Get Our Extension

Calcium carbonate

From Wikipedia, in a visual modern way
Calcium carbonate
Calcium carbonate.png
Calcium-carbonate-xtal-3D-SF.png
Calcium carbonate.jpg
Names
IUPAC name
Calcium carbonate
Other names
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.006.765 Edit this at Wikidata
EC Number
  • 207-439-9
E number E170 (colours)
KEGG
RTECS number
  • FF9335000
UNII
  • InChI=1S/CH2O3.Ca/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2 checkY
    Key: VTYYLEPIZMXCLO-UHFFFAOYSA-L checkY
  • InChI=1/CH2O3.Ca/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2
    Key: VTYYLEPIZMXCLO-NUQVWONBAS
  • [Ca+2].[O-]C([O-])=O
  • C(=O)([O-])[O-].[Ca+2]
Properties
CaCO3
Molar mass 100.0869 g/mol
Appearance Fine white powder; chalky taste
Odor odorless
Density 2.711 g/cm3 (calcite)
2.83 g/cm3 (aragonite)
Melting point 1,339 °C (2,442 °F; 1,612 K) (calcite)
825 °C (1,517 °F; 1,098 K) (aragonite)[4][5]
Boiling point decomposes
0.013 g/L (25 °C)[1][2]
3.3×10−9[3]
Solubility in dilute acids soluble
Acidity (pKa) 9.0
−3.82×10−5 cm3/mol
1.59
Structure
Trigonal
32/m
Thermochemistry
93 J·mol−1·K−1[6]
−1207 kJ·mol−1[6]
Pharmacology
A02AC01 (WHO) A12AA04 (WHO)
Hazards
NFPA 704 (fire diamond)
0
0
0
Lethal dose or concentration (LD, LC):
6450 mg/kg (oral, rat)
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 15 mg/m3 (total) TWA 5 mg/m3 (resp)[7]
Safety data sheet (SDS) ICSC 1193
Related compounds
Other anions
Calcium bicarbonate
Other cations
Beryllium carbonate
Magnesium carbonate
Strontium carbonate
Barium carbonate
Radium carbonate
Related compounds
Calcium sulfate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Crystal structure of calcite
Crystal structure of calcite

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite (most notably as limestone, which is a type of sedimentary rock consisting mainly of calcite) and is the main component of eggshells, gastropod shells, shellfish skeletons and pearls. Things containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is created when calcium ions in hard water react with carbonate ions to create limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.[8]

Discover more about Calcium carbonate related topics

Chemical compound

Chemical compound

A chemical compound is a chemical substance composed of many identical molecules containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound. A compound can be transformed into a different substance by a chemical reaction, which may involve interactions with other substances. In this process, bonds between atoms may be broken and/or new bonds formed.

Chemical formula

Chemical formula

In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

Calcium

Calcium

Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust, and the third most abundant metal, after iron and aluminium. The most common calcium compound on Earth is calcium carbonate, found in limestone and the fossilised remnants of early sea life; gypsum, anhydrite, fluorite, and apatite are also sources of calcium. The name derives from Latin calx "lime", which was obtained from heating limestone.

Carbonate

Carbonate

A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word carbonate may also refer to a carbonate ester, an organic compound containing the carbonate group C(=O)(O–)2.

Calcite

Calcite

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

Aragonite

Aragonite

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

Eggshell

Eggshell

An eggshell is the outer covering of a hard-shelled egg and of some forms of eggs with soft outer coats.

Gastropod shell

Gastropod shell

The gastropod shell is part of the body of a gastropod or snail, a kind of mollusc. The shell is an exoskeleton, which protects from predators, mechanical damage, and dehydration, but also serves for muscle attachment and calcium storage. Some gastropods appear shell-less (slugs) but may have a remnant within the mantle, or in some cases the shell is reduced such that the body cannot be retracted within it (semi-slug). Some snails also possess an operculum that seals the opening of the shell, known as the aperture, which provides further protection. The study of mollusc shells is known as conchology. The biological study of gastropods, and other molluscs in general, is malacology. Shell morphology terms vary by species group.

Calcareous

Calcareous

Calcareous is an adjective meaning "mostly or partly composed of calcium carbonate", in other words, containing lime or being chalky. The term is used in a wide variety of scientific disciplines.

Agricultural lime

Agricultural lime

Agricultural lime, also called aglime, agricultural limestone, garden lime or liming, is a soil additive made from pulverized limestone or chalk. The primary active component is calcium carbonate. Additional chemicals vary depending on the mineral source and may include calcium oxide. Unlike the types of lime called quicklime and slaked lime, powdered limestone does not require lime burning in a lime kiln; it only requires milling. All of these types of lime are sometimes used as soil conditioners, with a common theme of providing a base to correct acidity, but lime for farm fields today is often crushed limestone. Historically, liming of farm fields in centuries past was often done with burnt lime; the difference is at least partially explained by the fact that affordable mass-production-scale fine milling of stone and ore relies on technologies developed since the mid-19th century.

Hard water

Hard water

Hard water is water that has high mineral content. Hard water is formed when water percolates through deposits of limestone, chalk or gypsum, which are largely made up of calcium and magnesium carbonates, bicarbonates and sulfates.

Antacid

Antacid

An antacid is a substance which neutralizes stomach acidity and is used to relieve heartburn, indigestion or an upset stomach. Some antacids have been used in the treatment of constipation and diarrhea. Marketed antacids contain salts of aluminium, calcium, magnesium, or sodium. Some preparations contain a combination of two salts, such as magnesium carbonate and aluminium hydroxide.

Chemistry

Calcium carbonate shares the typical properties of other carbonates. Notably it

Calcium carbonate reacts with water that is saturated with carbon dioxide to form the soluble calcium bicarbonate.

This reaction is important in the erosion of carbonate rock, forming caverns, and leads to hard water in many regions.

An unusual form of calcium carbonate is the hexahydrate ikaite, CaCO3·6H2O. Ikaite is stable only below 8 °C.

Discover more about Chemistry related topics

Carbonate

Carbonate

A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word carbonate may also refer to a carbonate ester, an organic compound containing the carbonate group C(=O)(O–)2.

Acid

Acid

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

Carbon dioxide

Carbon dioxide

Carbon dioxide is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

Carbonic acid

Carbonic acid

In chemistry, carbonic acid is an inorganic compound with the chemical formula H2CO3. As a dilute solution in water, it is pervasive, but the pure compound, a colorless gas, can only be obtained at temperatures around −80 °C. The molecule rapidly converts to water and carbon dioxide in the presence of water, however in the absence of water, contrary to popular belief, it is quite stable at room temperature. The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the acidity of natural waters.

Calcination

Calcination

Calcination refers to thermal treatment of a solid chemical compound (e.g. mixed carbonate ores) whereby the compound is raised to high temperature without melting under restricted supply of ambient oxygen (i.e. gaseous O2 fraction of air), generally for the purpose of removing impurities or volatile substances and/or to incur thermal decomposition.

Calcium oxide

Calcium oxide

Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "lime" connotes calcium-containing inorganic materials, in which carbonates, oxides and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single chemical compound calcium oxide. Calcium oxide that survives processing without reacting in building products such as cement is called free lime.

Enthalpy

Enthalpy

Enthalpy, a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work required to establish the system's physical dimensions, i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation and other "energies" in chemistry are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

Calcium bicarbonate

Calcium bicarbonate

Calcium bicarbonate, also called calcium hydrogencarbonate, has the chemical formula Ca(HCO3)2. The term does not refer to a known solid compound; it exists only in aqueous solution containing calcium (Ca2+), bicarbonate (HCO−3), and carbonate (CO2−3) ions, together with dissolved carbon dioxide (CO2). The relative concentrations of these carbon-containing species depend on the pH; bicarbonate predominates within the range 6.36–10.25 in fresh water.

Erosion

Erosion

Erosion is the action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust and then transports it to another location where it is deposited. Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.

Carbonate rock

Carbonate rock

Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolostone), which is composed of mineral dolomite (CaMg(CO3)2).

Hard water

Hard water

Hard water is water that has high mineral content. Hard water is formed when water percolates through deposits of limestone, chalk or gypsum, which are largely made up of calcium and magnesium carbonates, bicarbonates and sulfates.

Ikaite

Ikaite

Ikaite is the mineral name for the hexahydrate of calcium carbonate, CaCO3·6H2O. Ikaite tends to form very steep or spiky pyramidal crystals, often radially arranged, of varied sizes from thumbnail size aggregates to gigantic salient spurs. It is only found in a metastable state and decomposes rapidly by losing most of its water content once removed from near-freezing water. This "melting mineral" is more commonly known through its pseudomorphs.

Preparation

The vast majority of calcium carbonate used in industry is extracted by mining or quarrying. Pure calcium carbonate (such as for food or pharmaceutical use), can be produced from a pure quarried source (usually marble).

Alternatively, calcium carbonate is prepared from calcium oxide. Water is added to give calcium hydroxide then carbon dioxide is passed through this solution to precipitate the desired calcium carbonate, referred to in the industry as precipitated calcium carbonate (PCC) This process is called carbonatation:[9]

In a laboratory, calcium carbonate can easily be crystallized from calcium chloride (CaCl2), by placing an aqueous solution of CaCl2 in a desiccator alongside ammonium carbonate (NH4)2CO3.[10] In the desiccator, ammonium carbonate is exposed to air and decomposes into ammonia, carbon dioxide, and water. The carbon dioxide then diffuses into the aqueous solution of calcium chloride, reacts with the calcium ions and the water, and forms calcium carbonate.

Discover more about Preparation related topics

Marble

Marble

Marble is a metamorphic rock consisting of carbonate minerals that recrystallize under the influence of heat, pressure and aqueous solutions, most commonly calcite (CaCO3) or dolomite (CO3)2 and has a crystalline texture of varying thickness. Marble is typically not foliated (layered), although there are exceptions. About 10-15% of the sedimentary rocks on Earth are composed of limestone.

