberta, British Columbia, and Saskatchewan to the north. It is the fourth-largest state by area, the eighth-least populous state, and the third-least densely populated state. Its state capital is Helena, while the largest city is Billings. The western half of Montana contains numerous mountain ranges, while the eastern half is characterized by western prairie terrain and badlands, with smaller mountain ranges found throughout the state. The state has a reputation for a libertarian bent in popular opinion and policy.

Judith River Formation

Judith River Formation

The Judith River Formation is a fossil-bearing geologic formation in Montana, and is part of the Judith River Group. It dates to the Late Cretaceous, between 79 and 75.3 million years ago, corresponding to the "Judithian" land vertebrate age. It was laid down during the same time period as portions of the Two Medicine Formation of Montana and the Oldman Formation of Alberta. It is an historically important formation, explored by early American paleontologists such as Edward Drinker Cope, who named several dinosaurs from scrappy remains found here on his 1876 expedition. Modern work has found nearly complete skeletons of the hadrosaurid Brachylophosaurus.

Dinosaur Park Formation

Dinosaur Park Formation

The Dinosaur Park Formation is the uppermost member of the Belly River Group, a major geologic unit in southern Alberta. It was deposited during the Campanian stage of the Late Cretaceous, between about 76.5 and 74.4 million years ago. It was deposited in alluvial and coastal plain environments, and it is bounded by the nonmarine Oldman Formation below it and the marine Bearpaw Formation above it.

Alberta

Alberta

Alberta is one of the thirteen provinces and territories of Canada. It is part of Western Canada and is one of the three prairie provinces. Alberta is bordered by British Columbia to the west, Saskatchewan to the east, the Northwest Territories (NWT) to the north, and the U.S. state of Montana to the south. It is one of the only two landlocked provinces in Canada. The eastern part of the province is occupied by the Great Plains, while the western part borders the Rocky Mountains. The province has a predominantly continental climate but experiences quick temperature changes due to air aridity. Seasonal temperature swings are less pronounced in western Alberta due to occasional Chinook winds.

Ankylosaurus

Ankylosaurus

Ankylosaurus is a genus of armored dinosaur. Its fossils have been found in geological formations dating to the very end of the Cretaceous Period, about 68–66 million years ago, in western North America, making it among the last of the non-avian dinosaurs. It was named by Barnum Brown in 1908; it is monotypic, containing only A. magniventris. The generic name means "fused" or "bent lizard", and the specific name means "great belly". A handful of specimens have been excavated to date, but a complete skeleton has not been discovered. Though other members of Ankylosauria are represented by more extensive fossil material, Ankylosaurus is often considered the archetypal member of its group, despite having some unusual features.

Pachycephalosaurus

Pachycephalosaurus

Pachycephalosaurus is a genus of pachycephalosaurid dinosaurs. The type species, P. wyomingensis, is the only known species, but some researchers argue that there might be a second species, P. spinifer. It lived during the Late Cretaceous Period of what is now North America. Remains have been excavated in Montana, South Dakota, Wyoming, and Alberta. It was a herbivorous creature which is primarily known from a single skull and a few extremely thick skull roofs, at 22 centimetres thick. More complete fossils have been found in recent years. Pachycephalosaurus was among the last non-avian dinosaurs before the Cretaceous–Paleogene extinction event. The genus Tylosteus has been synonymized with Pachycephalosaurus, as have the genera Stygimoloch and Dracorex in recent studies.

Tanis (fossil site)

Tanis (fossil site)

Tanis is a site of paleontological interest in southwestern North Dakota, United States. Tanis is part of the heavily studied Hell Creek Formation, a group of rocks spanning four states in North America renowned for many significant fossil discoveries from the Upper Cretaceous and lower Paleocene. Tanis is a significant site because it appears to record the events from the first minutes until a few hours after the impact of the giant Chicxulub asteroid in extreme detail. This impact, which struck the Gulf of Mexico 66.043 million years ago, wiped out all non-avian dinosaurs and many other species. The extinction event caused by this impact began the Cenozoic, in which mammals - including humans - would eventually come to dominate life on Earth.

North Dakota

North Dakota

North Dakota is a U.S. state in the Upper Midwest, named after the indigenous Dakota Sioux. North Dakota is bordered by the Canadian provinces of Saskatchewan and Manitoba to the north and by the U.S. states of Minnesota to the east, South Dakota to the south, and Montana to the west. It is believed to host the geographic center of North America, Rugby, and is home to the tallest man-made structure in the Western Hemisphere, the KVLY-TV mast.

Megatsunami

Megatsunami

A megatsunami is a very large wave created by a large, sudden displacement of material into a body of water.

Atlantic Ocean

Atlantic Ocean

The Atlantic Ocean is the second-largest of the world's five oceans, with an area of about 106,460,000 km2 (41,100,000 sq mi). It covers approximately 20% of Earth's surface and about 29% of its water surface area. It is known to separate the "Old World" of Africa, Europe, and Asia from the "New World" of the Americas in the European perception of the World.

Mangrove

Mangrove

A mangrove is a shrub or tree that grows in coastal saline or brackish water. The term is also used for tropical coastal vegetation consisting of such species. Mangroves are taxonomically diverse, as a result of convergent evolution in several plant families. They occur worldwide in the tropics and subtropics and even some temperate coastal areas, mainly between latitudes 30° N and 30° S, with the greatest mangrove area within 5° of the equator. Mangrove plant families first appeared during the Late Cretaceous to Paleocene epochs, and became widely distributed in part due to the movement of tectonic plates. The oldest known fossils of mangrove palm date to 75 million years ago.

Duration

The rapidity of the extinction is a controversial issue, because some theories about its causes imply a rapid extinction over a relatively short period (from a few years to a few thousand years), while others imply longer periods. The issue is difficult to resolve because of the Signor–Lipps effect, where the fossil record is so incomplete that most extinct species probably died out long after the most recent fossil that has been found.[138] Scientists have also found very few continuous beds of fossil-bearing rock that cover a time range from several million years before the K–Pg extinction to several million years after it.[34]

The sedimentation rate and thickness of K–Pg clay from three sites suggest rapid extinction, perhaps over a period of less than 10,000 years.[139] At one site in the Denver Basin of Colorado, after the K–Pg boundary layer was deposited, the fern spike lasted approximately 1,000 years, and no more than 71,000 years; at the same location, the earliest appearance of Cenozoic mammals occurred after approximately 185,000 years, and no more than 570,000 years, "indicating rapid rates of biotic extinction and initial recovery in the Denver Basin during this event."[140] Models presented at the annual meeting of the American Geophysical Union demonstrated that the period of global darkness following the Chicxulub impact would have persisted in the Hell Creek Formation nearly 2 years.[141]

Discover more about Duration related topics

Signor–Lipps effect

Signor–Lipps effect

The Signor–Lipps effect is a paleontological principle proposed in 1982 by Philip W. Signor and Jere H. Lipps which states that, since the fossil record of organisms is never complete, neither the first nor the last organism in a given taxon will be recorded as a fossil. The Signor–Lipps effect is often applied specifically to cases of the youngest-known fossils of a taxon failing to represent the last appearance of an organism. The inverse, regarding the oldest-known fossils failing to represent the first appearance of a taxon, is alternatively called the Jaanusson effect after researcher Valdar Jaanusson, or the Sppil–Rongis effect.

Species

Species

In biology, a species is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined.

Denver Basin

Denver Basin

The Denver Basin, variously referred to as the Julesburg Basin, Denver-Julesburg Basin, or the D-J Basin, is a geologic structural basin centered in eastern Colorado in the United States, but extending into southeast Wyoming, western Nebraska, and western Kansas. It underlies the Denver-Aurora Metropolitan Area on the eastern side of the Rocky Mountains.

Colorado

Colorado

Colorado is a state in the Mountain West subregion of the Western United States. It encompasses most of the Southern Rocky Mountains, as well as the northeastern portion of the Colorado Plateau and the western edge of the Great Plains. Colorado is the eighth most extensive and 21st most populous U.S. state. The 2020 United States census enumerated the population of Colorado at 5,773,714, an increase of 14.80% since the 2010 census.

Fern spike

Fern spike

In paleontology, a fern spike is the occurrence of unusually high spore abundance of ferns in the fossil record, usually immediately after an extinction event. The spikes are believed to represent a large, temporary increase in the number of ferns relative to other terrestrial plants after the extinction or thinning of the latter. Fern spikes are strongly associated with the Cretaceous–Paleogene extinction event, although they have been found in other points of time and space such as at the Triassic-Jurassic boundary. Outside the fossil record, fern spikes have been observed to occur in response to local extinction events, such as the 1980 Mount St. Helens eruption.

Cenozoic

Cenozoic

The Cenozoic is Earth's current geological era, representing the last 66 million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configuration of continents. It is the latest of three geological eras since complex life evolved, preceded by the Mesozoic and Paleozoic. It started with the Cretaceous–Paleogene extinction event, when many species, including the non-avian dinosaurs, became extinct in an event attributed by most experts to the impact of a large asteroid or other celestial body, the Chicxulub impactor.

American Geophysical Union

American Geophysical Union

The American Geophysical Union (AGU) is a 501(c)(3) nonprofit organization of Earth, atmospheric, ocean, hydrologic, space, and planetary scientists and enthusiasts that according to their website includes 130,000 people. AGU's activities are focused on the organization and dissemination of scientific information in the interdisciplinary and international fields within the Earth and space sciences. The geophysical sciences involve four fundamental areas: atmospheric and ocean sciences; solid-Earth sciences; hydrologic sciences; and space sciences. The organization's headquarters is located on Florida Avenue in Washington, D.C.

Hell Creek Formation

Hell Creek Formation

The Hell Creek Formation is an intensively studied division of mostly Upper Cretaceous and some lower Paleocene rocks in North America, named for exposures studied along Hell Creek, near Jordan, Montana. The formation stretches over portions of Montana, North Dakota, South Dakota, and Wyoming. In Montana, the Hell Creek Formation overlies the Fox Hills Formation. The site of Pompeys Pillar National Monument is a small isolated section of the Hell Creek Formation. In 1966, the Hell Creek Fossil Area was designated as a National Natural Landmark by the National Park Service.

Chicxulub impact

Evidence for impact

Luis, left, and his son Walter Alvarez, right, at the K-T Boundary in Gubbio, Italy, 1981
Luis, left, and his son Walter Alvarez, right, at the K-T Boundary in Gubbio, Italy, 1981
class=notpageimage| Location of Chicxulub crater, Mexico
Cretaceous–Paleogene extinction event
Location of Chicxulub crater, Mexico

In 1980, a team of researchers consisting of Nobel Prize-winning physicist Luis Alvarez, his son, geologist Walter Alvarez, and chemists Frank Asaro and Helen Michel discovered that sedimentary layers found all over the world at the Cretaceous–Paleogene boundary contain a concentration of iridium many times greater than normal (30, 160, and 20 times in three sections originally studied). Iridium is extremely rare in Earth's crust because it is a siderophile element which mostly sank along with iron into Earth's core during planetary differentiation. As iridium remains more abundant in most asteroids and comets, the Alvarez team suggested that an asteroid struck the Earth at the time of the K–Pg boundary.[12] There were earlier speculations on the possibility of an impact event,[142] but this was the first hard evidence.[12]

The K–Pg boundary exposure in Trinidad Lake State Park, in the Raton Basin of Colorado, shows an abrupt change from dark- to light-colored rock.
The K–Pg boundary exposure in Trinidad Lake State Park, in the Raton Basin of Colorado, shows an abrupt change from dark- to light-colored rock.

This hypothesis was viewed as radical when first proposed, but additional evidence soon emerged. The boundary clay was found to be full of minute spherules of rock, crystallized from droplets of molten rock formed by the impact.[143] Shocked quartz[c] and other minerals were also identified in the K–Pg boundary.[144][145] The identification of giant tsunami beds along the Gulf Coast and the Caribbean provided more evidence,[146] and suggested that the impact may have occurred nearby—as did the discovery that the K–Pg boundary became thicker in the southern United States, with meter-thick beds of debris occurring in northern New Mexico.[26]

Radar topography reveals the 180 km (112 mi)-wide ring of the Chicxulub crater.
Radar topography reveals the 180 km (112 mi)-wide ring of the Chicxulub crater.

