Get Our Extension

Anti-aircraft warfare

From Wikipedia, in a visual modern way
Swedish Bofors 40mm anti-aircraft gun mounted overlooking a beach in French Algeria, manned by a United States anti-aircraft artillery crew (1943).
Swedish Bofors 40mm anti-aircraft gun mounted overlooking a beach in French Algeria, manned by a United States anti-aircraft artillery crew (1943).

Anti-aircraft warfare, counter-air or air defence forces is the battlespace response to aerial warfare, defined by NATO as "all measures designed to nullify or reduce the effectiveness of hostile air action".[1] It includes surface based, subsurface (submarine launched), and air-based weapon systems, associated sensor systems, command and control arrangements, and passive measures (e.g. barrage balloons). It may be used to protect naval, ground, and air forces in any location. However, for most countries, the main effort has tended to be homeland defence. NATO refers to airborne air defence as counter-air and naval air defence as anti-aircraft warfare. Missile defence is an extension of air defence, as are initiatives to adapt air defence to the task of intercepting any projectile in flight.

In some countries, such as Britain and Germany during the Second World War, the Soviet Union, and modern NATO and the United States, ground-based air defence and air defence aircraft have been under integrated command and control. However, while overall air defence may be for homeland defence (including military facilities), forces in the field, wherever they are, provide their own defences against air threats.

Until the 1950s, guns firing ballistic munitions ranging from 7.62 mm (.30 in) to 152.4 mm (6 in) were the standard weapons; guided missiles then became dominant, except at the very shortest ranges (as with close-in weapon systems, which typically use rotary autocannons or, in very modern systems, surface-to-air adaptations of short-range air-to-air missiles, often combined in one system with rotary cannons).

Discover more about Anti-aircraft warfare related topics

Battlespace

Battlespace

Battlespace or battle-space is a term used to signify a military strategy which integrates multiple armed forces for the military theatre of operations, including air, information, land, sea, cyber and outer space to achieve military goals. It includes the environment, factors, and conditions that must be understood to successfully apply combat power, protect the force, or complete the mission. This includes enemy and friendly armed forces, infrastructure, weather, terrain, and the electromagnetic spectrum within the operational areas and areas of interest.

Aerial warfare

Aerial warfare

Aerial warfare is the use of military aircraft and other flying machines in warfare. Aerial warfare includes bombers attacking enemy installations or a concentration of enemy troops or strategic targets; fighter aircraft battling for control of airspace; attack aircraft engaging in close air support against ground targets; naval aviation flying against sea and nearby land targets; gliders, helicopters and other aircraft to carry airborne forces such as paratroopers; aerial refueling tankers to extend operation time or range; and military transport aircraft to move cargo and personnel. Historically, military aircraft have included lighter-than-air balloons carrying artillery observers; lighter-than-air airships for bombing cities; various sorts of reconnaissance, surveillance and early warning aircraft carrying observers, cameras and radar equipment; torpedo bombers to attack enemy shipping; and military air-sea rescue aircraft for saving downed airmen. Modern aerial warfare includes missiles and unmanned aerial vehicles. Surface forces are likely to respond to enemy air activity with anti-aircraft warfare.

NATO

NATO

The North Atlantic Treaty Organization, also called the North Atlantic Alliance, is an intergovernmental military alliance between 30 member states – 28 European and two North American. Established in the aftermath of World War II, the organization implemented the North Atlantic Treaty, signed in Washington, D.C., on 4 April 1949. NATO is a collective security system: its independent member states agree to defend each other against attacks by third parties. During the Cold War, NATO operated as a check on the perceived threat posed by the Soviet Union. The alliance remained in place after the dissolution of the Soviet Union and has been involved in military operations in the Balkans, the Middle East, South Asia, and Africa. The organization's motto is animus in consulendo liber.

Surface-to-air missile

Surface-to-air missile

A surface-to-air missile (SAM), also known as a ground-to-air missile (GTAM) or surface-to-air guided weapon (SAGW), is a missile designed to be launched from the ground to destroy aircraft or other missiles. It is one type of anti-aircraft system; in modern armed forces, missiles have replaced most other forms of dedicated anti-aircraft weapons, with anti-aircraft guns pushed into specialized roles.