Calcium oxide

Calcium oxide

Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "lime" connotes calcium-containing inorganic materials, in which carbonates, oxides and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single chemical compound calcium oxide. Calcium oxide that survives processing without reacting in building products such as cement is called free lime.

Calcium hydroxide

Calcium hydroxide

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed with water. It has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, and pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater, also called milk of lime, is the common name for a saturated solution of calcium hydroxide.

Carbon dioxide

Carbon dioxide

Carbon dioxide is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

Carbonatation

Carbonatation

Carbonatation is a chemical reaction in which calcium hydroxide reacts with carbon dioxide and forms insoluble calcium carbonate:

Desiccator

Desiccator

Desiccators are sealable enclosures containing desiccants used for preserving moisture-sensitive items such as cobalt chloride paper for another use. A common use for desiccators is to protect chemicals which are hygroscopic or which react with water from humidity.

Structure

The thermodynamically stable form of CaCO3 under normal conditions is hexagonal β-CaCO3 (the mineral calcite).[11] Other forms can be prepared, the denser (2.83 g/cm3) orthorhombic λ-CaCO3 (the mineral aragonite) and hexagonal μ-CaCO3, occurring as the mineral vaterite.[11] The aragonite form can be prepared by precipitation at temperatures above 85 °C; the vaterite form can be prepared by precipitation at 60 °C.[11] Calcite contains calcium atoms coordinated by six oxygen atoms; in aragonite they are coordinated by nine oxygen atoms.[11] The vaterite structure is not fully understood.[12] Magnesium carbonate (MgCO3) has the calcite structure, whereas strontium carbonate (SrCO3) and barium carbonate (BaCO3) adopt the aragonite structure, reflecting their larger ionic radii.[11]

Discover more about Structure related topics

Hexagonal crystal family

Hexagonal crystal family

In crystallography, the hexagonal crystal family is one of the six crystal families, which includes two crystal systems and two lattice systems. While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent. In particular, there are crystals that have trigonal symmetry but belong to the hexagonal lattice.

Calcite

Calcite

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

Aragonite

Aragonite

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

Vaterite

Vaterite

Vaterite is a mineral, a polymorph of calcium carbonate (CaCO3). It was named after the German mineralogist Heinrich Vater. It is also known as mu-calcium carbonate (μ-CaCO3). Vaterite belongs to the hexagonal crystal system, whereas calcite is trigonal and aragonite is orthorhombic.

Magnesium carbonate

Magnesium carbonate

Magnesium carbonate, MgCO3, is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals.

Strontium carbonate

Strontium carbonate

Strontium carbonate (SrCO3) is the carbonate salt of strontium that has the appearance of a white or grey powder. It occurs in nature as the mineral strontianite.

Barium carbonate

Barium carbonate

Barium carbonate is the inorganic compound with the formula BaCO3. Like most alkaline earth metal carbonates, it is a white salt that is poorly soluble in water. It occurs as the mineral known as witherite. In a commercial sense, it is one of the most important barium compounds.

Atomic radius

Atomic radius

The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a chemically bonded state; however theoretical calculations are simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions.

Polymorphs

Calcium carbonate crystallizes in three anhydrous polymorphs,[13][14] of which calcite is the thermodynamically most stable at room temperature, aragonite is only slightly less so, and vaterite is the least stable.[15]

Crystal Structure

The calcite crystal structure is trigonal, with space group (No. 167 in the International Tables for Crystallography[16]), and Pearson symbol .[17] Aragonite is orthorhombic, with space group (No 62), and Pearson Symbol .[18] Vaterite is composed of at least two different coexisting crystallographic structures. The major structure exhibits hexagonal symmetry in space group , the minor structure is still unknown.[19]

Crystallization

Crystal Structure of Calcite and Aragonite
Crystal Structure of Calcite and Aragonite

All three polymorphs crystallize simultaneously from aqueous solutions under ambient conditions.[15] In additive-free aqueous solutions, calcite forms easily as the major product, while aragonite appears only as a minor product.

At high saturation, vaterite is typically the first phase precipitated, which is followed by a transformation of the vaterite to calcite.[20] This behavior seems to follow Ostwald's rule, in which the least stable polymorph crystallizes first, followed by the crystallization of different polymorphs via a sequence of increasingly stable phases.[21] However, aragonite, whose stability lies between those of vaterite and calcite, seems to be the exception to this rule, as aragonite does not form as a precursor to calcite under ambient conditions.[15]

Microscopic Calcite and Vaterite
Microscopic Calcite and Vaterite

Aragonite occurs in majority when the reaction conditions inhibit the formation of calcite and/or promote the nucleation of aragonite. For example, the formation of aragonite is promoted by the presence of magnesium ions,[22] or by using proteins and peptides derived from biological calcium carbonate.[23] Some polyamines such as cadaverine and Poly(ethylene imine) have been shown to facilitate the formation of aragonite over calcite.[15]

Selection by organisms

Organisms, such as molluscs and arthropods, have shown the ability to grow all three crystal polymorphs of calcium carbonate, mainly as protection (shells) and muscle attachments.[24] Moreover, they exhibit a remarkable capability of phase selection over calcite and aragonite, and some organisms can switch between the two polymorphs. The ability of phase selection is usually attributed to the use of specific macromolecules or combinations of macromolecules by such organisms.[25][26][27]

Discover more about Polymorphs related topics

Polymorphism (materials science)

Polymorphism (materials science)

In materials science, polymorphism describes the existence of a solid material in more than one form or crystal structure. Polymorphism is a form of isomerism. Any crystalline material can exhibit the phenomenon. Allotropy refers to polymorphism for chemical elements. Polymorphism is of practical relevance to pharmaceuticals, agrochemicals, pigments, dyestuffs, foods, and explosives. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure to another phase of the same chemical composition with a different crystal structure." According to McCrone, polymorphs are "different in crystal structure but identical in the liquid or vapor states." Materials with two polymorphs are called dimorphic, with three polymorphs, trimorphic, etc.

Calcite

Calcite

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

Aragonite

Aragonite

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

Space group

Space group

In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group are the rigid transformations of an object that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups.

Pearson symbol

Pearson symbol

The Pearson symbol, or Pearson notation, is used in crystallography as a means of describing a crystal structure, and was originated by W. B. Pearson. The symbol is made up of two letters followed by a number. For example:Diamond structure, cF8 Rutile structure, tP6

Orthorhombic crystal system

Orthorhombic crystal system

In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. Orthorhombic lattices result from stretching a cubic lattice along two of its orthogonal pairs by two different factors, resulting in a rectangular prism with a rectangular base and height (c), such that a, b, and c are distinct. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal.

Hexagonal crystal family

Hexagonal crystal family

In crystallography, the hexagonal crystal family is one of the six crystal families, which includes two crystal systems and two lattice systems. While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent. In particular, there are crystals that have trigonal symmetry but belong to the hexagonal lattice.

Ostwald's rule

Ostwald's rule

In materials science, Ostwald's rule or Ostwald's step rule, conceived by Wilhelm Ostwald, describes the formation of polymorphs. The rule states that usually the less stable polymorph crystallizes first. Unstable polymorphs more closely resemble the state in solution, and thus are kinetically advantaged. From hot water, metastable, fibrous crystals of benzamide appear first, later to spontaneously convert to the more stable rhombic polymorph. Another example is magnesium carbonate, which more readily forms dolomite. A dramatic example is phosphorus, which upon sublimation first forms the less stable white phosphorus, which only slowly polymerizes to the red allotrope. This is notably the case for the anatase polymorph of titanium dioxide, which having a lower surface energy is commonly the first phase to form by crystallisation from amorphous precursors or solutions despite being metastable, with rutile being the equilibrium phase at all temperatures and pressures.

Cadaverine

Cadaverine

Cadaverine is an organic compound with the formula (CH2)5(NH2)2. Classified as diamine, it is a colorless liquid with an unpleasant odor. It is present in small quantities in living organisms but is often associated with the putrefaction of animal tissue.

Polyethylenimine

Polyethylenimine

Polyethylenimine (PEI) or polyaziridine is a polymer with repeating units composed of the amine group and two carbon aliphatic CH2CH2 spacers. Linear polyethyleneimines contain all secondary amines, in contrast to branched PEIs which contain primary, secondary and tertiary amino groups. Totally branched, dendrimeric forms were also reported. PEI is produced on an industrial scale and finds many applications usually derived from its polycationic character.

Mollusca

Mollusca

Mollusca is the second-largest phylum of invertebrate animals after the Arthropoda, the members of which are known as molluscs or mollusks. Around 85,000 extant species of molluscs are recognized. The number of fossil species is estimated between 60,000 and 100,000 additional species. The proportion of undescribed species is very high. Many taxa remain poorly studied.

Arthropod

Arthropod

Arthropods are invertebrate animals with an exoskeleton, a segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and cuticle made of chitin, often mineralised with calcium carbonate. The arthropod body plan consists of segments, each with a pair of appendages. Arthropods are bilaterally symmetrical and their body possesses an external skeleton. In order to keep growing, they must go through stages of moulting, a process by which they shed their exoskeleton to reveal a new one. Some species have wings. They are an extremely diverse group, with up to 10 million species.

Occurrence

Calcite is the most stable polymorph of calcium carbonate. It is transparent to opaque. A transparent variety called Iceland spar (shown here) was used to create polarized light in the 19th century.[28]
Calcite is the most stable polymorph of calcium carbonate. It is transparent to opaque. A transparent variety called Iceland spar (shown here) was used to create polarized light in the 19th century.[28]

Geological sources

Calcite, aragonite and vaterite are pure calcium carbonate minerals. Industrially important source rocks which are predominantly calcium carbonate include limestone, chalk, marble and travertine.