Further research identified the giant Chicxulub crater, buried under Chicxulub on the coast of Yucatán, as the source of the K–Pg boundary clay. Identified in 1990[14] based on work by geophysicist Glen Penfield in 1978, the crater is oval, with an average diameter of roughly 180 km (110 mi), about the size calculated by the Alvarez team.[147]

In a 2013 paper, Paul Renne of the Berkeley Geochronology Center dated the impact at 66.043±0.011 million years ago, based on argon–argon dating. He further posits that the mass extinction occurred within 32,000 years of this date.[148]

In 2007, it was proposed that the impactor belonged to the Baptistina family of asteroids.[149] This link has been doubted, though not disproved, in part because of a lack of observations of the asteroid and its family.[150] It was reported in 2009 that 298 Baptistina does not share the chemical signature of the K–Pg impactor.[151] Further, a 2011 Wide-field Infrared Survey Explorer (WISE) study of reflected light from the asteroids of the family estimated their break-up at 80 Ma, giving them insufficient time to shift orbits and impact Earth by 66 Ma.[152]

Additional evidence for the impact event is found at the Tanis site in southwestern North Dakota, United States.[153] Tanis is part of the heavily studied Hell Creek Formation, a group of rocks spanning four states in North America renowned for many significant fossil discoveries from the Upper Cretaceous and lower Paleocene.[154] Tanis is an extraordinary and unique site because it appears to record the events from the first minutes until a few hours after the impact of the giant Chicxulub asteroid in extreme detail.[155][156] Amber from the site has been reported to contain microtektites matching those of the Chicxulub impact event.[157] Some researchers question the interpretation of the findings at the site or are skeptical of the team leader, Robert DePalma, who had not yet received his Ph.D. in geology at the time of the discovery and whose commercial activities have been regarded with suspicion.[158]

Effects of impact

Artistic impression of the asteroid slamming into tropical, shallow seas of the sulfur-rich Yucatán Peninsula in what is today Southeast Mexico.[159] The aftermath of this immense asteroid collision, which occurred approximately 66 million years ago, is believed to have caused the mass extinction of non-avian dinosaurs and many other species on Earth.[159] The impact spewed hundreds of billions of tons of sulfur into the atmosphere, producing a worldwide blackout and freezing temperatures which persisted for at least a decade.[159]
Artistic impression of the asteroid slamming into tropical, shallow seas of the sulfur-rich Yucatán Peninsula in what is today Southeast Mexico.[159] The aftermath of this immense asteroid collision, which occurred approximately 66 million years ago, is believed to have caused the mass extinction of non-avian dinosaurs and many other species on Earth.[159] The impact spewed hundreds of billions of tons of sulfur into the atmosphere, producing a worldwide blackout and freezing temperatures which persisted for at least a decade.[159]

In March 2010, an international panel of 41 scientists reviewed 20 years of scientific literature and endorsed the asteroid hypothesis, specifically the Chicxulub impact, as the cause of the extinction, ruling out other theories such as massive volcanism. They had determined that a 10-to-15-kilometer (6 to 9 mi) asteroid hurtled into Earth at Chicxulub on Mexico's Yucatán Peninsula. The collision would have released the same energy as 100 teratonnes of TNT (420 zettajoules)—more than a billion times the energy of the atomic bombings of Hiroshima and Nagasaki.[8] The Chicxulub impact caused a global catastrophe. Some of the phenomena were brief occurrences immediately following the impact, but there were also long-term geochemical and climatic disruptions that devastated the ecology.[160][125][161]

The re-entry of ejecta into Earth's atmosphere included a brief (hours-long) but intense pulse of infrared radiation, cooking exposed organisms.[64] This is debated, with opponents arguing that local ferocious fires, probably limited to North America, fall short of global firestorms. This is the "Cretaceous–Paleogene firestorm debate". A paper in 2013 by a prominent modeler of nuclear winter suggested that, based on the amount of soot in the global debris layer, the entire terrestrial biosphere might have burned, implying a global soot-cloud blocking out the sun and creating an impact winter effect.[160] If widespread fires occurred this would have exterminated the most vulnerable organisms that survived the period immediately after the impact.[162]

Aside from the hypothesized fire and/or impact winter effects, the impact would have created a dust cloud that blocked sunlight for up to a year, inhibiting photosynthesis.[125] Freezing temperatures probably lasted for at least three years.[161] At Brazos section, the sea surface temperature dropped as much as 7 °C (13 °F) for decades after the impact.[163] It would take at least ten years for such aerosols to dissipate, and would account for the extinction of plants and phytoplankton, and subsequently herbivores and their predators. Creatures whose food chains were based on detritus would have a reasonable chance of survival.[102][125]

The asteroid hit an area of carbonate rock containing a large amount of combustible hydrocarbons and sulphur,[164] much of which was vaporized, thereby injecting sulfuric acid aerosols into the stratosphere, which might have reduced sunlight reaching the Earth's surface by more than 50%, and would have caused acid rain.[125][165] The resulting acidification of the oceans would kill many organisms that grow shells of calcium carbonate.[165] According to models of the Hell Creek Formation, the onset of global darkness would have reached its maximum in only a few weeks and likely lasted upwards of 2 years.[141]

Beyond extinction impacts, the event also caused more general changes of flora and fauna such as giving rise to neotropical rainforest biomes like the Amazonia, replacing species composition and structure of local forests during ~6 million years of recovery to former levels of plant diversity.[166][167]

The river bed at the Moody Creek Mine, 7 Mile Creek / Waimatuku, Dunollie, New Zealand contains evidence of a devastating event on terrestrial plant communities at the Cretaceous–Paleogene boundary, confirming the severity and global nature of the event.[67]
The river bed at the Moody Creek Mine, 7 Mile Creek / Waimatuku, Dunollie, New Zealand contains evidence of a devastating event on terrestrial plant communities at the Cretaceous–Paleogene boundary, confirming the severity and global nature of the event.[67]

2016 Chicxulub crater drilling project

In 2016, a scientific drilling project obtained deep rock-core samples from the peak ring around the Chicxulub impact crater. The discoveries confirmed that the rock comprising the peak ring had been shocked by immense pressure and melted in just minutes from its usual state into its present form. Unlike sea-floor deposits, the peak ring was made of granite originating much deeper in the earth, which had been ejected to the surface by the impact. Gypsum is a sulfate-containing rock usually present in the shallow seabed of the region; it had been almost entirely removed, vaporized into the atmosphere. Further, the event was immediately followed by a megatsunami[d] sufficient to lay down the largest known layer of sand separated by grain size directly above the peak ring. The impactor was large enough to create a 190-kilometer-wide (120 mi) peak ring, to melt, shock, and eject deep granite, to create colossal water movements, and to eject an immense quantity of vaporized rock and sulfates into the atmosphere, where they would have persisted for several years. This worldwide dispersal of dust and sulfates would have affected climate catastrophically, led to large temperature drops, and devastated the food chain.[168][169]

Discover more about Chicxulub impact related topics

Cretaceous–Paleogene boundary

Cretaceous–Paleogene boundary

The Cretaceous–Paleogene (K–Pg) boundary, formerly known as the Cretaceous–Tertiary (K–T) boundary, is a geological signature, usually a thin band of rock containing much more iridium than other bands. The K–Pg boundary marks the end of the Cretaceous Period, the last period of the Mesozoic Era, and marks the beginning of the Paleogene Period, the first period of the Cenozoic Era. Its age is usually estimated at around 66 million years, with radiometric dating yielding a more precise age of 66.043 ± 0.011 Ma.

Alvarez hypothesis

Alvarez hypothesis

The Alvarez hypothesis posits that the mass extinction of the non-avian dinosaurs and many other living things during the Cretaceous–Paleogene extinction event was caused by the impact of a large asteroid on the Earth. Prior to 2013, it was commonly cited as having happened about 65 million years ago, but Renne and colleagues (2013) gave an updated value of 66 million years. Evidence indicates that the asteroid fell in the Yucatán Peninsula, at Chicxulub, Mexico. The hypothesis is named after the father-and-son team of scientists Luis and Walter Alvarez, who first suggested it in 1980. Shortly afterwards, and independently, the same was suggested by Dutch paleontologist Jan Smit.

Chicxulub crater

Chicxulub crater

The Chicxulub crater is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore near the community of Chicxulub, after which it is named. It was formed slightly over 66 million years ago when a large asteroid, about ten kilometers in diameter, struck Earth. The crater is estimated to be 180 kilometers in diameter and 20 kilometers in depth. It is the second largest confirmed impact structure on Earth, and the only one whose peak ring is intact and directly accessible for scientific research.

Luis Walter Alvarez

Luis Walter Alvarez

Luis Walter Alvarez was an American experimental physicist, inventor, and professor who was awarded the Nobel Prize in Physics in 1968 for his discovery of resonance states in particle physics using the hydrogen bubble chamber. In 2007 the American Journal of Physics commented, "Luis Alvarez was one of the most brilliant and productive experimental physicists of the twentieth century."

Gubbio

Gubbio

Gubbio is an Italian town and comune in the far northeastern part of the Italian province of Perugia (Umbria). It is located on the lowest slope of Mt. Ingino, a small mountain of the Apennines.

Nobel Prize

Nobel Prize

The Nobel Prizes are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfred Nobel was a Swedish chemist, engineer, and industrialist most famously known for the invention of dynamite. He died in 1896. In his will, he bequeathed all of his "remaining realisable assets" to be used to establish five prizes which became known as "Nobel Prizes." Nobel Prizes were first awarded in 1901.

Frank Asaro

Frank Asaro

Frank Asaro was an Emeritus Senior Scientist at the Lawrence Berkeley National Laboratory associated with the University of California at Berkeley. He is best known as the chemist who discovered the iridium anomaly in the Cretaceous–Paleogene boundary layer that led the team of Luis Alvarez, Walter Alvarez, Frank Asaro, and Helen Michel to propose the Asteroid-Impact Theory, which postulates that an asteroid hit the Earth sixty-five million years ago and caused mass extinction during the age of the dinosaurs.

Concentration

Concentration

In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. The concentration can refer to any kind of chemical mixture, but most frequently refers to solutes and solvents in solutions. The molar (amount) concentration has variants, such as normal concentration and osmotic concentration.

Iridium

Iridium

Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, it is considered the second-densest naturally occurring metal with a density of 22.56 g/cm3 (0.815 lb/cu in) as defined by experimental X-ray crystallography. It is one of the most corrosion-resistant metals, even at temperatures as high as 2,000 °C (3,630 °F). However, corrosion-resistance is not quantifiable in absolute terms; although only certain molten salts and halogens are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable, whereas gold dust is not flammable but can be attacked by substances that iridium resists, such as aqua regia.

Crust (geology)

Crust (geology)

In geology, the crust is the outermost solid shell of a rocky planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase.

Iron

Iron

Iron is a chemical element with symbol Fe and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, just ahead of oxygen, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust, being mainly deposited by meteorites in its metallic state, with its ores also being found there.

Planetary differentiation

Planetary differentiation

In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior. The process of planetary differentiation is mediated by partial melting with heat from radioactive isotope decay and planetary accretion. Planetary differentiation has occurred on planets, dwarf planets, the asteroid 4 Vesta, and natural satellites.