Biological sources

Calcium carbonate chunks from clamshell
Calcium carbonate chunks from clamshell

Eggshells, snail shells and most seashells are predominantly calcium carbonate and can be used as industrial sources of that chemical.[29] Oyster shells have enjoyed recent recognition as a source of dietary calcium, but are also a practical industrial source.[30][31] Dark green vegetables such as broccoli and kale contain dietarily significant amounts of calcium carbonate, but they are not practical as an industrial source.[32]

Extraterrestrial

Beyond Earth, strong evidence suggests the presence of calcium carbonate on Mars. Signs of calcium carbonate have been detected at more than one location (notably at Gusev and Huygens craters). This provides some evidence for the past presence of liquid water.[33][34]

Discover more about Occurrence related topics

Calcite

Calcite

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

Iceland spar

Iceland spar

Iceland spar, formerly called Iceland crystal and also called optical calcite, is a transparent variety of calcite, or crystallized calcium carbonate, originally brought from Iceland, and used in demonstrating the polarization of light. It occurs in large readily cleavable crystals, is easily divisible into parallelepipeds, and is remarkable for its birefringence. This means that the refractive index of the crystal is different for light of different polarization. A ray of unpolarized light passing through the crystal is divided into two rays of perpendicular polarization directed at different angles. This double refraction causes objects seen through the crystal to appear doubled.

Aragonite

Aragonite

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

Limestone

Limestone

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

Chalk

Chalk

Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. Chalk is common throughout Western Europe, where deposits underlie parts of France, and steep cliffs are often seen where they meet the sea in places such as the Dover cliffs on the Kent coast of the English Channel.

Marble

Marble

Marble is a metamorphic rock consisting of carbonate minerals that recrystallize under the influence of heat, pressure and aqueous solutions, most commonly calcite (CaCO3) or dolomite (CO3)2 and has a crystalline texture of varying thickness. Marble is typically not foliated (layered), although there are exceptions. About 10-15% of the sedimentary rocks on Earth are composed of limestone.

Clam

Clam

Clam is a common name for several kinds of bivalve molluscs. The word is often applied only to those that are edible and live as infauna, spending most of their lives halfway buried in the sand of the seafloor or riverbeds. Clams have two shells of equal size connected by two adductor muscles and have a powerful burrowing foot. They live in both freshwater and marine environments; in salt water they prefer to burrow down into the mud and the turbidity of the water required varies with species and location; the greatest diversity of these is in North America.

Eggshell

Eggshell

An eggshell is the outer covering of a hard-shelled egg and of some forms of eggs with soft outer coats.

Oyster

Oyster

Oyster is the common name for a number of different families of salt-water bivalve molluscs that live in marine or brackish habitats. In some species, the valves are highly calcified, and many are somewhat irregular in shape. Many, but not all oysters are in the superfamily Ostreoidea.

Broccoli

Broccoli

Broccoli is an edible green plant in the cabbage family whose large flowering head, stalk and small associated leaves are eaten as a vegetable. Broccoli is classified in the Italica cultivar group of the species Brassica oleracea. Broccoli has large flower heads, usually dark green, arranged in a tree-like structure branching out from a thick stalk which is usually light green. The mass of flower heads is surrounded by leaves. Broccoli resembles cauliflower, which is a different but closely related cultivar group of the same Brassica species.

Kale

Kale

Kale, or leaf cabbage, belongs to a group of cabbage cultivars grown for their edible leaves, although some are used as ornamentals. Kale plants have green or purple leaves, and the central leaves do not form a head. Kales are considered to be closer to wild cabbage than most of the many domesticated forms of Brassica oleracea.

Mars

Mars

Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, larger only than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin atmosphere and has a crust primarily composed of elements similar to Earth's crust, as well as a core made of iron and nickel. Mars has surface features such as impact craters, valleys, dunes, and polar ice caps. Mars has two small, irregularly shaped moons, Phobos and Deimos.

Geology

Surface precipitation of CaCO3 as tufa in Rubaksa, Ethiopia
Surface precipitation of CaCO3 as tufa in Rubaksa, Ethiopia

Carbonate is found frequently in geologic settings and constitutes an enormous carbon reservoir. Calcium carbonate occurs as aragonite, calcite and dolomite as significant constituents of the calcium cycle. The carbonate minerals form the rock types: limestone, chalk, marble, travertine, tufa, and others.

In warm, clear tropical waters corals are more abundant than towards the poles where the waters are cold. Calcium carbonate contributors, including plankton (such as coccoliths and planktic foraminifera), coralline algae, sponges, brachiopods, echinoderms, bryozoa and mollusks, are typically found in shallow water environments where sunlight and filterable food are more abundant. Cold-water carbonates do exist at higher latitudes but have a very slow growth rate. The calcification processes are changed by ocean acidification.

Where the oceanic crust is subducted under a continental plate sediments will be carried down to warmer zones in the asthenosphere and lithosphere. Under these conditions calcium carbonate decomposes to produce carbon dioxide which, along with other gases, give rise to explosive volcanic eruptions.

Carbonate compensation depth

The carbonate compensation depth (CCD) is the point in the ocean where the rate of precipitation of calcium carbonate is balanced by the rate of dissolution due to the conditions present. Deep in the ocean, the temperature drops and pressure increases. Calcium carbonate is unusual in that its solubility increases with decreasing temperature.[35] Increasing pressure also increases the solubility of calcium carbonate. The carbonate compensation depth can range from 4,000 to 6,000 meters below sea level.

Role in taphonomy

Calcium carbonate can preserve fossils through permineralization. Most of the vertebrate fossils of the Two Medicine Formation—a geologic formation known for its duck-billed dinosaur eggs—are preserved by CaCO3 permineralization.[36] This type of preservation conserves high levels of detail, even down to the microscopic level. However, it also leaves specimens vulnerable to weathering when exposed to the surface.[36]

Trilobite populations were once thought to have composed the majority of aquatic life during the Cambrian, due to the fact that their calcium carbonate-rich shells were more easily preserved than those of other species,[37] which had purely chitinous shells.

Discover more about Geology related topics

Carbon cycle

Carbon cycle

The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of Earth. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. Along with the nitrogen cycle and the water cycle, the carbon cycle comprises a sequence of events that are key to make Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration to and release from carbon sinks. Carbon sinks in the land and the ocean each currently take up about one-quarter of anthropogenic carbon emissions each year.

Aragonite

Aragonite

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

Calcite

Calcite

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

Dolomite (mineral)

Dolomite (mineral)

Dolomite is an anhydrous carbonate mineral composed of calcium magnesium carbonate, ideally CaMg(CO3)2. The term is also used for a sedimentary carbonate rock composed mostly of the mineral dolomite. An alternative name sometimes used for the dolomitic rock type is dolostone.

Calcium cycle

Calcium cycle

The calcium cycle is a transfer of calcium between dissolved and solid phases. There is a continuous supply of calcium ions into waterways from rocks, organisms, and soils. Calcium ions are consumed and removed from aqueous environments as they react to form insoluble structures such as calcium carbonate and calcium silicate, which can deposit to form sediments or the exoskeletons of organisms. Calcium ions can also be utilized biologically, as calcium is essential to biological functions such as the production of bones and teeth or cellular function. The calcium cycle is a common thread between terrestrial, marine, geological, and biological processes. Calcium moves through these different media as it cycles throughout the Earth. The marine calcium cycle is affected by changing atmospheric carbon dioxide due to ocean acidification.

Carbonate mineral

Carbonate mineral

Carbonate minerals are those minerals containing the carbonate ion, CO2−3.

Limestone

Limestone

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

Chalk

Chalk

Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. Chalk is common throughout Western Europe, where deposits underlie parts of France, and steep cliffs are often seen where they meet the sea in places such as the Dover cliffs on the Kent coast of the English Channel.

Huanglong Scenic and Historic Interest Area

Huanglong Scenic and Historic Interest Area

Huanglong is a scenic and historic interest area in the northwest part of Sichuan, China. It is located in the southern part of the Minshan mountain range, 370 kilometres (230 mi) north-northwest of the capital Chengdu. This area is known for its colorful travertine pools formed by calcite deposits, especially in Huanglonggou, as well as diverse forest ecosystems, snow-capped peaks, waterfalls and hot springs. Huanglong is also home to many endangered species including the giant panda and the Sichuan golden snub-nosed monkey. In addition, a large population of the endemic orchid species 'Cypripedium plectrochilum' was discovered at the site Huanglong was declared a World Heritage Site by UNESCO in 1992 because of its outstanding travertine formations, waterfalls and limestone formations as well as its travertine terraces and lakes rating among the three most outstanding examples in the world.

Coral

Coral

Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

Coccolith

Coccolith

Coccoliths are individual plates or scales of calcium carbonate formed by coccolithophores and cover the cell surface arranged in the form of a spherical shell, called a coccosphere.

Foraminifera

Foraminifera

Foraminifera are single-celled organisms, members of a phylum or class of amoeboid protists characterized by streaming granular ectoplasm for catching food and other uses; and commonly an external shell of diverse forms and materials. Tests of chitin are believed to be the most primitive type. Most foraminifera are marine, the majority of which live on or within the seafloor sediment, while a smaller number float in the water column at various depths, which belong to the suborder Globigerinina. Fewer are known from freshwater or brackish conditions, and some very few (nonaquatic) soil species have been identified through molecular analysis of small subunit ribosomal DNA.

Uses

Construction

The main use of calcium carbonate is in the construction industry, either as a building material, or limestone aggregate for road building, as an ingredient of cement, or as the starting material for the preparation of builders' lime by burning in a kiln. However, because of weathering mainly caused by acid rain,[38] calcium carbonate (in limestone form) is no longer used for building purposes on its own, but only as a raw primary substance for building materials.