Alternative hypotheses

Although the concurrence of the end-Cretaceous extinctions with the Chicxulub asteroid impact strongly supports the impact hypothesis, some scientists continue to support other contributing causes: volcanic eruptions, climate change, sea level change, and other impact events. The end-Cretaceous event is the only mass extinction known to be associated with an impact, and other large impacts, such as the Manicouagan Reservoir impact, do not coincide with any noticeable extinction events.[170]

Deccan Traps

Before 2000, arguments that the Deccan Traps flood basalts caused the extinction were usually linked to the view that the extinction was gradual, as the flood basalt events were thought to have started around 68 Mya and lasted more than 2 million years. The most recent evidence shows that the traps erupted over a period of only 800,000 years spanning the K–Pg boundary, and therefore may be responsible for the extinction and the delayed biotic recovery thereafter.[171]

The Deccan Traps could have caused extinction through several mechanisms, including the release of dust and sulfuric aerosols into the air, which might have blocked sunlight and thereby reduced photosynthesis in plants. In addition, Deccan Trap volcanism might have resulted in carbon dioxide emissions that increased the greenhouse effect when the dust and aerosols cleared from the atmosphere.[172][173] The increased carbon dioxide emissions also caused acid rain, evidenced by increased mercury deposition due to increased solubility of mercury compounds in more acidic water.[174]

In the years when the Deccan Traps hypothesis was linked to a slower extinction, Luis Alvarez (d. 1988) replied that paleontologists were being misled by sparse data. While his assertion was not initially well-received, later intensive field studies of fossil beds lent weight to his claim. Eventually, most paleontologists began to accept the idea that the mass extinctions at the end of the Cretaceous were largely or at least partly due to a massive Earth impact. Even Walter Alvarez acknowledged that other major changes may have contributed to the extinctions.[175]

Combining these theories, some geophysical models suggest that the impact contributed to the Deccan Traps. These models, combined with high-precision radiometric dating, suggest that the Chicxulub impact could have triggered some of the largest Deccan eruptions, as well as eruptions at active volcanoes anywhere on Earth.[176][177]

Multiple impact event

Other crater-like topographic features have also been proposed as impact craters formed in connection with Cretaceous–Paleogene extinction. This suggests the possibility of near-simultaneous multiple impacts, perhaps from a fragmented asteroidal object similar to the Shoemaker–Levy 9 impact with Jupiter. In addition to the 180 km (110 mi) Chicxulub crater, there is the 24 km (15 mi) Boltysh crater in Ukraine (65.17±0.64 Ma), the 20 km (12 mi) Silverpit crater in the North Sea (59.5±14.5 Ma) possibly formed by bolide impact, and the controversial and much larger 600 km (370 mi) Shiva crater. Any other craters that might have formed in the Tethys Ocean would since have been obscured by the northward tectonic drift of Africa and India.[178][179][180][181]

Maastrichtian sea-level regression

There is clear evidence that sea levels fell in the final stage of the Cretaceous by more than at any other time in the Mesozoic era. In some Maastrichtian stage rock layers from various parts of the world, the later layers are terrestrial; earlier layers represent shorelines and the earliest layers represent seabeds. These layers do not show the tilting and distortion associated with mountain building, therefore the likeliest explanation is a regression, a drop in sea level. There is no direct evidence for the cause of the regression, but the currently accepted explanation is that the mid-ocean ridges became less active and sank under their own weight.[34][182]

A severe regression would have greatly reduced the continental shelf area, the most species-rich part of the sea, and therefore could have been enough to cause a marine mass extinction, but this change would not have caused the extinction of the ammonites. The regression would also have caused climate changes, partly by disrupting winds and ocean currents and partly by reducing the Earth's albedo and increasing global temperatures.[126]

Marine regression also resulted in the loss of epeiric seas, such as the Western Interior Seaway of North America. The loss of these seas greatly altered habitats, removing coastal plains that ten million years before had been host to diverse communities such as are found in rocks of the Dinosaur Park Formation. Another consequence was an expansion of freshwater environments, since continental runoff now had longer distances to travel before reaching oceans. While this change was favorable to freshwater vertebrates, those that prefer marine environments, such as sharks, suffered.[101]

Multiple causes

Proponents of multiple causation view the suggested single causes as either too small to produce the vast scale of the extinction, or not likely to produce its observed taxonomic pattern.[101] In a review article, J. David Archibald and David E. Fastovsky discussed a scenario combining three major postulated causes: volcanism, marine regression, and extraterrestrial impact. In this scenario, terrestrial and marine communities were stressed by the changes in, and loss of, habitats. Dinosaurs, as the largest vertebrates, were the first affected by environmental changes, and their diversity declined. At the same time, particulate materials from volcanism cooled and dried areas of the globe. Then an impact event occurred, causing collapses in photosynthesis-based food chains, both in the already-stressed terrestrial food chains and in the marine food chains.

Based on studies at Seymour Island in Antarctica, Sierra Petersen and colleagues argue that there were two separate extinction events near the Cretaceous–Paleogene boundary, with one correlating to Deccan Trap volcanism and one correlated with the Chicxulub impact.[183] The team analyzed combined extinction patterns using a new clumped isotope temperature record from a hiatus-free, expanded K–Pg boundary section. They documented a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. They suggest local warming may have been amplified due to the simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change.[183]

Discover more about Alternative hypotheses related topics

Extinction event

Extinction event

An extinction event is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp change in the diversity and abundance of multicellular organisms. It occurs when the rate of extinction increases with respect to the background extinction rate and the rate of speciation. Estimates of the number of major mass extinctions in the last 540 million years range from as few as five to more than twenty. These differences stem from disagreement as to what constitutes a "major" extinction event, and the data chosen to measure past diversity.

Manicouagan Reservoir

Manicouagan Reservoir

Manicouagan Reservoir is an annular lake in central Quebec, Canada, covering an area of 1,942 km2 (750 sq mi). The lake island in its centre is known as René-Levasseur Island, and its highest point is Mount Babel. The structure was created 214 (±1) million years ago, in the Late Triassic, by the impact of a meteorite 5 km (3 mi) in diameter. The lake and island are clearly seen from space and are sometimes called the "eye of Quebec". The lake has a volume of 137.9 km3 (33.1 cu mi).

Deccan Traps

Deccan Traps

The Deccan Traps is a large igneous province of west-central India. It is one of the largest volcanic features on Earth, taking the form of a large shield volcano. It consists of numerous layers of solidified flood basalt that together are more than about 2,000 metres (6,600 ft) thick, cover an area of about 500,000 square kilometres (200,000 sq mi), and have a volume of about 1,000,000 cubic kilometres (200,000 cu mi). Originally, the Deccan Traps may have covered about 1,500,000 square kilometres (600,000 sq mi), with a correspondingly larger original volume. This volume overlies the Archean age Indian Shield, which is likely the lithology the province passed through during eruption. The province is commonly divided into four subprovinces: the main Deccan, the Malwa Plateau, the Mandla Lobe, and the Saurashtran Plateau.

Flood basalt

Flood basalt

A flood basalt is the result of a giant volcanic eruption or series of eruptions that covers large stretches of land or the ocean floor with basalt lava. Many flood basalts have been attributed to the onset of a hotspot reaching the surface of the earth via a mantle plume. Flood basalt provinces such as the Deccan Traps of India are often called traps, after the Swedish word trappa, due to the characteristic stairstep geomorphology of many associated landscapes.

Comet Shoemaker–Levy 9

Comet Shoemaker–Levy 9

Comet Shoemaker–Levy 9 broke apart in July 1992 and collided with Jupiter in July 1994, providing the first direct observation of an extraterrestrial collision of Solar System objects. This generated a large amount of coverage in the popular media, and the comet was closely observed by astronomers worldwide. The collision provided new information about Jupiter and highlighted its possible role in reducing space debris in the inner Solar System.

Jupiter

Jupiter

Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, and slightly less than one one-thousandth the mass of the Sun. Jupiter is the third brightest natural object in the Earth's night sky after the Moon and Venus, and it has been observed since prehistoric times. It was named after Jupiter, the chief deity of ancient Roman religion.

Boltysh crater

Boltysh crater

The Boltysh crater or Bovtyshka crater is a buried impact crater in the Kirovohrad Oblast of Ukraine, near the village of Bovtyshka. The crater is 24 kilometres (15 mi) in diameter and its age of 65.39 ± 0.14/0.16 million years, based on argon-argon dating techniques, less than 1 million years younger than Chicxulub crater in Mexico and the Cretaceous–Paleogene boundary. The Chicxulub impact is believed to have caused the mass extinction at the end of the Cretaceous period, which included the extinction of the non-avian dinosaurs. The Boltysh crater is currently thought to be unrelated to the Chicxulub impact, and to have not generated major global environmental effects.

North Sea

North Sea

The North Sea lies between Great Britain, Denmark, Norway, Germany, the Netherlands, Belgium and France. An epeiric sea on the European continental shelf, it connects to the Atlantic Ocean through the English Channel in the south and the Norwegian Sea in the north. It is more than 970 kilometres (600 mi) long and 580 kilometres (360 mi) wide, covering 570,000 square kilometres (220,000 sq mi).

Bolide

Bolide

A bolide is normally taken to mean an exceptionally bright meteor, but the term is subject to more than one definition, according to context. It may refer to any large crater-forming body, or to one that explodes in the atmosphere. It can be a synonym for a fireball, sometimes specific to those with an apparent magnitude of −14 or brighter.

Orogeny

Orogeny

Orogeny is a mountain building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

Continental shelf

Continental shelf

A continental shelf is a portion of a continent that is submerged under an area of relatively shallow water, known as a shelf sea. Much of these shelves were exposed by drops in sea level during glacial periods. The shelf surrounding an island is known as an insular shelf.

Albedo

Albedo

Albedo is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation.

Recovery and diversification

An artist's rendering of Thescelosaurus during the K–Pg mass extinction. It survived by burrowing, but would soon die of starvation.
An artist's rendering of Thescelosaurus during the K–Pg mass extinction. It survived by burrowing, but would soon die of starvation.

The K–Pg extinction had a profound effect on the evolution of life on Earth. The elimination of dominant Cretaceous groups allowed other organisms to take their place, causing a remarkable amount of species diversification during the Paleogene Period.[29] The most striking example is the replacement of dinosaurs by mammals. After the K–Pg extinction, mammals evolved rapidly to fill the niches left vacant by the dinosaurs. Also significant, within the mammalian genera, new species were approximately 9.1% larger after the K–Pg boundary.[184]

Other groups also substantially diversified. Based on molecular sequencing and fossil dating, many species of birds (the Neoaves group in particular) appeared to radiate after the K–Pg boundary.[30][185] They even produced giant, flightless forms, such as the herbivorous Gastornis and Dromornithidae, and the predatory Phorusrhacidae. The extinction of Cretaceous lizards and snakes may have led to the evolution of modern groups such as iguanas, monitor lizards, and boas.[23] The diversification of crown group snakes has been linked to the iotic recovery in the aftermath of the K-Pg extinction event.[186] On land, giant boid and enormous madtsoiid snakes appeared, and in the seas, giant sea snakes evolved. Teleost fish diversified explosively,[31] filling the niches left vacant by the extinction. Groups appearing in the Paleocene and Eocene epochs include billfish, tunas, eels, and flatfish. Major changes are also seen in Paleogene insect communities. Many groups of ants were present in the Cretaceous, but in the Eocene ants became dominant and diverse, with larger colonies. Butterflies diversified as well, perhaps to take the place of leaf-eating insects wiped out by the extinction. The advanced mound-building termites, Termitidae, also appear to have risen in importance.[187]

It is thought that body sizes of placental mammalian survivors evolutionarily increased first, allowing them to fill niches after the extinctions, with brain sizes increasing later in the Eocene.[188][189]

Evidence from the Salamanca Formation suggests that biotic recovery was more rapid in the Southern Hemisphere than in the Northern Hemisphere.[190]

Discover more about Recovery and diversification related topics

Thescelosaurus

Thescelosaurus

Thescelosaurus was a genus of small neornithischian dinosaur that appeared at the very end of the Late Cretaceous period in North America. It was a member of the last dinosaurian fauna before the Cretaceous–Paleogene extinction event around 66 million years ago. The preservation and completeness of many of its specimens indicate that it may have preferred to live near streams.

Timeline of the evolutionary history of life

Timeline of the evolutionary history of life

The timeline of the evolutionary history of life represents the current scientific theory outlining the major events during the development of life on planet Earth. Dates in this article are consensus estimates based on scientific evidence, mainly fossils.

Adaptive radiation

Adaptive radiation

In evolutionary biology, adaptive radiation is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new environmental niches. Starting with a single ancestor, this process results in the speciation and phenotypic adaptation of an array of species exhibiting different morphological and physiological traits. The prototypical example of adaptive radiation is finch speciation on the Galapagos, but examples are known from around the world.

Neoaves

Neoaves

Neoaves is a clade that consists of all modern birds with the exception of Paleognathae and Galloanserae. Almost 95% of the roughly 10,000 known species of extant birds belong to the Neoaves.

Gastornis

Gastornis

Gastornis is an extinct genus of large flightless birds that lived during the mid Paleocene to mid Eocene epochs of the Paleogene period. Fossils have been found in Europe, Asia and North America, with the remains from North America originally assigned to the genus Diatryma.

Dromornithidae

Dromornithidae

Dromornithidae, known as mihirungs and informally as thunder birds or demon ducks, were a clade of large, flightless Australian birds of the Oligocene through Pleistocene Epochs. All are now extinct. They were long classified in Struthioniformes, but are now usually classified as galloanseres.

Phorusrhacidae

Phorusrhacidae

Phorusrhacids, colloquially known as terror birds, are an extinct family of large carnivorous flightless birds that were among the largest apex predators in South America during the Cenozoic era; their conventionally accepted temporal range covers from 53 to 0.1 million years (Ma) ago.