Calcium carbonate is also used in the purification of iron from iron ore in a blast furnace. The carbonate is calcined in situ to give calcium oxide, which forms a slag with various impurities present, and separates from the purified iron.[39]

In the oil industry, calcium carbonate is added to drilling fluids as a formation-bridging and filtercake-sealing agent; it is also a weighting material which increases the density of drilling fluids to control the downhole pressure. Calcium carbonate is added to swimming pools, as a pH corrector for maintaining alkalinity and offsetting the acidic properties of the disinfectant agent.[40]

It is also used as a raw material in the refining of sugar from sugar beet; it is calcined in a kiln with anthracite to produce calcium oxide and carbon dioxide. This burnt lime is then slaked in fresh water to produce a calcium hydroxide suspension for the precipitation of impurities in raw juice during carbonatation.[41]

Calcium carbonate in the form of chalk has traditionally been a major component of blackboard chalk. However, modern manufactured chalk is mostly gypsum, hydrated calcium sulfate CaSO4·2H2O. Calcium carbonate is a main source for growing biorock. Precipitated calcium carbonate (PCC), pre-dispersed in slurry form, is a common filler material for latex gloves with the aim of achieving maximum saving in material and production costs.[42]

Fine ground calcium carbonate (GCC) is an essential ingredient in the microporous film used in diapers and some building films, as the pores are nucleated around the calcium carbonate particles during the manufacture of the film by biaxial stretching. GCC and PCC are used as a filler in paper because they are cheaper than wood fiber. In terms of market volume, GCC are the most important types of fillers currently used.[43] Printing and writing paper can contain 10–20% calcium carbonate. In North America, calcium carbonate has begun to replace kaolin in the production of glossy paper. Europe has been practicing this as alkaline papermaking or acid-free papermaking for some decades. PCC used for paper filling and paper coatings is precipitated and prepared in a variety of shapes and sizes having characteristic narrow particle size distributions and equivalent spherical diameters of 0.4 to 3 micrometers.

Calcium carbonate is widely used as an extender in paints,[44] in particular matte emulsion paint where typically 30% by weight of the paint is either chalk or marble. It is also a popular filler in plastics.[44] Some typical examples include around 15 to 20% loading of chalk in unplasticized polyvinyl chloride (uPVC) drainpipes, 5% to 15% loading of stearate-coated chalk or marble in uPVC window profile. PVC cables can use calcium carbonate at loadings of up to 70 phr (parts per hundred parts of resin) to improve mechanical properties (tensile strength and elongation) and electrical properties (volume resistivity). Polypropylene compounds are often filled with calcium carbonate to increase rigidity, a requirement that becomes important at high usage temperatures.[45] Here the percentage is often 20–40%. It also routinely used as a filler in thermosetting resins (sheet and bulk molding compounds)[45] and has also been mixed with ABS, and other ingredients, to form some types of compression molded "clay" poker chips.[46] Precipitated calcium carbonate, made by dropping calcium oxide into water, is used by itself or with additives as a white paint, known as whitewashing.[47][48]

Calcium carbonate is added to a wide range of trade and do it yourself adhesives, sealants, and decorating fillers.[44] Ceramic tile adhesives typically contain 70% to 80% limestone. Decorating crack fillers contain similar levels of marble or dolomite. It is also mixed with putty in setting stained glass windows, and as a resist to prevent glass from sticking to kiln shelves when firing glazes and paints at high temperature.[49][50][51][52]

In ceramic glaze applications, calcium carbonate is known as whiting,[44] and is a common ingredient for many glazes in its white powdered form. When a glaze containing this material is fired in a kiln, the whiting acts as a flux material in the glaze. Ground calcium carbonate is an abrasive (both as scouring powder and as an ingredient of household scouring creams), in particular in its calcite form, which has the relatively low hardness level of 3 on the Mohs scale, and will therefore not scratch glass and most other ceramics, enamel, bronze, iron, and steel, and have a moderate effect on softer metals like aluminium and copper. A paste made from calcium carbonate and deionized water can be used to clean tarnish on silver.[53]

Health and diet

500-milligram calcium supplements made from calcium carbonate
500-milligram calcium supplements made from calcium carbonate

Calcium carbonate is widely used medicinally as an inexpensive dietary calcium supplement for gastric antacid[54] (such as Tums and Eno). It may be used as a phosphate binder for the treatment of hyperphosphatemia (primarily in patients with chronic kidney failure). It is used in the pharmaceutical industry as an inert filler for tablets and other pharmaceuticals.[55]

Calcium carbonate is used in the production of calcium oxide as well as toothpaste and has seen a resurgence as a food preservative and color retainer, when used in or with products such as organic apples.[56]

Calcium carbonate is used therapeutically as phosphate binder in patients on maintenance haemodialysis. It is the most common form of phosphate binder prescribed, particularly in non-dialysis chronic kidney disease. Calcium carbonate is the most commonly used phosphate binder, but clinicians are increasingly prescribing the more expensive, non-calcium-based phosphate binders, particularly sevelamer.

Excess calcium from supplements, fortified food, and high-calcium diets can cause milk-alkali syndrome, which has serious toxicity and can be fatal. In 1915, Bertram Sippy introduced the "Sippy regimen" of hourly ingestion of milk and cream, and the gradual addition of eggs and cooked cereal, for 10 days, combined with alkaline powders, which provided symptomatic relief for peptic ulcer disease. Over the next several decades, the Sippy regimen resulted in kidney failure, alkalosis, and hypercalcaemia, mostly in men with peptic ulcer disease. These adverse effects were reversed when the regimen stopped, but it was fatal in some patients with protracted vomiting. Milk-alkali syndrome declined in men after effective treatments for peptic ulcer disease arose. Since the 1990s it has been most frequently reported in women taking calcium supplements above the recommended range of 1.2 to 1.5 grams daily, for prevention and treatment of osteoporosis,[57][58] and is exacerbated by dehydration. Calcium has been added to over-the-counter products, which contributes to inadvertent excessive intake. Excessive calcium intake can lead to hypercalcemia, complications of which include vomiting, abdominal pain and altered mental status.[59]

As a food additive it is designated E170,[60] and it has an INS number of 170. Used as an acidity regulator, anticaking agent, stabilizer or color it is approved for usage in the EU,[61] US[62] and Australia and New Zealand.[63] It is "added by law to all UK milled bread flour except wholemeal".[64][65] It is used in some soy milk and almond milk products as a source of dietary calcium; at least one study suggests that calcium carbonate might be as bioavailable as the calcium in cow's milk.[66] Calcium carbonate is also used as a firming agent in many canned and bottled vegetable products.

Several calcium supplement formulations have been documented to contain the chemical element lead,[67] posing a public health concern.[68] Lead is commonly found in natural sources of calcium.[67]

Agriculture and aquaculture

Agricultural lime, powdered chalk or limestone, is used as a cheap method for neutralising acidic soil, making it suitable for planting, also used in aquaculture industry for pH regulation of pond soil before initiating culture.[69]

Household cleaning

Calcium carbonate is a key ingredient in many household cleaning powders like Comet and is used as a scrubbing agent.

Pollution mitigation

In 1989, a researcher, Ken Simmons, introduced CaCO3 into the Whetstone Brook in Massachusetts.[70] His hope was that the calcium carbonate would counter the acid in the stream from acid rain and save the trout that had ceased to spawn. Although his experiment was a success, it did increase the amount of aluminium ions in the area of the brook that was not treated with the limestone. This shows that CaCO3 can be added to neutralize the effects of acid rain in river ecosystems. Currently calcium carbonate is used to neutralize acidic conditions in both soil and water.[71][72][73] Since the 1970s, such liming has been practiced on a large scale in Sweden to mitigate acidification and several thousand lakes and streams are limed repeatedly.[74]

Calcium carbonate is also used in flue gas desulfurisation applications eliminating harmful SO2 and NO2 emissions from coal and other fossil fuels burnt in large fossil fuel power stations.[71]

Discover more about Uses related topics

Construction aggregate

Construction aggregate

Construction aggregate, or simply aggregate, is a broad category of coarse- to medium-grained particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates. Aggregates are the most mined materials in the world. Aggregates are a component of composite materials such as concrete and asphalt; the aggregate serves as reinforcement to add strength to the overall composite material. Due to the relatively high hydraulic conductivity value as compared to most soils, aggregates are widely used in drainage applications such as foundation and French drains, septic drain fields, retaining wall drains, and roadside edge drains. Aggregates are also used as base material under foundations, roads, and railroads. In other words, aggregates are used as a stable foundation or road/rail base with predictable, uniform properties, or as a low-cost extender that binds with more expensive cement or asphalt to form concrete. Although most kinds of aggregate require a form of binding agent, there are types of self-binding aggregate which do not require any form of binding agent.

Cement

Cement

A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.

Acid rain

Acid rain

Acid rain is rain or any other form of precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions. Most water, including drinking water, has a neutral pH that exists between 6.5 and 8.5, but acid rain has a pH level lower than this and ranges from 4–5 on average. The more acidic the acid rain is, the lower its pH is. Acid rain can have harmful effects on plants, aquatic animals, and infrastructure. Acid rain is caused by emissions of sulfur dioxide and nitrogen oxide, which react with the water molecules in the atmosphere to produce acids.

Iron

Iron

Iron is a chemical element with symbol Fe and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, just ahead of oxygen, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust, being mainly deposited by meteorites in its metallic state, with its ores also being found there.

Iron ore

Iron ore

Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the form of magnetite (Fe3O4, 72.4% Fe), hematite (Fe2O3, 69.9% Fe), goethite (FeO(OH), 62.9% Fe), limonite (FeO(OH)·n(H2O), 55% Fe) or siderite (FeCO3, 48.2% Fe).

Blast furnace

Blast furnace

A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. Blast refers to the combustion air being supplied above atmospheric pressure.