Madtsoiidae

Madtsoiidae

Madtsoiidae is an extinct family of mostly Gondwanan snakes with a fossil record extending from early Cenomanian to late Pleistocene strata located in South America, Africa, India, Australia and Southern Europe. Madtsoiidae include very primitive snakes, which like extant boas and pythons would likely dispatch their prey by constriction. Genera include Madtsoia, one of the longest snakes known, at an estimated 10 metres (33 ft), and the Australian Wonambi and Yurlunggur. As a grouping of basal forms the composition and even the validity of Madtsoiidae is in a state of flux as new pertinent finds are described, with more recent evidence suggesting that it is paraphyletic as previously defined.

Termitidae

Termitidae

Termitidae is the largest family of termites consisting of 2,105 described species of which are commonly known as the higher termites. They are evolutionarily the most specialised termite group, with their highly compartmentalized hindgut lacking the flagellated protozoans common to "lower termites", which are instead replaced by bacteria. Whereas lower termites are restricted mostly to woody tissue, higher termites have diverse diets consisting of wood, grass, leaf litter, fungi, lichen, faeces, humus and soil. Around 60% of species rely on soil-feeding alone.

Brain size

Brain size

The size of the brain is a frequent topic of study within the fields of anatomy, biological anthropology, animal science and evolution. Brain size is sometimes measured by weight and sometimes by volume. Neuroimaging intelligence testing can be used to study the volumetric measurements of the brain. Regarding "intelligence testing", a question that has been frequently investigated is the relation of brain size to intelligence. This question is controversial and will be addressed further in the section on intelligence. The measure of brain size and cranial capacity is not just important to humans, but to all mammals.

Eocene

Eocene

The Eocene Epoch is a geological epoch that lasted from about 56 to 33.9 million years ago (mya). It is the second epoch of the Paleogene Period in the modern Cenozoic Era. The name Eocene comes from the Ancient Greek ἠώς and καινός and refers to the "dawn" of modern ('new') fauna that appeared during the epoch.

Salamanca Formation

Salamanca Formation

The Salamanca Formation is a geologic formation in the Golfo San Jorge Basin of central Patagonia that yields well-preserved, well-dated fossils from the early Paleocene. Studies of these fossils are providing new data on plant and animal diversity following the end-Cretaceous extinction event.

Source: "Cretaceous–Paleogene extinction event", Wikipedia, Wikimedia Foundation, (2023, March 24th), https://en.wikipedia.org/wiki/Cretaceous–Paleogene_extinction_event.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
Explanatory notes
  1. ^ The abbreviation is derived from the juxtaposition of K, the common abbreviation for the Cretaceous, which in turn originates from the correspondent German term Kreide, and Pg, which is the abbreviation for the Paleogene.
  2. ^ The former designation includes the term 'Tertiary' (abbreviated as T), which is now discouraged as a formal geochronological unit by the International Commission on Stratigraphy.[1]
  3. ^ Shocked minerals have their internal structure deformed, and are created by intense pressures as in nuclear blasts and meteorite impacts.
  4. ^ A megatsunami is a massive movement of sea waters, which can reach inland tens or hundreds of kilometers.
Citations
  1. ^ Ogg, James G.; Gradstein, F. M.; Gradstein, Felix M. (2004). A geologic time scale 2004. Cambridge, UK: Cambridge University Press. ISBN 978-0-521-78142-8.
  2. ^ "International Chronostratigraphic Chart". International Commission on Stratigraphy. 2015. Archived from the original on May 30, 2014. Retrieved 29 April 2015.
  3. ^ Fortey, Richard (1999). Life: A natural history of the first four billion years of life on Earth. Vintage. pp. 238–260. ISBN 978-0-375-70261-7.
  4. ^ Muench, David; Muench, Marc; Gilders, Michelle A. (2000). Primal Forces. Portland, Oregon: Graphic Arts Center Publishing. p. 20. ISBN 978-1-55868-522-2.
  5. ^ Jones, Heather L.; Westerhold, Thomas; Birch, Heather; Hull, Pincelli; Negra, M. Hédi; Röhl, Ursula; Sepúlveda, Julio; Vellekoop, Johan; Whiteside, Jessica H.; Alegret, Laia; Henehan, Michael; Robinson, Libby; Van Dijk, Joep; Bralower, Timothy (18 January 2023). "Stratigraphy of the Cretaceous/Paleogene (K/Pg) boundary at the Global Stratotype Section and Point (GSSP) in El Kef, Tunisia: New insights from the El Kef Coring Project". Geological Society of America Bulletin. doi:10.1130/B36487.1. Retrieved 23 March 2023.
  6. ^ Irizarry, Kayla M.; Witts, James T.; Garb, Matthew P.; Rashkova, Anastasia; Landman, Neil H.; Patzkowsky, Mark E. (15 January 2023). "Faunal and stratigraphic analysis of the basal Cretaceous-Paleogene (K-Pg) boundary event deposits, Brazos River, Texas, USA". Palaeogeography, Palaeoclimatology, Palaeoecology. 610. doi:10.1016/j.palaeo.2022.111334. Retrieved 23 March 2023.
  7. ^ Ferreira da Silva, Luiza Carine; Santos, Alessandra; Fauth, Gerson; Manríquez, Leslie Marcela Elizabeth; Kochhann, Karlos Guilherme Diemer; Do Monte Guerra, Rodrigo; Horodyski, Rodrigo Scalise; Villegas-Martín, Jorge; Ribeiro da Silva, Rafael (April 2023). "High-latitude Cretaceous–Paleogene transition: New paleoenvironmental and paleoclimatic insights from Seymour Island, Antarctica". Marine Micropaleontology. 180. doi:10.1016/j.marmicro.2023.102214. Retrieved 23 March 2023.
  8. ^ a b c d Schulte, Peter; et al. (5 March 2010). "The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary" (PDF). Science. 327 (5970): 1214–1218. Bibcode:2010Sci...327.1214S. doi:10.1126/science.1177265. PMID 20203042. S2CID 2659741.
  9. ^ Alvarez, Luis (10 March 1981). "The Asteroid and the Dinosaur (Nova S08E08, 1981)". IMDB. PBS-WGBH/Nova. Retrieved 12 June 2020.
  10. ^ Sleep, Norman H.; Lowe, Donald R. (9 April 2014). "Scientists reconstruct ancient impact that dwarfs dinosaur-extinction blast". American Geophysical Union. Archived from the original on 1 January 2017. Retrieved 30 December 2016.
  11. ^ Amos, Jonathan (15 May 2017). "Dinosaur asteroid hit 'worst possible place'". BBC News Online. Archived from the original on 18 March 2018. Retrieved 16 March 2018.
  12. ^ a b c Alvarez, Luis W.; Alvarez, Walter; Asaro, F.; Michel, H. V. (1980). "Extraterrestrial cause for the Cretaceous–Tertiary extinction" (PDF). Science. 208 (4448): 1095–1108. Bibcode:1980Sci...208.1095A. doi:10.1126/science.208.4448.1095. PMID 17783054. S2CID 16017767. Archived from the original (PDF) on 2019-08-24.
  13. ^ Vellekoop, J.; Sluijs, A.; Smit, J.; et al. (May 2014). "Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary". Proceedings of the National Academy of Sciences of the United States of America. 111 (21): 7537–41. Bibcode:2014PNAS..111.7537V. doi:10.1073/pnas.1319253111. PMC 4040585. PMID 24821785.
  14. ^ a b Hildebrand, A. R.; Penfield, G. T.; et al. (1991). "Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán peninsula, Mexico". Geology. 19 (9): 867–871. Bibcode:1991Geo....19..867H. doi:10.1130/0091-7613(1991)0192.3.co;2.
  15. ^ Joel, Lucas (21 October 2019). "The dinosaur-killing asteroid acidified the ocean in a flash: the Chicxulub event was as damaging to life in the oceans as it was to creatures on land, a study shows". The New York Times. Archived from the original on 24 October 2019. Retrieved 24 October 2019.
  16. ^ Henehan, Michael J. (21 October 2019). "Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact". Proceedings of the National Academy of Sciences of the United States of America. 116 (45): 22500–22504. Bibcode:2019PNAS..11622500H. doi:10.1073/pnas.1905989116. PMC 6842625. PMID 31636204.
  17. ^ Keller, Gerta (2012). "The Cretaceous–Tertiary mass extinction, Chicxulub impact, and Deccan volcanism. Earth and life". In Talent, John (ed.). Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. Springer. pp. 759–793. ISBN 978-90-481-3427-4.
  18. ^ Bosker, Bianca (September 2018). "The nastiest feud in science: A Princeton geologist has endured decades of ridicule for arguing that the fifth extinction was caused not by an asteroid but by a series of colossal volcanic eruptions. But she's reopened that debate". The Atlantic Monthly. Archived from the original on February 21, 2019. Retrieved 2019-01-30.
  19. ^ Joel, Lucas (16 January 2020). "Asteroid or Volcano? New Clues to the Dinosaurs' Demise". The New York Times. Retrieved 17 January 2020.
  20. ^ Hull, Pincelli M.; Bornemann, André; Penman, Donald E. (17 January 2020). "On impact and volcanism across the Cretaceous-Paleogene boundary". Science. 367 (6475): 266–272. Bibcode:2020Sci...367..266H. doi:10.1126/science.aay5055. hdl:20.500.11820/483a2e77-318f-476a-8fec-33a45fbdc90b. PMID 31949074. S2CID 210698721. Retrieved 17 January 2020.
  21. ^ Chiarenza, Alfio Alessandro; Farnsworth, Alexander; Mannion, Philip D.; Lunt, Daniel J.; Valdes, Paul J.; Morgan, Joanna V.; Allison, Peter A. (2020-07-21). "Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction". Proceedings of the National Academy of Sciences of the United States of America. 117 (29): 17084–17093. Bibcode:2020PNAS..11717084C. doi:10.1073/pnas.2006087117. ISSN 0027-8424. PMC 7382232. PMID 32601204.
  22. ^ a b c d Longrich, Nicholas R.; Tokaryk, Tim; Field, Daniel J. (2011). "Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary". Proceedings of the National Academy of Sciences of the United States of America. 108 (37): 15253–15257. Bibcode:2011PNAS..10815253L. doi:10.1073/pnas.1110395108. PMC 3174646. PMID 21914849.
  23. ^ a b c d Longrich, N. R.; Bhullar, B.-A. S.; Gauthier, J. A. (December 2012). "Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary". Proceedings of the National Academy of Sciences of the United States of America. 109 (52): 21396–401. Bibcode:2012PNAS..10921396L. doi:10.1073/pnas.1211526110. PMC 3535637. PMID 23236177.
  24. ^ Labandeira, C. C.; Johnson, K. R.; et al. (2002). "Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound". In Hartman, J.H.; Johnson, K.R.; Nichols, D.J. (eds.). The Hell Creek formation and the Cretaceous-Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous. Geological Society of America. pp. 297–327. ISBN 978-0-8137-2361-7.
  25. ^ Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P. (2013). "First evidence for a massive extinction event affecting bees close to the K-T boundary". PLOS ONE. 8 (10): e76683. Bibcode:2013PLoSO...876683R. doi:10.1371/journal.pone.0076683. PMC 3806776. PMID 24194843.
  26. ^ a b c d e f Nichols, D. J.; Johnson, K. R. (2008). Plants and the K–T Boundary. Cambridge, England: Cambridge University Press.
  27. ^ Friedman, M. (2009). "Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction". Proceedings of the National Academy of Sciences. Washington, DC. 106 (13): 5218–5223. Bibcode:2009PNAS..106.5218F. doi:10.1073/pnas.0808468106. PMC 2664034. PMID 19276106.
  28. ^ a b Jablonski, D.; Chaloner, W. G. (1994). "Extinctions in the fossil record (and discussion)". Philosophical Transactions of the Royal Society of London B. 344 (1307): 11–17. doi:10.1098/rstb.1994.0045.
  29. ^ a b Alroy, John (1999). "The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation". Systematic Biology. 48 (1): 107–118. doi:10.1080/106351599260472. PMID 12078635.
  30. ^ a b c Feduccia, Alan (1995). "Explosive evolution in Tertiary birds and mammals". Science. 267 (5198): 637–638. Bibcode:1995Sci...267..637F. doi:10.1126/science.267.5198.637. PMID 17745839. S2CID 42829066.
  31. ^ a b Friedman, M. (2010). "Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction". Proceedings of the Royal Society B. 277 (1688): 1675–1683. doi:10.1098/rspb.2009.2177. PMC 2871855. PMID 20133356.
  32. ^ Weishampel, D. B.; Barrett, P. M. (2004). "Dinosaur distribution". In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.). The Dinosauria (2nd ed.). Berkeley, CA: University of California Press. pp. 517–606. ISBN 9780520242098. OCLC 441742117.
  33. ^ a b c Wilf, P.; Johnson, K.R. (2004). "Land plant extinction at the end of the Cretaceous: A quantitative analysis of the North Dakota megafloral record". Paleobiology. 30 (3): 347–368. doi:10.1666/0094-8373(2004)0302.0.CO;2. S2CID 33880578.
  34. ^ a b c d e f g h i j k l m n o p MacLeod, N.; Rawson, P.F.; Forey, P.L.; Banner, F.T.; Boudagher-Fadel, M.K.; Bown, P.R.; Burnett, J.A.; Chambers, P.; Culver, S.; Evans, S.E.; Jeffery, C.; Kaminski, M.A.; Lord, A.R.; Milner, A.C.; Milner, A.R.; Morris, N.; Owen, E.; Rosen, B.R.; Smith, A.B.; Taylor, P.D.; Urquhart, E.; Young, J.R. (1997). "The Cretaceous–Tertiary biotic transition". Journal of the Geological Society. 154 (2): 265–292. Bibcode:1997JGSoc.154..265M. doi:10.1144/gsjgs.154.2.0265. S2CID 129654916.
  35. ^ a b Sheehan Peter M, Hansen Thor A (1986). "Detritus feeding as a buffer to extinction at the end of the Cretaceous" (PDF). Geology. 14 (10): 868–870. Bibcode:1986Geo....14..868S. doi:10.1130/0091-7613(1986)142.0.CO;2. S2CID 54860261. Archived from the original (PDF) on 2019-02-27.
  36. ^ Aberhan, M.; Weidemeyer, S.; Kieesling, W.; Scasso, R.A.; Medina, F.A. (2007). "Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections". Geology. 35 (3): 227–230. Bibcode:2007Geo....35..227A. doi:10.1130/G23197A.1.
  37. ^ a b Sheehan, Peter M.; Fastovsky, D. E. (1992). "Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana". Geology. 20 (6): 556–560. Bibcode:1992Geo....20..556S. doi:10.1130/0091-7613(1992)0202.3.CO;2.
  38. ^ Kauffman, E. (2004). "Mosasaur predation on upper Cretaceous nautiloids and ammonites from the United States Pacific Coast" (PDF). PALAIOS. 19 (1): 96–100. Bibcode:2004Palai..19...96K. doi:10.1669/0883-1351(2004)0192.0.CO;2. S2CID 130690035.
  39. ^ Pospichal, J. J. (1996). "Calcareous nannofossils and clastic sediments at the Cretaceous–Tertiary boundary, northeastern Mexico". Geology. 24 (3): 255–258. Bibcode:1996Geo....24..255P. doi:10.1130/0091-7613(1996)0242.3.CO;2.
  40. ^ Bown, P. (2005). "Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary". Geology. 33 (8): 653–656. Bibcode:2005Geo....33..653B. doi:10.1130/G21566.1.
  41. ^ Bambach, R. K.; Knoll, A. H.; Wang, S. C. (2004). "Origination, extinction, and mass depletions of marine diversity" (PDF). Paleobiology. 30 (4): 522–542. doi:10.1666/0094-8373(2004)0302.0.CO;2. S2CID 17279135.
  42. ^ Gedl, P. (2004). "Dinoflagellate cyst record of the deep-sea Cretaceous-Tertiary boundary at Uzgru, Carpathian Mountains, Czech Republic". Special Publications of the Geological Society of London. 230 (1): 257–273. Bibcode:2004GSLSP.230..257G. doi:10.1144/GSL.SP.2004.230.01.13. S2CID 128771186.
  43. ^ MacLeod, N. (1998). "Impacts and marine invertebrate extinctions". Special Publications of the Geological Society of London. 140 (1): 217–246. Bibcode:1998GSLSP.140..217M. doi:10.1144/GSL.SP.1998.140.01.16. S2CID 129875020.
  44. ^ Courtillot, V (1999). Evolutionary Catastrophes: The science of mass extinction. Cambridge, UK: Cambridge University Press. p. 2. ISBN 978-0-521-58392-3.
  45. ^ Arenillas, I.; Arz, J. A.; Molina, E.; Dupuis, C. (2000). "An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: Catastrophic mass extinction and possible survivorship". Micropaleontology. 46 (1): 31–49. JSTOR 1486024.