Calcination

Calcination

Calcination refers to thermal treatment of a solid chemical compound (e.g. mixed carbonate ores) whereby the compound is raised to high temperature without melting under restricted supply of ambient oxygen (i.e. gaseous O2 fraction of air), generally for the purpose of removing impurities or volatile substances and/or to incur thermal decomposition.

Calcium oxide

Calcium oxide

Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "lime" connotes calcium-containing inorganic materials, in which carbonates, oxides and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single chemical compound calcium oxide. Calcium oxide that survives processing without reacting in building products such as cement is called free lime.

Drilling fluid

Drilling fluid

In geotechnical engineering, drilling fluid, also called drilling mud, is used to aid the drilling of boreholes into the earth. Often used while drilling oil and natural gas wells and on exploration drilling rigs, drilling fluids are also used for much simpler boreholes, such as water wells. One of the functions of drilling mud is to carry cuttings out of the hole.

Alkalinity

Alkalinity

Alkalinity (from Arabic: القلوي, romanized: al-qaly, lit. 'ashes of the saltwort') is the capacity of water to resist acidification. It should not be confused with basicity, which is an absolute measurement on the pH scale. Alkalinity is the strength of a buffer solution composed of weak acids and their conjugate bases. It is measured by titrating the solution with an acid such as HCl until its pH changes abruptly, or it reaches a known endpoint where that happens. Alkalinity is expressed in units of concentration, such as meq/L (milliequivalents per liter), μeq/kg (microequivalents per kilogram), or mg/L CaCO3 (milligrams per liter of calcium carbonate). Each of these measurements corresponds to an amount of acid added as a titrant.

Disinfectant

Disinfectant

A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than sterilization, which is an extreme physical or chemical process that kills all types of life. Disinfectants are generally distinguished from other antimicrobial agents such as antibiotics, which destroy microorganisms within the body, and antiseptics, which destroy microorganisms on living tissue. Disinfectants are also different from biocides—the latter are intended to destroy all forms of life, not just microorganisms. Disinfectants work by destroying the cell wall of microbes or interfering with their metabolism. It is also a form of decontamination, and can be defined as the process whereby physical or chemical methods are used to reduce the amount of pathogenic microorganisms on a surface.

Anthracite

Anthracite

Anthracite, also known as hard coal, and black coal, is a hard, compact variety of coal that has a submetallic luster. It has the highest carbon content, the fewest impurities, and the highest energy density of all types of coal and is the highest ranking of coals.

Calcination equilibrium

Calcination of limestone using charcoal fires to produce quicklime has been practiced since antiquity by cultures all over the world. The temperature at which limestone yields calcium oxide is usually given as 825 °C, but stating an absolute threshold is misleading. Calcium carbonate exists in equilibrium with calcium oxide and carbon dioxide at any temperature. At each temperature there is a partial pressure of carbon dioxide that is in equilibrium with calcium carbonate. At room temperature the equilibrium overwhelmingly favors calcium carbonate, because the equilibrium CO2 pressure is only a tiny fraction of the partial CO2 pressure in air, which is about 0.035 kPa.

At temperatures above 550 °C the equilibrium CO2 pressure begins to exceed the CO2 pressure in air. So above 550 °C, calcium carbonate begins to outgas CO2 into air. However, in a charcoal fired kiln, the concentration of CO2 will be much higher than it is in air. Indeed, if all the oxygen in the kiln is consumed in the fire, then the partial pressure of CO2 in the kiln can be as high as 20 kPa.[75]

The table shows that this partial pressure is not achieved until the temperature is nearly 800 °C. For the outgassing of CO2 from calcium carbonate to happen at an economically useful rate, the equilibrium pressure must significantly exceed the ambient pressure of CO2. And for it to happen rapidly, the equilibrium pressure must exceed total atmospheric pressure of 101 kPa, which happens at 898 °C.

Equilibrium pressure of CO2 over CaCO3 (P) versus temperature (T).[76]
P (kPa) 0.055 0.13 0.31 1.80 5.9 9.3 14 24 34 51 72 80 91 101 179 901 3961
T (°C) 550 587 605 680 727 748 777 800 830 852 871 881 891 898 937 1082 1241

Discover more about Calcination equilibrium related topics

Calcination

Calcination

Calcination refers to thermal treatment of a solid chemical compound (e.g. mixed carbonate ores) whereby the compound is raised to high temperature without melting under restricted supply of ambient oxygen (i.e. gaseous O2 fraction of air), generally for the purpose of removing impurities or volatile substances and/or to incur thermal decomposition.

Limestone

Limestone

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

Charcoal

Charcoal

Charcoal is a lightweight black carbon residue produced by strongly heating wood in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, called charcoal burning, often by forming a charcoal kiln, the heat is supplied by burning part of the starting material itself, with a limited supply of oxygen. The material can also be heated in a closed retort. Modern "charcoal" briquettes used for outdoor cooking may contain many other additives, e.g. coal.

Calcium oxide

Calcium oxide

Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "lime" connotes calcium-containing inorganic materials, in which carbonates, oxides and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single chemical compound calcium oxide. Calcium oxide that survives processing without reacting in building products such as cement is called free lime.

Carbon dioxide

Carbon dioxide

Carbon dioxide is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

Partial pressure

Partial pressure

In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture.

Oxygen

Oxygen

Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. Oxygen is Earth's most abundant element, and after hydrogen and helium, it is the third-most abundant element in the universe. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O2. Diatomic oxygen gas currently constitutes 20.95% of the Earth's atmosphere, though this has changed considerably over long periods of time. Oxygen makes up almost half of the Earth's crust in the form of oxides.

Solubility

With varying CO2 pressure

Travertine calcium carbonate deposits from a hot spring
Travertine calcium carbonate deposits from a hot spring

Calcium carbonate is poorly soluble in pure water (47 mg/L at normal atmospheric CO2 partial pressure as shown below).

The equilibrium of its solution is given by the equation (with dissolved calcium carbonate on the right):

CaCO3 ⇌ Ca2+ + CO2−3 Ksp = 3.7×10−9 to 8.7×10−9 at 25 °C

where the solubility product for [Ca2+][CO2−3] is given as anywhere from Ksp = 3.7×10−9 to Ksp = 8.7×10−9 at 25 °C, depending upon the data source.[76][77] What the equation means is that the product of molar concentration of calcium ions (moles of dissolved Ca2+ per liter of solution) with the molar concentration of dissolved CO2−3 cannot exceed the value of Ksp. This seemingly simple solubility equation, however, must be taken along with the more complicated equilibrium of carbon dioxide with water (see carbonic acid). Some of the CO2−3 combines with H+ in the solution according to

HCO3 ⇌ H+ + CO2−3    Ka2 = 5.61×10−11 at 25 °C

HCO3 is known as the bicarbonate ion. Calcium bicarbonate is many times more soluble in water than calcium carbonate—indeed it exists only in solution.

Some of the HCO3 combines with H+ in solution according to

H2CO3 ⇌ H+ + HCO3    Ka1 = 2.5×10−4 at 25 °C

Some of the H2CO3 breaks up into water and dissolved carbon dioxide according to

H2O + CO2(aq) ⇌ H2CO3    Kh = 1.70×10−3 at 25 °C

And dissolved carbon dioxide is in equilibrium with atmospheric carbon dioxide according to

PCO2/[CO2] = kH where kH = 29.76 atm/(mol/L) at 25 °C (Henry constant), PCO2 being the CO2 partial pressure.

For ambient air, PCO2 is around 3.5×10−4 atmospheres (or equivalently 35 Pa). The last equation above fixes the concentration of dissolved CO2 as a function of PCO2, independent of the concentration of dissolved CaCO3. At atmospheric partial pressure of CO2, dissolved CO2 concentration is 1.2×10−5 moles per liter. The equation before that fixes the concentration of H2CO3 as a function of CO2 concentration. For [CO2] = 1.2×10−5, it results in [H2CO3] = 2.0×10−8 moles per liter. When [H2CO3] is known, the remaining three equations together with

Calcium ion solubility as a function of CO2 partial pressure at 25 °C (Ksp = 4.47×10−9)
PCO2 (atm) pH [Ca2+] (mol/L)
10−12 12.0 5.19×10−3
10−10 11.3 1.12×10−3
10−8 10.7 2.55×10−4
10−6 9.83 1.20×10−4
10−4 8.62 3.16×10−4
3.5×10−4 8.27 4.70×10−4
10−3 7.96 6.62×10−4
10−2 7.30 1.42×10−3
10−1 6.63 3.05×10−3
1 5.96 6.58×10−3
10 5.30 1.42×10−2
H2O ⇌ H+ + OH K = 10−14 at 25 °C

(which is true for all aqueous solutions), and the fact that the solution must be electrically neutral, i.e., the overall charge of dissolved positive ions [Ca2+] + 2 [H+] must be cancelled out by the overall charge of dissolved negative ions [HCO3] + [CO2−3] + [OH], make it possible to solve simultaneously for the remaining five unknown concentrations (note that the previously mentioned form of the neutrality is valid only if calcium carbonate has been put in contact with pure water or with a neutral pH solution; in the case where the initial water solvent pH is not neutral, the balance is not neutral).

The adjacent table shows the result for [Ca2+] and [H+] (in the form of pH) as a function of ambient partial pressure of CO2 (Ksp = 4.47×10−9 has been taken for the calculation).

  • At atmospheric levels of ambient CO2 the table indicates that the solution will be slightly alkaline with a maximum CaCO3 solubility of 47 mg/L.
  • As ambient CO2 partial pressure is reduced below atmospheric levels, the solution becomes more and more alkaline. At extremely low PCO2, dissolved CO2, bicarbonate ion, and carbonate ion largely evaporate from the solution, leaving a highly alkaline solution of calcium hydroxide, which is more soluble than CaCO3. Note that for PCO2 = 10−12 atm, the [Ca2+][OH]2 product is still below the solubility product of Ca(OH)2 (8×10−6). For still lower CO2 pressure, Ca(OH)2 precipitation will occur before CaCO3 precipitation.
  • As ambient CO2 partial pressure increases to levels above atmospheric, pH drops, and much of the carbonate ion is converted to bicarbonate ion, which results in higher solubility of Ca2+.