  46. ^ MacLeod, N (1996). "Nature of the Cretaceous-Tertiary (K–T) planktonic foraminiferal record: Stratigraphic confidence intervals, Signor–Lipps effect, and patterns of survivorship". In MacLeod, N.; Keller, G. (eds.). Cretaceous–Tertiary Mass Extinctions: Biotic and environmental changes. W.W. Norton. pp. 85–138. ISBN 978-0-393-96657-2.
  47. ^ Keller, G.; Adatte, T.; Stinnesbeck, W.; Rebolledo-Vieyra, _; Fucugauchi, J. U.; Kramar, U.; Stüben, D. (2004). "Chicxulub impact predates the K–T boundary mass extinction". Proceedings of the National Academy of Sciences of the United States of America. Washington, DC. 101 (11): 3753–3758. Bibcode:2004PNAS..101.3753K. doi:10.1073/pnas.0400396101. PMC 374316. PMID 15004276.
  48. ^ Galeotti, S.; Bellagamba, M.; Kaminski, M. A.; Montanari, A. (2002). "Deep-sea benthic foraminiferal recolonisation following a volcaniclastic event in the lower Campanian of the Scaglia Rossa Formation (Umbria-Marche Basin, central Italy)". Marine Micropaleontology. 44 (1–2): 57–76. Bibcode:2002MarMP..44...57G. doi:10.1016/s0377-8398(01)00037-8.{{cite journal}}: CS1 maint: uses authors parameter (link) Retrieved 2007-08-19.
  49. ^ Kuhnt, W.; Collins, E. S. (1996). "8. Cretaceous to Paleogene benthic foraminifers from the Iberia abyssal plain". Proceedings of the Ocean Drilling Program, Scientific Results. Proceedings of the Ocean Drilling Program. 149: 203–216. doi:10.2973/odp.proc.sr.149.254.1996.
  50. ^ Coles, G. P.; Ayress, M. A.; Whatley, R. C. (1990). "A comparison of North Atlantic and 20 Pacific deep-sea Ostracoda". In Whatley, R. C.; Maybury, C. (eds.). Ostracoda and Global Events. Chapman & Hall. pp. 287–305. ISBN 978-0-442-31167-4.
  51. ^ Brouwers, E. M.; de Deckker, P. (1993). "Late Maastrichtian and Danian Ostracode Faunas from Northern Alaska: Reconstructions of Environment and Paleogeography". PALAIOS. 8 (2): 140–154. Bibcode:1993Palai...8..140B. doi:10.2307/3515168. JSTOR 3515168.
  52. ^ Vescsei, A.; Moussavian, E. (1997). "Paleocene reefs on the Maiella Platform margin, Italy: An example of the effects of the cretaceous/tertiary boundary events on reefs and carbonate platforms". Facies. 36 (1): 123–139. doi:10.1007/BF02536880. S2CID 129296658.
  53. ^ Rosen, B. R.; Turnšek, D. (1989). Jell A; Pickett JW (eds.). "Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary". Memoir of the Association of Australasian Paleontology. Proceedings of the Fifth International Symposium on Fossil Cnidaria including Archaeocyatha and Spongiomorphs. Brisbane, Queensland (8): 355–370.
  54. ^ Ward, P. D.; Kennedy, W. J.; MacLeod, K. G.; Mount, J. F. (1991). "Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain)". Geology. 19 (12): 1181–1184. Bibcode:1991Geo....19.1181W. doi:10.1130/0091-7613(1991)0192.3.CO;2.
  55. ^ Harries, P. J.; Johnson, K. R.; Cobban, W. A.; Nichols, D.J. (2002). "Marine Cretaceous-Tertiary boundary section in southwestern South Dakota: Comment and reply". Geology. 30 (10): 954–955. Bibcode:2002Geo....30..954H. doi:10.1130/0091-7613(2002)0302.0.CO;2.{{cite journal}}: CS1 maint: uses authors parameter (link)
  56. ^ Neraudeau, Didier; Thierry, Jacques; Moreau, Pierre (1 January 1997). "Variation in echinoid biodiversity during the Cenomanian-early Turonian transgressive episode in Charentes (France)". Bulletin de la Société Géologique de France. 168 (1): 51–61.
  57. ^ Raup, D. M.; Jablonski, D. (1993). "Geography of end-Cretaceous marine bivalve extinctions". Science. 260 (5110): 971–973. Bibcode:1993Sci...260..971R. doi:10.1126/science.11537491. PMID 11537491.
  58. ^ MacLeod, K. G. (1994). "Extinction of Inoceramid Bivalves in Maastrichtian Strata of the Bay of Biscay Region of France and Spain". Journal of Paleontology. 68 (5): 1048–1066. doi:10.1017/S0022336000026652. S2CID 132641572.
  59. ^ a b Kriwet, Jürgen; Benton, Michael J. (2004). "Neoselachian (Chondrichthyes, Elasmobranchii) Diversity across the Cretaceous–Tertiary Boundary". Palaeogeography, Palaeoclimatology, Palaeoecology. 214 (3): 181–194. Bibcode:2004PPP...214..181K. doi:10.1016/j.palaeo.2004.02.049.
  60. ^ Patterson, C. (1993). "Osteichthyes: Teleostei". In Benton, M. J. (ed.). The Fossil Record. Vol. 2. Springer. pp. 621–656. ISBN 978-0-412-39380-8.
  61. ^ Noubhani, Abdelmajid (2010). "The Selachians' faunas of the Moroccan phosphate deposits and the K-T mass extinctions". Historical Biology. 22 (1–3): 71–77. doi:10.1080/08912961003707349. S2CID 129579498.
  62. ^ Guinot, Guillaume; Condamine, Fabien L. (23 February 2023). "Global impact and selectivity of the Cretaceous-Paleogene mass extinction among sharks, skates, and rays". Science. 379 (6634): 802–806. doi:10.1126/science.abn2080. Retrieved 23 March 2023.
  63. ^ Zinsmeister, W. J. (1 May 1998). "Discovery of fish mortality horizon at the K–T boundary on Seymour Island: Re-evaluation of events at the end of the Cretaceous". Journal of Paleontology. 72 (3): 556–571. doi:10.1017/S0022336000024331. S2CID 132206016.
  64. ^ a b c d e f g Robertson, D. S.; McKenna, M. C.; Toon, O. B.; et al. (2004). "Survival in the first hours of the Cenozoic" (PDF). Geological Society of America Bulletin. 116 (5–6): 760–768. Bibcode:2004GSAB..116..760R. doi:10.1130/B25402.1. S2CID 44010682. Archived from the original (PDF) on 2019-05-07.
  65. ^ a b Labandeira, Conrad C.; Johnson, Kirk R.; Wilf, Peter (2002). "Impact of the terminal Cretaceous event on plant–insect associations". Proceedings of the National Academy of Sciences of the United States of America. 99 (4): 2061–2066. Bibcode:2002PNAS...99.2061L. doi:10.1073/pnas.042492999. PMC 122319. PMID 11854501.
  66. ^ Wilf, P.; Labandeira, C. C.; Johnson, K. R.; Ellis, B. (2006). "Decoupled plant and insect diversity after the end-Cretaceous extinction". Science. 313 (5790): 1112–1115. Bibcode:2006Sci...313.1112W. doi:10.1126/science.1129569. PMID 16931760. S2CID 52801127.
  67. ^ a b c Vajda, Vivi; Raine, J. Ian; Hollis, Christopher J. (2001). "Indication of global deforestation at the Cretaceous–Tertiary boundary by New Zealand fern spike". Science. 294 (5547): 1700–1702. Bibcode:2001Sci...294.1700V. doi:10.1126/science.1064706. PMID 11721051. S2CID 40364945.
  68. ^ Johnson, K. R.; Hickey, L. J. (1991). "Megafloral change across the Cretaceous Tertiary boundary in the northern Great Plains and Rocky Mountains". In Sharpton, V.I.; Ward, P.D. (eds.). Global Catastrophes in Earth History: An interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America. ISBN 978-0-8137-2247-4.
  69. ^ Askin, R.A.; Jacobson, S.R. (1996). "Palynological change across the Cretaceous–Tertiary boundary on Seymour Island, Antarctica: environmental and depositional factors". In Keller, G.; MacLeod, N. (eds.). Cretaceous–Tertiary Mass Extinctions: Biotic and Environmental Changes. W W Norton. ISBN 978-0-393-96657-2.
  70. ^ Bajdek, Piotr (10 May 2019). "Divergence rates of subviral pathogens of angiosperms abruptly decreased at the Cretaceous-Paleogene boundary". Rethinking Ecology. 4: 89–101. doi:10.3897/rethinkingecology.4.33014. Retrieved 23 March 2023.
  71. ^ a b Vajda, Vivi; McLoughlin, Stephen (5 March 2004). "Fungal Proliferation at the Cretaceous-Tertiary Boundary". Science. 303 (5663): 1489. doi:10.1126/science.1093807. PMID 15001770. S2CID 44720346.
  72. ^ Schultz, P. H.; d'Hondt, S. (1996). "Cretaceous–Tertiary (Chicxulub) impact angle and its consequences". Geology. 24 (11): 963–967. Bibcode:1996Geo....24..963S. doi:10.1130/0091-7613(1996)0242.3.CO;2.
  73. ^ Field, Daniel J.; Bercovici, Antoine; Berv, Jacob S.; Dunn, Regan; Fastovsky, David E.; Lyson, Tyler R.; Vajda, Vivi; Gauthier, Jacques A. (May 24, 2018). "Early Evolution of Modern Birds Structured by Global Forest Collapse at the End-Cretaceous Mass Extinction". Current Biology. 28 (11): 1825–1831.e2. doi:10.1016/j.cub.2018.04.062. PMID 29804807. S2CID 44075214. Retrieved 23 March 2023.
  74. ^ Fawcett, Jeffrey A.; Maere, Steven; Van de Peer, Yves (April 2009). "Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event". Proceedings of the National Academy of Sciences of the United States of America. 106 (14): 5737–5742. Bibcode:2009PNAS..106.5737F. doi:10.1073/pnas.0900906106. PMC 2667025. PMID 19325131. Retrieved 23 March 2023.
  75. ^ Visscher, H.; Brinkhuis, H.; Dilcher, D. L.; Elsik, W. C.; Eshet, Y.; Looy, C. V.; Rampino, M. R.; Traverse, A. (5 March 1996). "The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse". Proceedings of the National Academy of Sciences of the United States of America. 93 (5): 2155–2158. Bibcode:1996PNAS...93.2155V. doi:10.1073/pnas.93.5.2155. PMC 39926. PMID 11607638.
  76. ^ Archibald, J. D.; Bryant, L. J. (1990). "Differential Cretaceous–Tertiary extinction of nonmarine vertebrates; evidence from northeastern Montana". In Sharpton, V.L.; Ward, P.D. (eds.). Global Catastrophes in Earth History: an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. Special Paper. Vol. 247. Geological Society of America. pp. 549–562. doi:10.1130/spe247-p549. ISBN 978-0-8137-2247-4.
  77. ^ Estes, R. (1964). "Fossil vertebrates from the late Cretaceous Lance formation, eastern Wyoming". University of California Publications, Department of Geological Sciences. 49: 1–180.
  78. ^ Gardner, J. D. (2000). "Albanerpetontid amphibians from the upper Cretaceous (Campanian and Maastrichtian) of North America". Geodiversitas. 22 (3): 349–388.
  79. ^ Novacek, M. J. (1999). "100 million years of land vertebrate evolution: The Cretaceous-early Tertiary transition". Annals of the Missouri Botanical Garden. 86 (2): 230–258. doi:10.2307/2666178. JSTOR 2666178.
  80. ^ Apesteguía, Sebastián; Novas, Fernando E. (2003). "Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana". Nature. 425 (6958): 609–612. Bibcode:2003Natur.425..609A. doi:10.1038/nature01995. PMID 14534584. S2CID 4425130.
  81. ^ Lutz, D. (2005). Tuatara: A living fossil. DIMI Press. ISBN 978-0-931625-43-5.
  82. ^ D'Hondt, Steven (17 August 2005). "Consequences of the Cretaceous/Paleogene Mass Extinction for Marine Ecosystems". Annual Review of Ecology, Evolution, and Systematics. 36: 295–317. doi:10.1146/annurev.ecolsys.35.021103.105715. S2CID 86073650. Retrieved 21 December 2022.
  83. ^ Chatterjee, S.; Small, B. J. (1989). "New plesiosaurs from the Upper Cretaceous of Antarctica". Geological Society of London. Special Publications. 47 (1): 197–215. Bibcode:1989GSLSP..47..197C. doi:10.1144/GSL.SP.1989.047.01.15. S2CID 140639013.
  84. ^ O'Keefe, F. R. (2001). "A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia)". Acta Zoologica Fennica. 213: 1–63.
  85. ^ Fischer, Valentin; Bardet, Nathalie; Benson, Roger B. J.; Arkhangelsky, Maxim S.; Friedman, Matt (2016). "Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility". Nature Communications. 7 (1): 10825. Bibcode:2016NatCo...710825F. doi:10.1038/ncomms10825. PMC 4786747. PMID 26953824.
  86. ^ "The Great Archosaur Lineage". University of California Museum of Paleontology. Archived from the original on 28 February 2015. Retrieved 18 December 2014.
  87. ^ Brochu, C. A. (2004). "Calibration age and quartet divergence date estimation". Evolution. 58 (6): 1375–1382. doi:10.1554/03-509. PMID 15266985. S2CID 198156470.
  88. ^ Jouve, S.; Bardet, N.; Jalil, N.-E.; Suberbiola, X. P.; Bouya, B.; Amaghzaz, M. (2008). "The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary boundary" (PDF). Journal of Vertebrate Paleontology. 28 (2): 409–421. doi:10.1671/0272-4634(2008)28[409:TOACPP]2.0.CO;2. S2CID 86503283.
  89. ^ Company, J.; Ruiz-Omeñaca, J. I.; Pereda Suberbiola, X. (1999). "A long-necked pterosaur (Pterodactyloidea, Azhdarchidae) from the upper Cretaceous of Valencia, Spain". Geologie en Mijnbouw. 78 (3): 319–333. doi:10.1023/A:1003851316054. S2CID 73638590.
  90. ^ Barrett, P. M.; Butler, R. J.; Edwards, N. P.; Milner, A. R. (2008). "Pterosaur distribution in time and space: an atlas" (PDF). Zitteliana. 28: 61–107. Archived (PDF) from the original on 2017-08-06. Retrieved 2015-08-31.
  91. ^ Slack, K, E; Jones, C M; Ando, T; Harrison, G L; Fordyce, R E; Arnason, U; Penny, D (2006). "Early Penguin Fossils, Plus Mitochondrial Genomes, Calibrate Avian Evolution". Molecular Biology and Evolution. 23 (6): 1144–1155. doi:10.1093/molbev/msj124. PMID 16533822.
  92. ^ Penny, D.; Phillips, M. J. (2004). "The rise of birds and mammals: Are microevolutionary processes sufficient for macroevolution?" (PDF). Trends in Ecology and Evolution. 19 (10): 516–522. doi:10.1016/j.tree.2004.07.015. PMID 16701316.
  93. ^ Butler, Richard J.; Barrett, Paul M.; Nowbath, Stephen; Upchurch, Paul (2009). "Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird / pterosaur competitive replacement". Paleobiology. 35 (3): 432–446. doi:10.1666/0094-8373-35.3.432. S2CID 84324007.
  94. ^ Prondvai, E.; Bodor, E. R.; Ösi, A. (2014). "Does morphology reflect osteohistology-based ontogeny? A case study of Late Cretaceous pterosaur jaw symphyses from Hungary reveals hidden taxonomic diversity" (PDF). Paleobiology. 40 (2): 288–321. doi:10.1666/13030. S2CID 85673254.
  95. ^ Longrich, N. R.; Martill, D. M.; Andres, B. (2018). "Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary". PLOS Biology. 16 (3): e2001663. doi:10.1371/journal.pbio.2001663. PMC 5849296. PMID 29534059.
  96. ^ Hou, L.; Martin, M.; Zhou, Z.; Feduccia, A. (1996). "Early Adaptive Radiation of Birds: Evidence from Fossils from Northeastern China". Science. 274 (5290): 1164–1167. Bibcode:1996Sci...274.1164H. doi:10.1126/science.274.5290.1164. PMID 8895459. S2CID 30639866.
  97. ^ Clarke, J.A.; Tambussi, C.P.; Noriega, J.I.; Erickson, G.M.; Ketcham, R.A. (2005). "Definitive fossil evidence for the extant avian radiation in the Cretaceous" (PDF). Nature. 433 (7023): 305–308. Bibcode:2005Natur.433..305C. doi:10.1038/nature03150. PMID 15662422. S2CID 4354309.
  98. ^ "Primitive birds shared dinosaurs' fate". Science Daily. 20 September 2011. Archived from the original on 24 September 2011. Retrieved 20 September 2011.
  99. ^ Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N. J.; Worthy, T. H.; Wood, J.; Lee, M. S. Y.; Cooper, A. (2014). "Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution". Science. 344 (6186): 989–900. Bibcode:2014Sci...344..898M. doi:10.1126/science.1251981. hdl:2328/35953. PMID 24855267. S2CID 206555952 – via Web of Science.
  100. ^ Yonezawa, Takahiro; Segawa, Takahiro; Mori, Hiroshi; Campos, Paula F.; Hongoh, Yuichi; Endo, Hideki; Akiyoshi, Ayumi; Kohno, Naoki; Nishida, Shin; Wu, Jiaqi; Jin, Haofei (2017). "Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites". Current Biology. 27 (1): 68–77. doi:10.1016/j.cub.2016.10.029. PMID 27989673.
  101. ^ a b c d e David, Archibald; Fastovsky, David (2004). "Dinosaur extinction" (PDF). In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.). The Dinosauria (2nd ed.). Berkeley: University of California Press. pp. 672–684. ISBN 978-0-520-24209-8.
  102. ^ a b Ocampo, A.; Vajda, V.; Buffetaut, E. (2006). "Unravelling the Cretaceous–Paleogene (K–T) turnover, evidence from flora, fauna and geology in biological processes associated with impact events". In Cockell, C.; Gilmour, I.; Koeberl, C. (eds.). Biological Processes Associated with Impact Events. SpringerLink. pp. 197–219. doi:10.1007/3-540-25736-5_9. ISBN 978-3-540-25735-6.
  103. ^ Rieraa, V.; Marmib, J.; Omsa, O.; Gomez, B. (March 2010). "Orientated plant fragments revealing tidal palaeocurrents in the Fumanya mudflat (Maastrichtian, southern Pyrenees): Insights in palaeogeographic reconstructions". Palaeogeography, Palaeoclimatology, Palaeoecology. 288 (1–4): 82–92. Bibcode:2010PPP...288...82R. doi:10.1016/j.palaeo.2010.01.037.
  104. ^ le Loeuff, J. (2012). "Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: How many dinosaur species became extinct at the Cretaceous-Tertiary boundary?". Bulletin de la Société Géologique de France. 183 (6): 547–559. doi:10.2113/gssgfbull.183.6.547.
  105. ^ Ryan, M. J.; Russell, A. P.; Eberth, D. A.; Currie, P. J. (2001). "The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bone bed from the Dinosaur Park formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny". PALAIOS. 16 (5): 482–506. Bibcode:2001Palai..16..482R. doi:10.1669/0883-1351(2001)0162.0.co;2. S2CID 130116586.
  106. ^ Sloan, R. E.; Rigby, K.; van Valen, L. M.; Gabriel, Diane (1986). "Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation". Science. 232 (4750): 629–633. Bibcode:1986Sci...232..629S. doi:10.1126/science.232.4750.629. PMID 17781415. S2CID 31638639.
  107. ^ Fassett, J. E.; Lucas, S. G.; Zielinski, R. A.; Budahn, J. R. (2001). Compelling new evidence for Paleocene dinosaurs in the Ojo Alamo Sandstone San Juan Basin, New Mexico and Colorado, USA (PDF). International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, 9–12 July 2000. Vol. 1053. Vienna, Austria. pp. 45–46. Bibcode:2001caev.conf.3139F. Archived (PDF) from the original on 5 June 2011. Retrieved 18 May 2007.
  108. ^ Sullivan, R. M. (2003). "No Paleocene dinosaurs in the San Juan Basin, New Mexico". Geological Society of America Abstracts with Programs. 35 (5): 15. Archived from the original on 8 April 2011. Retrieved 2 July 2007.
  109. ^ Evans, Susan E.; Klembara, Jozef (2005). "A choristoderan reptile (Reptilia: Diapsida) from the Lower Miocene of northwest Bohemia (Czech Republic)". Journal of Vertebrate Paleontology. 25 (1): 171–184. doi:10.1671/0272-4634(2005)025[0171:ACRRDF]2.0.CO;2. S2CID 84097919.
  110. ^ Matsumoto, Ryoko; Evans, Susan E. (November 2015). "Morphology and function of the palatal dentition in Choristodera". Journal of Anatomy. 228 (3): 414–429. doi:10.1111/joa.12414. PMC 5341546. PMID 26573112.
  111. ^ Gelfo, J. N.; Pascual, R. (2001). "Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation" (PDF). Geodiversitas. 23: 369–379. Archived from the original (PDF) on 12 February 2012.
  112. ^ Goin, F. J.; Reguero, M. A.; Pascual, R.; von Koenigswald, W.; Woodburne, M. O.; Case, J. A.; Marenssi, S. A.; Vieytes, C.; Vizcaíno, S. F. (2006). "First gondwanatherian mammal from Antarctica". Geological Society, London. Special Publications. 258 (1): 135–144. Bibcode:2006GSLSP.258..135G. doi:10.1144/GSL.SP.2006.258.01.10. S2CID 129493664.
  113. ^ McKenna, M. C.; Bell, S. K. (1997). Classification of mammals: Above the species level. Columbia University Press. ISBN 978-0-231-11012-9.
  114. ^ Wood, D. Joseph (2010). The Extinction of the Multituberculates Outside North America: a Global Approach to Testing the Competition Model (M.S.). The Ohio State University. Archived from the original on 2015-04-08. Retrieved 2015-04-03.
  115. ^ Pires, Mathias M.; Rankin, Brian D.; Silvestro, Daniele; Quental, Tiago B. (2018). "Diversification dynamics of mammalian clades during the K–Pg mass extinction". Biology Letters. 14 (9): 20180458. doi:10.1098/rsbl.2018.0458. PMC 6170748. PMID 30258031.
  116. ^ a b Bininda-Emonds, O. R.; Cardillo M.; Jones, K. E., MacPhee, R. D.; Beck, R. M.; Grenyer, R.; Price, S. A.; Vos, R. A.; Gittleman, J. L.; Purvis, A. (2007). "The delayed rise of present-day mammals". Nature. 446 (7135): 507–512. Bibcode:2007Natur.446..507B. doi:10.1038/nature05634. PMID 17392779. S2CID 4314965.{{cite journal}}: CS1 maint: uses authors parameter (link)
  117. ^ a b Springer, M. S., Murphy, W. J., Eizirik, E., O'Brien, S. J. (2003). "Placental mammal diversification and the Cretaceous–Tertiary boundary". Proceedings of the National Academy of Sciences of the United States of America. 100 (3): 1056–1061. Bibcode:2003PNAS..100.1056S. doi:10.1073/pnas.0334222100. PMC 298725. PMID 12552136.{{cite journal}}: CS1 maint: uses authors parameter (link)
  118. ^ Fastovsky, David E.; Bercovici, Antoine (January 2016). "The Hell Creek Formation and its contribution to the Cretaceous–Paleogene extinction: A short primer". Cretaceous Research. 57: 368–390. doi:10.1016/j.cretres.2015.07.007.
  119. ^ Dodson, Peter (1996). The Horned Dinosaurs: A Natural History. Princeton, NJ: Princeton University Press. pp. 279–281. ISBN 978-0-691-05900-6.
  120. ^ "Online guide to the continental Cretaceous–Tertiary boundary in the Raton basin, Colorado and New Mexico". U.S. Geological Survey. 2004. Archived from the original on 2006-09-25. Retrieved 2007-07-08.
  121. ^ Smathers, G. A.; Mueller-Dombois, D. (1974). Invasion and Recovery of Vegetation after a Volcanic Eruption in Hawaii. Scientific Monograph. Vol. 5. United States National Park Service. Archived from the original on 3 April 2014. Retrieved 9 July 2007.
  122. ^ "Springtime was the season the dinosaurs died, ancient fish fossils suggest". Science. 2022-02-23. Retrieved 2022-02-24.
  123. ^ Barras, Colin (2022-02-23). "Fossil fish reveal timing of asteroid that killed the dinosaurs". Nature. 603 (7899): 17. Bibcode:2022Natur.603...17B. doi:10.1038/d41586-022-00511-x. PMID 35197589. S2CID 247083600.
  124. ^ Ouellette, Jennifer (23 February 2022). "An asteroid killed dinosaurs in spring—which might explain why mammals survived - New study sheds light on why species extinction was so selective after the K-Pg impact". Ars Technica. Retrieved 26 February 2022.
  125. ^ a b c d e Pope, K. O.; d'Hondt, S. L.; Marshall. C. R. (1998). "Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary". Proceedings of the National Academy of Sciences of the United States of America. 95 (19): 11028–11029. Bibcode:1998PNAS...9511028P. doi:10.1073/pnas.95.19.11028. PMC 33889. PMID 9736679.{{cite journal}}: CS1 maint: uses authors parameter (link)
  126. ^ a b c Marshall, C. R.; Ward, P. D. (1996). "Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys". Science. 274 (5291): 1360–1363. Bibcode:1996Sci...274.1360M. doi:10.1126/science.274.5291.1360. PMID 8910273. S2CID 1837900.{{cite journal}}: CS1 maint: uses authors parameter (link)
  127. ^ Keller, Gerta (July 2001). "The end-cretaceous mass extinction in the marine realm: Year 2000 assessment" (PDF). Planetary and Space Science. 49 (8): 817–830. Bibcode:2001P&SS...49..817K. doi:10.1016/S0032-0633(01)00032-0.
  128. ^ Bourgeois, J. (2009). "Chapter 3. Geologic effects and records of tsunamis" (PDF). In Robinson, A.R.; Bernard, E.N. (eds.). The Sea (Ideas and Observations on Progress in the Study of the Seas). Vol. 15: Tsunamis. Boston, MA: Harvard University. ISBN 978-0-674-03173-9. Retrieved 29 March 2012.
  129. ^ Lawton, T. F.; Shipley, K. W.; Aschoff, J. L.; Giles, K. A.; Vega, F. J. (2005). "Basinward transport of Chicxulub ejecta by tsunami-induced backflow, La Popa basin, northeastern Mexico, and its implications for distribution of impact-related deposits flanking the Gulf of Mexico". Geology. 33 (2): 81–84. Bibcode:2005Geo....33...81L. doi:10.1130/G21057.1.
  130. ^ Albertão, G. A.; P. P. Martins Jr. (1996). "A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil". Sed. Geol. 104 (1–4): 189–201. Bibcode:1996SedG..104..189A. doi:10.1016/0037-0738(95)00128-X.
  131. ^ Norris, R. D.; Firth, J.; Blusztajn, J. S. & Ravizza, G. (2000). "Mass failure of the North Atlantic margin triggered by the Cretaceous-Paleogene bolide impact". Geology. 28 (12): 1119–1122. Bibcode:2000Geo....28.1119N. doi:10.1130/0091-7613(2000)282.0.CO;2.
  132. ^ Bryant, Edward (June 2014). Tsunami: The Underrated Hazard. Springer. p. 178. ISBN 9783319061337. Archived from the original on 2019-09-01. Retrieved 2017-08-30.
  133. ^ Smit, Jan; Montanari, Alessandro; Swinburne, Nicola H.; Alvarez, Walter; Hildebrand, Alan R.; Margolis, Stanley V.; Claeys, Philippe; Lowrie, William; Asaro, Frank (1992). "Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico". Geology. 20 (2): 99–103. Bibcode:1992Geo....20...99S. doi:10.1130/0091-7613(1992)0202.3.CO;2. PMID 11537752.
  134. ^ Field guide to Cretaceous-tertiary boundary sections in northeastern Mexico (PDF). Lunar and Planetary Institute. 1994. Archived (PDF) from the original on 2019-08-21. Retrieved 2019-06-25.
  135. ^ Smit, Jan (1999). "The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta". Annual Review of Earth and Planetary Sciences. 27: 75–113. Bibcode:1999AREPS..27...75S. doi:10.1146/annurev.earth.27.1.75.
  136. ^ Kring, David A. (2007). "The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary". Palaeogeography, Palaeoclimatology, Palaeoecology. 255 (1–2): 4–21. doi:10.1016/j.palaeo.2007.02.037.
  137. ^ "Chicxulub impact event". www.lpi.usra.edu. Archived from the original on 2019-07-26. Retrieved 2019-06-25.
  138. ^ Signor, Philip W., III; Lipps, Jere H. (1982). "Sampling bias, gradual extinction patterns, and catastrophes in the fossil record". In Silver, L.T.; Schultz, Peter H. (eds.). Geological implications of impacts of large asteroids and comets on the Earth. Vol. Special Publication 190. Boulder, Colorado: Geological Society of America. pp. 291–296. ISBN 978-0-8137-2190-3. OCLC 4434434112. Archived from the original on May 5, 2016. Retrieved October 25, 2015.
  139. ^ Mukhopadhyay, Sujoy (2001). "A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3" (PDF). Science. 291 (5510): 1952–1955. Bibcode:2001Sci...291.1952M. doi:10.1126/science.291.5510.1952. PMID 11239153.
  140. ^ Clyde, William C.; Ramezani, Jahandar; Johnson, Kirk R.; Bowring, Samuel A.; Jones, Matthew M. (15 October 2016). "Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales". Earth and Planetary Science Letters. 452: 272–280. Bibcode:2016E&PSL.452..272C. doi:10.1016/j.epsl.2016.07.041.
  141. ^ a b updated, Mindy Weisberger last (2021-12-22). "Darkness caused by dino-killing asteroid snuffed out life on Earth in 9 months". livescience.com. Retrieved 2022-11-17.