The effect of the latter is especially evident in day-to-day life of people who have hard water. Water in aquifers underground can be exposed to levels of CO2 much higher than atmospheric. As such water percolates through calcium carbonate rock, the CaCO3 dissolves according to the second trend. When that same water then emerges from the tap, in time it comes into equilibrium with CO2 levels in the air by outgassing its excess CO2. The calcium carbonate becomes less soluble as a result, and the excess precipitates as lime scale. This same process is responsible for the formation of stalactites and stalagmites in limestone caves.

Two hydrated phases of calcium carbonate, monohydrocalcite CaCO3·H2O and ikaite CaCO3·6H2O, may precipitate from water at ambient conditions and persist as metastable phases.

With varying pH, temperature and salinity: CaCO3 scaling in swimming pools

In contrast to the open equilibrium scenario above, many swimming pools are managed by addition of sodium bicarbonate (NaHCO3) to about 2 mM as a buffer, then control of pH through use of HCl, NaHSO4, Na2CO3, NaOH or chlorine formulations that are acidic or basic. In this situation, dissolved inorganic carbon (total inorganic carbon) is far from equilibrium with atmospheric CO2. Progress towards equilibrium through outgassing of CO2 is slowed by

  1. the slow reaction
    H2CO3 ⇌ CO2(aq) + H2O;[78]
  2. limited aeration in a deep water column; and
  3. periodic replenishment of bicarbonate to maintain buffer capacity (often estimated through measurement of total alkalinity).

In this situation, the dissociation constants for the much faster reactions

H2CO3 ⇌ H+ + HCO3 ⇌ 2 H+ + CO2−3

allow the prediction of concentrations of each dissolved inorganic carbon species in solution, from the added concentration of HCO3 (which constitutes more than 90% of Bjerrum plot species from pH 7 to pH 8 at 25 °C in fresh water).[79] Addition of HCO3 will increase CO2−3 concentration at any pH. Rearranging the equations given above, we can see that [Ca2+] = Ksp/[CO2−3], and [CO2−3] = Ka2 [HCO3]/[H+]. Therefore, when HCO3 concentration is known, the maximum concentration of Ca2+ ions before scaling through CaCO3 precipitation can be predicted from the formula:

[Ca2+]max = Ksp/Ka2 × [H+]/[HCO3]

The solubility product for CaCO3 (Ksp) and the dissociation constants for the dissolved inorganic carbon species (including Ka2) are all substantially affected by temperature and salinity,[79] with the overall effect that [Ca2+]max increases from freshwater to saltwater, and decreases with rising temperature, pH, or added bicarbonate level, as illustrated in the accompanying graphs.

The trends are illustrative for pool management, but whether scaling occurs also depends on other factors including interactions with Mg2+, [B(OH)4] and other ions in the pool, as well as supersaturation effects.[80][81] Scaling is commonly observed in electrolytic chlorine generators, where there is a high pH near the cathode surface and scale deposition further increases temperature. This is one reason that some pool operators prefer borate over bicarbonate as the primary pH buffer, and avoid the use of pool chemicals containing calcium.[82]

Solubility in a strong or weak acid solution

Solutions of strong (HCl), moderately strong (sulfamic) or weak (acetic, citric, sorbic, lactic, phosphoric) acids are commercially available. They are commonly used as descaling agents to remove limescale deposits. The maximum amount of CaCO3 that can be "dissolved" by one liter of an acid solution can be calculated using the above equilibrium equations.

  • In the case of a strong monoacid with decreasing acid concentration [A] = [A], we obtain (with CaCO3 molar mass = 100 g/mol):
[A] (mol/L) 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−10
Initial pH 0.00 1.00 2.00 3.00 4.00 5.00 6.00 6.79 7.00
Final pH 6.75 7.25 7.75 8.14 8.25 8.26 8.26 8.26 8.27
Dissolved CaCO3
(g/L of acid)
50.0 5.00 0.514 0.0849 0.0504 0.0474 0.0471 0.0470 0.0470
where the initial state is the acid solution with no Ca2+ (not taking into account possible CO2 dissolution) and the final state is the solution with saturated Ca2+. For strong acid concentrations, all species have a negligible concentration in the final state with respect to Ca2+ and A so that the neutrality equation reduces approximately to 2[Ca2+] = [A] yielding [Ca2+] ≈ 0.5 [A]. When the concentration decreases, [HCO3] becomes non-negligible so that the preceding expression is no longer valid. For vanishing acid concentrations, one can recover the final pH and the solubility of CaCO3 in pure water.
  • In the case of a weak monoacid (here we take acetic acid with pKa = 4.76) with decreasing total acid concentration [A] = [A] + [AH], we obtain:
[A] (mol/L) [Ca2+] ≈ 0.5 [A] 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−10
Initial pH 2.38 2.88 3.39 3.91 4.47 5.15 6.02 6.79 7.00
Final pH 6.75 7.25 7.75 8.14 8.25 8.26 8.26 8.26 8.27
Dissolved CaCO3
(g/L of acid)
49.5 4.99 0.513 0.0848 0.0504 0.0474 0.0471 0.0470 0.0470
For the same total acid concentration, the initial pH of the weak acid is less acid than the one of the strong acid; however, the maximum amount of CaCO3 which can be dissolved is approximately the same. This is because in the final state, the pH is larger than the pKa, so that the weak acid is almost completely dissociated, yielding in the end as many H+ ions as the strong acid to "dissolve" the calcium carbonate.
  • The calculation in the case of phosphoric acid (which is the most widely used for domestic applications) is more complicated since the concentrations of the four dissociation states corresponding to this acid must be calculated together with [HCO3], [CO2−3], [Ca2+], [H+] and [OH]. The system may be reduced to a seventh degree equation for [H+] the numerical solution of which gives
[A] (mol/L) 1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−10
Initial pH 1.08 1.62 2.25 3.05 4.01 5.00 5.97 6.74 7.00
Final pH 6.71 7.17 7.63 8.06 8.24 8.26 8.26 8.26 8.27
Dissolved CaCO3
(g/L of acid)
62.0 7.39 0.874 0.123 0.0536 0.0477 0.0471 0.0471 0.0470
where [A] = [H3PO4] + [H2PO4] + [HPO2−4] + [PO3−4] is the total acid concentration. Thus phosphoric acid is more efficient than a monoacid since at the final almost neutral pH, the second dissociated state concentration [HPO2−4] is not negligible (see phosphoric acid).

Discover more about Solubility related topics

Hot spring

Hot spring

A hot spring, hydrothermal spring, or geothermal spring is a spring produced by the emergence of geothermally heated groundwater onto the surface of the Earth. The groundwater is heated either by shallow bodies of magma or by circulation through faults to hot rock deep in the Earth's crust. In either case, the ultimate source of the heat is radioactive decay of naturally occurring radioactive elements in the Earth's mantle, the layer beneath the crust.

Mole (unit)

Mole (unit)

The mole is the unit of amount of substance in the International System of Units (SI). The quantity amount of substance is a measure of how many elementary entities of a given substance are in an object or sample.

Carbon dioxide

Carbon dioxide

Carbon dioxide is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

Carbonic acid

Carbonic acid

In chemistry, carbonic acid is an inorganic compound with the chemical formula H2CO3. As a dilute solution in water, it is pervasive, but the pure compound, a colorless gas, can only be obtained at temperatures around −80 °C. The molecule rapidly converts to water and carbon dioxide in the presence of water, however in the absence of water, contrary to popular belief, it is quite stable at room temperature. The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the acidity of natural waters.

Bicarbonate

Bicarbonate

In inorganic chemistry, bicarbonate is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula HCO−3.

Calcium bicarbonate

Calcium bicarbonate

Calcium bicarbonate, also called calcium hydrogencarbonate, has the chemical formula Ca(HCO3)2. The term does not refer to a known solid compound; it exists only in aqueous solution containing calcium (Ca2+), bicarbonate (HCO−3), and carbonate (CO2−3) ions, together with dissolved carbon dioxide (CO2). The relative concentrations of these carbon-containing species depend on the pH; bicarbonate predominates within the range 6.36–10.25 in fresh water.

Henry's law

Henry's law

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century.

Partial pressure

Partial pressure

In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture.

PH

PH

In chemistry, pH, also referred to as acidity, historically denoting "potential of hydrogen", is a scale used to specify the acidity or basicity of an aqueous solution. Acidic solutions are measured to have lower pH values than basic or alkaline solutions.

Calcium hydroxide

Calcium hydroxide

Calcium hydroxide (traditionally called slaked lime) is an inorganic compound with the chemical formula Ca(OH)2. It is a colorless crystal or white powder and is produced when quicklime (calcium oxide) is mixed with water. It has many names including hydrated lime, caustic lime, builders' lime, slaked lime, cal, and pickling lime. Calcium hydroxide is used in many applications, including food preparation, where it has been identified as E number E526. Limewater, also called milk of lime, is the common name for a saturated solution of calcium hydroxide.

Monohydrocalcite

Monohydrocalcite

Monohydrocalcite is a mineral that is a hydrous form of calcium carbonate, CaCO3·H2O. It was formerly also known by the name hydrocalcite, which is now discredited by the IMA. It is a trigonal mineral which is white when pure. Monohydrocalcite is not a common rock-forming mineral, but is frequently associated with other calcium and magnesium carbonate minerals, such as calcite, aragonite, lansfordite, and nesquehonite.