  142. ^ de Laubenfels, M W (1956). "Dinosaur extinction: One more hypothesis". Journal of Paleontology. 30 (1): 207–218. JSTOR 1300393.
  143. ^ Smit, J.; Klaver, J. (1981). "Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event". Nature. 292 (5818): 47–49. Bibcode:1981Natur.292...47S. doi:10.1038/292047a0. S2CID 4331801.
  144. ^ Bohor, B. F.; Foord, E. E.; Modreski, P. J.; Triplehorn, D. M. (1984). "Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary". Science. 224 (4651): 867–9. Bibcode:1984Sci...224..867B. doi:10.1126/science.224.4651.867. PMID 17743194. S2CID 25887801.
  145. ^ Bohor, B. F.; Modreski, P. J.; Foord, E. E. (1987). "Shocked quartz in the Cretaceous-Tertiary boundary clays: Evidence for a global distribution". Science. 236 (4802): 705–709. Bibcode:1987Sci...236..705B. doi:10.1126/science.236.4802.705. PMID 17748309. S2CID 31383614.
  146. ^ Bourgeois, J.; Hansen, T. A.; Wiberg, P. A.; Kauffman, E. G. (1988). "A tsunami deposit at the Cretaceous-Tertiary boundary in Texas". Science. 241 (4865): 567–570. Bibcode:1988Sci...241..567B. doi:10.1126/science.241.4865.567. PMID 17774578. S2CID 7447635.
  147. ^ Pope, K. O.; Ocampo, A. C.; Kinsland, G. L.; Smith, R. (1996). "Surface expression of the Chicxulub crater". Geology. 24 (6): 527–530. Bibcode:1996Geo....24..527P. doi:10.1130/0091-7613(1996)0242.3.CO;2. PMID 11539331.
  148. ^ Perlman, David. "Dinosaur extinction battle flares". sfgate.com. Archived from the original on 2013-02-08. Retrieved 2013-02-08.
  149. ^ Bottke, W. F.; Vokrouhlický, D.; Nesvorný, D. (September 2007). "An asteroid breakup 160 Myr ago as the probable source of the K/T impactor". Nature. 449 (7158): 48–53. Bibcode:2007Natur.449...48B. doi:10.1038/nature06070. PMID 17805288. S2CID 4322622.
  150. ^ Majaess, D. J.; Higgins, D.; Molnar, L. A.; Haegert, M. J.; Lane, D. J.; Turner, D. G.; Nielsen, I. (February 2009). "New constraints on the asteroid 298 Baptistina, the alleged family member of the K/T impactor". The Journal of the Royal Astronomical Society of Canada. 103 (1): 7–10. arXiv:0811.0171. Bibcode:2009JRASC.103....7M.{{cite journal}}: CS1 maint: uses authors parameter (link)
  151. ^ Reddy, V.; Emery, J. P.; Gaffey, M. J.; Bottke, W. F.; Cramer, A.; Kelley, M. S. (December 2009). "Composition of 298 Baptistina: Implications for the K/T impactor link". Meteoritics & Planetary Science. 44 (12): 1917–1927. Bibcode:2009M&PS...44.1917R. CiteSeerX 10.1.1.712.8165. doi:10.1111/j.1945-5100.2009.tb02001.x. S2CID 39644763.
  152. ^ "NASA's WISE raises doubt about asteroid family believed responsible for dinosaur extinction". ScienceDaily. 20 September 2011. Archived from the original on 23 September 2011. Retrieved 21 September 2011.
  153. ^ Depalma, Robert A.; Smit, Jan; Burnham, David A.; Kuiper, Klaudia; Manning, Phillip L.; Oleinik, Anton; Larson, Peter; Maurrasse, Florentin J.; Vellekoop, Johan; Richards, Mark A.; Gurche, Loren; Alvarez, Walter (2019). "A seismically induced onshore surge deposit at the KPG boundary, North Dakota". Proceedings of the National Academy of Sciences of the United States of America. 116 (17): 8190–8199. Bibcode:2019PNAS..116.8190D. doi:10.1073/pnas.1817407116. PMC 6486721. PMID 30936306.
  154. ^ "National Natural Landmarks – National Natural Landmarks (U.S. National Park Service)". www.nps.gov. Retrieved 2019-03-22. Year designated: 1966
  155. ^ Smit, J., et al. (2017) Tanis, a mixed marine-continental event deposit at the KPG Boundary in North Dakota caused by a seiche triggered by seismic waves of the Chicxulub Impact Paper No. 113-15, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
  156. ^ DePalma, R. et al. (2017) Life after impact: A remarkable mammal burrow from the Chicxulub aftermath in the Hell Creek Formation, North Dakota Paper No. 113-16, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
  157. ^ Kaskes, P.; Goderis, S.; Belza, J.; Tack, P.; DePalma, R. A.; Smit, J.; Vincze, Laszlo; Vabgaecje, F.; Claeys, P. (2019). "Caught in amber: Geochemistry and petrography of uniquely preserved Chicxulub microtektites from the Tanis K-Pg site from North Dakota (USA)". Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136) (PDF). Vol. 6. Houston, TX: Lunar and Planetary Institute. pp. 1–2. Retrieved 11 April 2021.
  158. ^ Barras, Colin (5 April 2019). "Does fossil site record dino-killing impact?". Science. 364 (6435): 10–11. Bibcode:2019Sci...364...10B. doi:10.1126/science.364.6435.10. PMID 30948530. S2CID 96434764.
  159. ^ a b c Osterloff, Emily (2018). "How an asteroid ended the age of the dinosaurs". London: Natural History Museum. Archived from the original on 26 April 2022. Retrieved 18 May 2022.
  160. ^ a b Robertson, D. S.; Lewis, W. M.; Sheehan, P. M.; Toon, O. B. (2013). "K/Pg extinction: Re-evaluation of the heat/fire hypothesis". Journal of Geophysical Research. 118 (1): 329–336. Bibcode:2013JGRG..118..329R. doi:10.1002/jgrg.20018.
  161. ^ a b Brugger, Julia; Feulner, Georg; Petri, Stefan (2016). "Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous" (PDF). Geophysical Research Letters. 44 (1): 419–427. Bibcode:2017GeoRL..44..419B. doi:10.1002/2016GL072241. S2CID 53631053.
  162. ^ Pope, K.O.; Baines, K.H.; Ocampo, A.C.; Ivanov, B. A. (1997). "Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact". Journal of Geophysical Research. 102 (E9): 21645–21664. Bibcode:1997JGR...10221645P. doi:10.1029/97JE01743. PMID 11541145.
  163. ^ Vellekoop, J.; et al. (2013). "Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary". Proceedings of the National Academy of Sciences of the United States of America. 111 (21): 7537–7541. Bibcode:2014PNAS..111.7537V. doi:10.1073/pnas.1319253111. PMC 4040585. PMID 24821785.
  164. ^ Kaiho, Kunio; Oshima, Naga (2017). "Site of asteroid impact changed the history of life on Earth: The low probability of mass extinction". Scientific Reports. 7 (1). Article number 14855. Bibcode:2017NatSR...714855K. doi:10.1038/s41598-017-14199-x. PMC 5680197. PMID 29123110.
  165. ^ a b Ohno, S.; et al. (2014). "Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification". Nature Geoscience. 7 (4): 279–282. Bibcode:2014NatGe...7..279O. doi:10.1038/ngeo2095.
  166. ^ "Dinosaur-killing asteroid strike gave rise to Amazon rainforest". BBC News. 2 April 2021. Retrieved 9 May 2021.
  167. ^ Carvalho, Mónica R.; Jaramillo, Carlos; Parra, Felipe de la; Caballero-Rodríguez, Dayenari; Herrera, Fabiany; Wing, Scott; Turner, Benjamin L.; D’Apolito, Carlos; Romero-Báez, Millerlandy; Narváez, Paula; Martínez, Camila; Gutierrez, Mauricio; Labandeira, Conrad; Bayona, German; Rueda, Milton; Paez-Reyes, Manuel; Cárdenas, Dairon; Duque, Álvaro; Crowley, James L.; Santos, Carlos; Silvestro, Daniele (2 April 2021). "Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests". Science. 372 (6537): 63–68. Bibcode:2021Sci...372...63C. doi:10.1126/science.abf1969. ISSN 0036-8075. PMID 33795451. S2CID 232484243. Retrieved 9 May 2021.
  168. ^ Hand, Eric (17 November 2016). "Updated: Drilling of dinosaur-killing impact crater explains buried circular hills". Science. doi:10.1126/science.aaf5684.
  169. ^ "Chicxulub crater dinosaur extinction". The New York Times. New York, NY. 18 November 2016. Archived from the original on 9 November 2017. Retrieved 14 October 2017.
  170. ^ Brannen, Peter (2017). The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions. Harper Collins. p. 336. ISBN 9780062364807.
  171. ^ Keller, G.; Adatte, T.; Gardin, S.; Bartolini, A.; Bajpai, S. (2008). "Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna-Godavari Basin, SE India". Earth and Planetary Science Letters. 268 (3–4): 293–311. Bibcode:2008E&PSL.268..293K. doi:10.1016/j.epsl.2008.01.015.{{cite journal}}: CS1 maint: uses authors parameter (link)
  172. ^ Duncan, R. A.; Pyle, D. G. (1988). "Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary". Nature. 333 (6176): 841–843. Bibcode:1988Natur.333..841D. doi:10.1038/333841a0. S2CID 4351454.{{cite journal}}: CS1 maint: uses authors parameter (link)
  173. ^ Courtillot, Vincent (1990). "A volcanic eruption". Scientific American. 263 (4): 85–92. Bibcode:1990SciAm.263d..85C. doi:10.1038/scientificamerican1090-85. PMID 11536474.
  174. ^ Sial, A. N.; Lacerda, L. D.; Ferreira, V. P.; Frei, R.; Marquillas, R. A.; Barbosa, J. A.; Gaucher, C.; Windmöller, C. C.; Pereira, N. S. (1 October 2013). "Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition". Palaeogeography, Palaeoclimatology, Palaeoecology. 387: 153–164. doi:10.1016/j.palaeo.2013.07.019. Retrieved 23 November 2022.
  175. ^ Alvarez, W (1997). T. rex and the Crater of Doom. Princeton University Press. pp. 130–146. ISBN 978-0-691-01630-6.
  176. ^ Renne, P. R.; et al. (2015). "State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact". Science. 350 (6256): 76–78. Bibcode:2015Sci...350...76R. doi:10.1126/science.aac7549. PMID 26430116.
  177. ^ Richards, M. A.; et al. (2015). "Triggering of the largest Deccan eruptions by the Chicxulub impact" (PDF). Geological Society of America Bulletin. 127 (11–12): 1507–1520. Bibcode:2015GSAB..127.1507R. doi:10.1130/B31167.1. S2CID 3463018.
  178. ^ Mullen, L. (October 13, 2004). "Debating the Dinosaur Extinction". Astrobiology Magazine. Archived from the original on June 25, 2012. Retrieved 2012-03-29.{{cite journal}}: CS1 maint: unfit URL (link)
  179. ^ Mullen, L. (October 20, 2004). "Multiple impacts". Astrobiology Magazine. Archived from the original on April 6, 2012. Retrieved 2012-03-29.{{cite journal}}: CS1 maint: unfit URL (link)
  180. ^ Mullen, L. (November 3, 2004). "Shiva: Another K–T impact?". Astrobiology Magazine. Archived from the original on December 11, 2011. Retrieved 2012-03-29.{{cite journal}}: CS1 maint: unfit URL (link)
  181. ^ Chatterjee, Sankar (August 1997). "Multiple Impacts at the KT Boundary and the Death of the Dinosaurs". 30th International Geological Congress. Vol. 26. pp. 31–54. ISBN 978-90-6764-254-5.
  182. ^ Li, Liangquan; Keller, Gerta (1998). "Abrupt deep-sea warming at the end of the Cretaceous" (PDF). Geology. 26 (11): 995–998. Bibcode:1998Geo....26..995L. doi:10.1130/0091-7613(1998)0262.3.CO;2. S2CID 115136793.
  183. ^ a b Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C. (2016). "End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change". Nature Communications. 7: 12079. Bibcode:2016NatCo...712079P. doi:10.1038/ncomms12079. PMC 4935969. PMID 27377632.
  184. ^ Alroy, J. (May 1998). "Cope's rule and the dynamics of body mass evolution in North American fossil mammals" (PDF). Science. 280 (5364): 731–4. Bibcode:1998Sci...280..731A. doi:10.1126/science.280.5364.731. PMID 9563948.
  185. ^ Ericson, P. G.; Anderson, C. L.; Britton, T.; et al. (December 2006). "Diversification of Neoaves: integration of molecular sequence data and fossils". Biology Letters. 2 (4): 543–7. doi:10.1098/rsbl.2006.0523. PMC 1834003. PMID 17148284.
  186. ^ Klein, Catherine G.; Pisani, Davide; Field, Daniel J.; Lakin, Rebecca; Wills, Matthew A.; Longrich, Nicholas R. (14 September 2021). "Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction". Nature Communications. 12 (1): 5335. doi:10.1038/s41467-021-25136-y. PMC 8440539. PMID 34521829.
  187. ^ Grimaldi, David A. (2007). Evolution of the Insects. Cambridge Univ Pr (E). ISBN 978-0-511-12388-7.
  188. ^ "Mammals' bodies outpaced their brains right after the dinosaurs died". Science News. 31 March 2022. Retrieved 14 May 2022.
  189. ^ Bertrand, Ornella C.; Shelley, Sarah L.; Williamson, Thomas E.; Wible, John R.; Chester, Stephen G. B.; Flynn, John J.; Holbrook, Luke T.; Lyson, Tyler R.; Meng, Jin; Miller, Ian M.; Püschel, Hans P.; Smith, Thierry; Spaulding, Michelle; Tseng, Z. Jack; Brusatte, Stephen L. (April 2022). "Brawn before brains in placental mammals after the end-Cretaceous extinction". Science. 376 (6588): 80–85. Bibcode:2022Sci...376...80B. doi:10.1126/science.abl5584. ISSN 0036-8075. PMID 35357913. S2CID 247853831.
  190. ^ Clyde, William C.; Wilf, Peter; Iglesias, Ari; Slingerland, Rudy L.; Barnum, Timothy; Bijl, Peter K.; Bralower, Timothy J.; Brinkhuis, Henk; Comer, Emily E.; Huber, Brian T.; Ibañez-Mejia, Mauricio; Jicha, Brian R.; Krause, J. Marcelo; Schueth, Jonathan D.; Singer, Bradley S.; Raigemborn, María Sol; Schmitz, Mark D.; Sluijs, Appy; Zamaloa, María del Carmen (1 March 2014). "New age constraints for the Salamanca Formation and lower Río Chico Group in the western San Jorge Basin, Patagonia, Argentina: Implications for Cretaceous-Paleogene extinction recovery and land mammal age correlations". Geological Society of America Bulletin. 126 (3–4): 289–306. doi:10.1130/B30915.1. S2CID 129962470. Retrieved 21 December 2022.
Further reading
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.