Ikaite

Ikaite

Ikaite is the mineral name for the hexahydrate of calcium carbonate, CaCO3·6H2O. Ikaite tends to form very steep or spiky pyramidal crystals, often radially arranged, of varied sizes from thumbnail size aggregates to gigantic salient spurs. It is only found in a metastable state and decomposes rapidly by losing most of its water content once removed from near-freezing water. This "melting mineral" is more commonly known through its pseudomorphs.

Source: "Calcium carbonate", Wikipedia, Wikimedia Foundation, (2023, March 20th), https://en.wikipedia.org/wiki/Calcium_carbonate.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

See also
Electron micrograph of needle-like calcium carbonate crystals formed as limescale in a kettle
Electron micrograph of needle-like calcium carbonate crystals formed as limescale in a kettle
Around 2 g of calcium-48 carbonate
Around 2 g of calcium-48 carbonate
References
  1. ^ Aylward, Gordon; Findlay, Tristan (2008). SI Chemical Data Book (4th ed.). John Wiley & Sons Australia. ISBN 978-0-470-81638-7.
  2. ^ Rohleder, J.; Kroker, E. (2001). Calcium Carbonate: From the Cretaceous Period Into the 21st Century. Springer Science & Business Media. ISBN 978-3-7643-6425-0.
  3. ^ Benjamin, Mark M. (2002). Water Chemistry. McGraw-Hill. ISBN 978-0-07-238390-4.
  4. ^ "Occupational safety and health guideline for calcium carbonate" (PDF). US Dept. of Health and Human Services. Retrieved 31 March 2011.
  5. ^ "Archived copy" (PDF). Archived from the original (PDF) on 29 October 2018. Retrieved 29 October 2018.{{cite web}}: CS1 maint: archived copy as title (link)
  6. ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A21. ISBN 978-0-618-94690-7.
  7. ^ NIOSH Pocket Guide to Chemical Hazards. "#0090". National Institute for Occupational Safety and Health (NIOSH).
  8. ^ Strumińska-Parulska, DI (2015). "Determination of 210Po in calcium supplements and the possible related dose assessment to the consumers". Journal of Environmental Radioactivity. 150: 121–125. doi:10.1016/j.jenvrad.2015.08.006. PMID 26318774.
  9. ^ "Precipitated Calcium Carbonate". Archived from the original on 11 January 2014. Retrieved 11 January 2014.
  10. ^ Kim, Yi-Yeoun; Schenk, Anna S.; Ihli, Johannes; Kulak, Alex N.; Hetherington, Nicola B. J.; Tang, Chiu C.; Schmahl, Wolfgang W.; Griesshaber, Erika; Hyett, Geoffrey; Meldrum, Fiona C. (September 2014). "A critical analysis of calcium carbonate mesocrystals". Nature Communications. 5 (1): 4341. Bibcode:2014NatCo...5.4341K. doi:10.1038/ncomms5341. ISSN 2041-1723. PMC 4104461. PMID 25014563.
  11. ^ a b c d e Ropp, R. C. (6 March 2013). Encyclopedia of the Alkaline Earth Compounds. Elsevier. pp. 359–370. ISBN 9780444595508.
  12. ^ Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Dovesi, Roberto (2013). "The Multiple Structures of Vaterite". Crystal Growth & Design. 13 (6): 2247–2251. doi:10.1021/cg4002972. ISSN 1528-7483.
  13. ^ Morse, John W.; Arvidson, Rolf S.; Lüttge, Andreas (1 February 2007). "Calcium Carbonate Formation and Dissolution". Chemical Reviews. 107 (2): 342–381. doi:10.1021/cr050358j. ISSN 0009-2665. PMID 17261071.
  14. ^ Géologue., Lippmann, Friedrich (1973). Sedimentary carbonate minerals. Springer. ISBN 3-540-06011-1. OCLC 715109304.
  15. ^ a b c d Nahi, Ouassef; Kulak, Alexander N.; Zhang, Shuheng; He, Xuefeng; Aslam, Zabeada; Ilett, Martha A.; Ford, Ian J.; Darkins, Robert; Meldrum, Fiona C. (20 November 2022). "Polyamines Promote Aragonite Nucleation and Generate Biomimetic Structures". Advanced Science. 10 (1): 2203759. doi:10.1002/advs.202203759. ISSN 2198-3844. PMC 9811428. PMID 36403251. S2CID 253707446.
  16. ^ Welberry, T. R, ed. (2006). International tables for crystallography. Chester, England: International Union of Crystallography. doi:10.1107/97809553602060000001. ISBN 978-0-7923-6590-7. OCLC 166325528. S2CID 146060934.
  17. ^ Chessin, H.; Hamilton, W. C.; Post, B. (1 April 1965). "Position and thermal parameters of oxygen atoms in calcite". Acta Crystallographica. 18 (4): 689–693. doi:10.1107/S0365110X65001585. ISSN 0365-110X.
  18. ^ Negro, AD (1971). "Refinement of the crystal structure of aragonite" (PDF). American Mineralogist: Journal of Earth and Planetary Materials. 56: 768–772 – via GeoScienceWorld.
  19. ^ Kabalah-Amitai, Lee; Mayzel, Boaz; Kauffmann, Yaron; Fitch, Andrew N.; Bloch, Leonid; Gilbert, Pupa U. P. A.; Pokroy, Boaz (26 April 2013). "Vaterite Crystals Contain Two Interspersed Crystal Structures". Science. 340 (6131): 454–457. Bibcode:2013Sci...340..454K. doi:10.1126/science.1232139. ISSN 0036-8075. PMID 23620047. S2CID 206546317.
  20. ^ Bots, Pieter; Benning, Liane G.; Rodriguez-Blanco, Juan-Diego; Roncal-Herrero, Teresa; Shaw, Samuel (3 July 2012). "Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC)". Crystal Growth & Design. 12 (7): 3806–3814. doi:10.1021/cg300676b. ISSN 1528-7483.
  21. ^ Cardew, Peter T.; Davey, Roger J. (2 October 2019). "The Ostwald Ratio, Kinetic Phase Diagrams, and Polymorph Maps". Crystal Growth & Design. 19 (10): 5798–5810. doi:10.1021/acs.cgd.9b00815. ISSN 1528-7483. S2CID 202885778.
  22. ^ Zhang, Shuheng; Nahi, Ouassef; Chen, Li; Aslam, Zabeada; Kapur, Nikil; Kim, Yi‐Yeoun; Meldrum, Fiona C. (June 2022). "Magnesium Ions Direct the Solid‐State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesium‐Calcite, or Dolomite". Advanced Functional Materials. 32 (25): 2201394. doi:10.1002/adfm.202201394. ISSN 1616-301X. S2CID 247587883.
  23. ^ Metzler, Rebecca A.; Evans, John Spencer; Killian, Christopher E.; Zhou, Dong; Churchill, Tyler H.; Appathurai, Narayana P.; Coppersmith, Susan N.; Gilbert, P. U. P. A. (12 May 2010). "Nacre Protein Fragment Templates Lamellar Aragonite Growth". Journal of the American Chemical Society. 132 (18): 6329–6334. doi:10.1021/ja909735y. ISSN 0002-7863. PMID 20397648.
  24. ^ Lowenstam, H.A.; Weiner, S. (1989). On Biomineralization. Oxford University Press. ISBN 9780195049770.
  25. ^ Belcher, A. M.; Wu, X. H.; Christensen, R. J.; Hansma, P. K.; Stucky, G. D.; Morse, D. E. (May 1996). "Control of crystal phase switching and orientation by soluble mollusc-shell proteins". Nature. 381 (6577): 56–58. Bibcode:1996Natur.381...56B. doi:10.1038/381056a0. ISSN 1476-4687. S2CID 4285912.
  26. ^ Falini, Giuseppe; Albeck, Shira; Weiner, Steve; Addadi, Lia (5 January 1996). "Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules". Science. 271 (5245): 67–69. Bibcode:1996Sci...271...67F. doi:10.1126/science.271.5245.67. ISSN 0036-8075. S2CID 95357556.
  27. ^ Marin, Frédéric (October 2020). "Mollusc shellomes: Past, present and future". Journal of Structural Biology. 212 (1): 107583. doi:10.1016/j.jsb.2020.107583. PMID 32721585. S2CID 220850117.
  28. ^ Russell, Daniel E . 17 February 2008. Retrieved December 31, 2010. "Helgustadir Iceland Spar Mine" mindat.org
  29. ^ Horne, Francis (23 October 2006). "How are seashells created?". Scientific American. Retrieved 25 April 2012.
  30. ^ "Oyster shell calcium". WebMD. Retrieved 25 April 2012.
  31. ^ "Oyster Shell Calcium Carbonate". Caltron Clays & Chemicals. Archived from the original on 10 September 2013. Retrieved 25 April 2012.
  32. ^ Mangels, Ann Reed (4 June 2014). "Bone nutrients for vegetarians". The American Journal of Clinical Nutrition. 100 (1): 469S–475S. doi:10.3945/ajcn.113.071423. PMID 24898231.
  33. ^ Boynton, W. V.; Ming, D. W.; Kounaves, S. P.; et al. (2009). "Evidence for Calcium Carbonate at the Mars Phoenix Landing Site" (PDF). Science. 325 (5936): 61–64. Bibcode:2009Sci...325...61B. doi:10.1126/science.1172768. PMID 19574384. S2CID 26740165.
  34. ^ Clark, B. C., III; Arvidson, R. E.; Gellert, R.; Morris, R. V.; Ming, D. W.; Richter, L.; Ruff, S. W.; Michalski, J. R.; Farrand, W. H.; Yen, A.; Herkenhoff, K. E.; Li, R.; Squyres, S. W.; Schröder, C.; Klingelhöfer, G.; Bell, J. F. (2007). "Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars" (PDF). Journal of Geophysical Research. 112 (E6): E06S01. Bibcode:2007JGRE..112.6S01C. doi:10.1029/2006JE002756. hdl:1893/17119.
  35. ^ Weyl, P.K. (1959). "The change in solubility of calcium carbonate with temperature and carbon dioxide content". Geochimica et Cosmochimica Acta. 17 (3–4): 214–225. Bibcode:1959GeCoA..17..214W. doi:10.1016/0016-7037(59)90096-1.
  36. ^ a b Trexler, D. (2001). "Two Medicine Formation, Montana: geology and fauna". In Tanke, D. H.; Carpenter, K. (eds.). Mesozoic Vertebrate Life. Indiana University Press. pp. 298–309. ISBN 978-0-253-33907-2.
  37. ^ Ward, Peter (2006). Out of Thin Air: Dinosaurs, Birds, and Earth's Ancient Atmosphere. doi:10.17226/11630. ISBN 9780309666121.
  38. ^ "Effects of Acid Rain". US Environmental Protection Agency. Retrieved 14 March 2015.
  39. ^ "Blast Furnace". Science Aid. Archived from the original on 17 December 2007. Retrieved 30 December 2007.
  40. ^ Sfetcu, Nicolae (2 May 2014). Health & Drugs: Disease, Prescription & Medication. Nicolae Sfetcu.
  41. ^ McGinnis, R. A. Beet-Sugar Technology (2nd ed.). Beet Sugar Development Foundation. p. 178.
  42. ^ "Precipitated Calcium Carbonate uses". Archived from the original on 25 July 2014.
  43. ^ "Market Study Fillers, 2nd ed". Ceresana. September 2011. Archived from the original on 21 September 2013. Retrieved 4 September 2013.
  44. ^ a b c d "Calcium Carbonate Powder". Reade Advanced Materials. 4 February 2006. Archived from the original on 22 February 2008. Retrieved 30 December 2007.
  45. ^ a b "Calcium carbonate in plastic applications". Imerys Performance Minerals. Archived from the original on 4 August 2008. Retrieved 1 August 2008.
  46. ^ "Why do calcium carbonate play an important part in Industrial". www.xintuchemical.com. Retrieved 7 October 2018.
  47. ^ "precipitated calcium carbonate commodity price". www.dgci.be. Archived from the original on 7 October 2018. Retrieved 7 October 2018.
  48. ^ Jimoh, O.A.; et al. (2017). "Understanding the Precipitated Calcium Carbonate (PCC) Production Mechanism and Its Characteristics in the Liquid–Gas System Using Milk of Lime (MOL) Suspension" (PDF). South African Journal of Chemistry. 70: 1–7. doi:10.17159/0379-4350/2017/v70a1.
  49. ^ "Topic: Re: Can our calcium carbonate "waste" be utilized in other industries so we can divert it from landfills?". www.chemicalprocessing.com. 4 March 2010. Archived from the original on 23 March 2017. Retrieved 3 February 2021.
  50. ^ "Why do calcium carbonate play an important part in Industry?". www.xintuchemical.com. Retrieved 3 February 2021.
  51. ^ "Calcium Carbonates / Calcite/ Limestone. CaCO3 | Rajasthan Minerals & Chemicals". www.rmcl.co.in. Archived from the original on 15 April 2021. Retrieved 3 February 2021.
  52. ^ "Calcium Carbonate". kamceramics.com. Retrieved 3 February 2021.
  53. ^ "Ohio Historical Society Blog: Make It Shine". Ohio Historical Society. Archived from the original on 23 March 2012. Retrieved 2 June 2011.
  54. ^ "Calcium Carbonate". Medline Plus. National Institutes of Health. 1 October 2005. Archived from the original on 17 October 2007. Retrieved 30 December 2007.
  55. ^ Lieberman, Herbert A.; Lachman, Leon; Schwartz, Joseph B. (1990). Pharmaceutical Dosage Forms: Tablets. New York: Dekker. p. 153. ISBN 978-0-8247-8044-9.
  56. ^ "Food Additives – Names Starting with C". Chemistry.about.com. 10 April 2012. Archived from the original on 16 October 2006. Retrieved 24 May 2012.
  57. ^ Caruso JB, Patel RM, Julka K, Parish DC (July 2007). "Health-behavior induced disease: return of the milk-alkali syndrome". J Gen Intern Med. 22 (7): 1053–5. doi:10.1007/s11606-007-0226-0. PMC 2219730. PMID 17483976.
  58. ^ Beall DP, Henslee HB, Webb HR, Scofield RH (May 2006). "Milk-alkali syndrome: a historical review and description of the modern version of the syndrome". Am. J. Med. Sci. 331 (5): 233–42. doi:10.1097/00000441-200605000-00001. PMID 16702792. S2CID 45802184.
  59. ^ Gabriely, Ilan; Leu, James P.; Barzel, Uriel S. (2008). "Clinical problem-solving, back to basics". New England Journal of Medicine. 358 (18): 1952–6. doi:10.1056/NEJMcps0706188. PMID 18450607.
  60. ^ "E-numbers: E170 Calcium carbonate". Food-Info.net. 080419 food-info.net
  61. ^ "Current EU approved additives and their E Numbers". UK Food Standards Agency. Retrieved 27 October 2011.
  62. ^ "Listing of Food Additives Status Part I". US Food and Drug Administration. Archived from the original on 14 March 2013. Retrieved 27 October 2011.
  63. ^ "Standard 1.2.4 – Labelling of ingredients". Australia New Zealand Food Standards Code. Retrieved 27 October 2011.
  64. ^ Holdstock, Lee. "Why go organic?". Real Bread Campaign. Soil Association Certification Limited. Retrieved 3 April 2021.
  65. ^ "Bread and Flour Regulations 1998 A summary of responses to the consultation and Government Reply" (PDF). Department for Environment, Food and Rural Affairs. August 2013.
  66. ^ Zhao, Y.; Martin, B. R.; Weaver, C. M. (2005). "Calcium bioavailability of calcium carbonate fortified soymilk is equivalent to cow's milk in young women". The Journal of Nutrition. 135 (10): 2379–2382. doi:10.1093/jn/135.10.2379. PMID 16177199.
  67. ^ a b Kauffman, John F.; Westenberger, Benjamin J.; Robertson, J. David; Guthrie, James; Jacobs, Abigail; Cummins, Susan K. (1 July 2007). "Lead in pharmaceutical products and dietary supplements". Regulatory Toxicology and Pharmacology. 48 (2): 128–134. doi:10.1016/j.yrtph.2007.03.001. ISSN 0273-2300. PMID 17467129.
  68. ^ Ross, Edward A.; Szabo, N. J.; Tebbett, I. R. (2000). "Lead Content of Calcium Supplements". JAMA. 284 (11): 1425–1429. doi:10.1001/jama.284.11.1425. PMID 10989406.
  69. ^ Oates, J. A. H. (11 July 2008). Lime and Limestone: Chemistry and Technology, Production and Uses. John Wiley & Sons. pp. 111–113. ISBN 978-3-527-61201-7.
  70. ^ "Limestone Dispenser Fights Acid Rain in Stream". The New York Times. Associated Press. 13 June 1989.
  71. ^ a b "Environmental Uses for Calcium Carbonate". Congcal. 6 September 2012. Retrieved 5 August 2013.
  72. ^ Schreiber, R. K. (1988). "Cooperative federal-state liming research on surface waters impacted by acidic deposition". Water, Air, & Soil Pollution. 41 (1): 53–73. Bibcode:1988WASP...41...53S. doi:10.1007/BF00160344. S2CID 98404326.
  73. ^ Kircheis, Dan; Dill, Richard (2006). "Effects of low pH and high aluminum on Atlantic salmon smolts in Eastern Maine and liming project feasibility analysis" (reprinted at Downeast Salmon Federation). National Marine Fisheries Service and Maine Atlantic Salmon Commission.
  74. ^ Guhrén, M.; Bigler, C.; Renberg, I. (2006). "Liming placed in a long-term perspective: A paleolimnological study of 12 lakes in the Swedish liming program". Journal of Paleolimnology. 37 (2): 247–258. Bibcode:2007JPall..37..247G. doi:10.1007/s10933-006-9014-9. S2CID 129439066.
  75. ^ "Solvay Precipitated Calcium Carbonate: Production". Solvay. 9 March 2007. Retrieved 30 December 2007.
  76. ^ a b Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  77. ^ "Selected Solubility Products and Formation Constants at 25 °C". California State University, Dominguez Hills. Archived from the original on 25 May 2006. Retrieved 7 June 2007.
  78. ^ Wang, X.; Conway, W.; Burns, R.; McCann, N.; Maeder, M. (2010). "Comprehensive Study of the Hydration and Dehydration Reactions of Carbon Dioxide in Aqueous Solution". The Journal of Physical Chemistry A. 114 (4): 1734–40. Bibcode:2010JPCA..114.1734W. doi:10.1021/jp909019u. PMID 20039712.
  79. ^ a b Mook, W. (2000). "Chemistry of carbonic acid in water". Environmental Isotopes in the Hydrological Cycle: Principles and Applications (PDF). Paris: INEA/UNESCO. pp. 143–165. Archived from the original (PDF) on 18 March 2014. Retrieved 18 March 2014.
  80. ^ Wojtowicz, J. A. (1998). "Factors affecting precipitation of calcium carbonate" (PDF). Journal of the Swimming Pool and Spa Industry. 3 (1): 18–23. Archived from the original (PDF) on 18 March 2014. Retrieved 18 March 2014.
  81. ^ Wojtowicz, J. A. (1998). "Corrections, potential errors, and significance of the saturation index" (PDF). Journal of the Swimming Pool and Spa Industry. 3 (1): 37–40. Archived from the original (PDF) on 24 August 2012. Retrieved 18 March 2014.
  82. ^ Birch, R. G. (2013). "BABES: a better method than "BBB" for pools with a salt-water chlorine generator" (PDF). scithings.id.au.
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.