Barrage balloon

Barrage balloon

A barrage balloon is a large uncrewed tethered balloon used to defend ground targets against aircraft attack, by raising aloft steel cables which pose to hostile aircraft a severe risk of collision, making the attacker's approach difficult and hazardous. Early barrage balloons were often spherical. The kite balloon, having a shape and cable bridling which stabilises the balloon and reduces drag, could be operated at higher wind speeds than could a spherical balloon. Some examples carried small explosive charges that would be pulled up against the aircraft to ensure its destruction. Barrage balloons are not practical against high-altitude aircraft. The long cable required for a high-altitude balloon would be too heavy.

Missile defense

Missile defense

Missile defense is a system, weapon, or technology involved in the detection, tracking, interception, and also the destruction of attacking missiles. Conceived as a defense against nuclear-armed intercontinental ballistic missiles (ICBMs), its application has broadened to include shorter-ranged non-nuclear tactical and theater missiles.

World War II

World War II

World War II or the Second World War, often abbreviated as WWII or WW2, was a global conflict that lasted from 1939 to 1945. The vast majority of the world's countries, including all of the great powers, fought as part of two opposing military alliances: the Allies and the Axis. Many participants threw their economic, industrial, and scientific capabilities behind this total war, blurring the distinction between civilian and military resources. Aircraft played a major role, enabling the strategic bombing of population centres and the delivery of the only two nuclear weapons ever used in war.

Soviet Union

Soviet Union

The Soviet Union, officially the Union of Soviet Socialist Republics (USSR), was a transcontinental country spanning most of northern Eurasia that existed from 30 December 1922 to 26 December 1991. A flagship communist state, it was nominally a federal union of fifteen national republics; in practice, both its government and its economy were highly centralized until its final years. It was a one-party state governed by the Communist Party of the Soviet Union, with the city of Moscow serving as its capital as well as that of its largest and most populous republic: the Russian SFSR. Other major cities included Leningrad, Kiev, Minsk, Tashkent, Alma-Ata, and Novosibirsk. It was the largest country in the world, covering over 22,402,200 square kilometres (8,649,500 sq mi) and spanning eleven time zones.

Close-in weapon system

Close-in weapon system

A close-in weapon system is a point-defense weapon system for detecting and destroying short-range incoming missiles and enemy aircraft which have penetrated the outer defenses, typically mounted on a naval ship. Nearly all classes of larger modern warships are equipped with some kind of CIWS device.

Rotary cannon

Rotary cannon

A rotary cannon, rotary autocannon, rotary gun or Gatling cannon, is any large-caliber multiple-barreled automatic firearm that uses a Gatling-type rotating barrel assembly to deliver a sustained saturational direct fire at much greater rates of fire than single-barreled autocannons of the same caliber. The loading, firing and ejection functions are performed simultaneously in different barrels as the whole assembly rotates, and the rotation also permits the barrels some time to cool. The rotating barrels on nearly all modern Gatling-type guns are powered by an external force such as an electric motor, although internally powered gas-operated versions have also been developed.

Air-to-air missile

Air-to-air missile

An air-to-air missile (AAM) is a missile fired from an aircraft for the purpose of destroying another aircraft. AAMs are typically powered by one or more rocket motors, usually solid fueled but sometimes liquid fueled. Ramjet engines, as used on the Meteor, are emerging as propulsion that will enable future medium-range missiles to maintain higher average speed across their engagement envelope.

Terminology

The term "air defence" was probably first used by Britain when Air Defence of Great Britain (ADGB) was created as a Royal Air Force command in 1925. However, arrangements in the UK were also called 'anti-aircraft', abbreviated as AA, a term that remained in general use into the 1950s. After the First World War it was sometimes prefixed by 'Light' or 'Heavy' (LAA or HAA) to classify a type of gun or unit. Nicknames for anti-aircraft guns include "AA", "AAA" or "triple-A" (abbreviations of "anti-aircraft artillery"), flak (from the German), "ack-ack" (from the spelling alphabet used by the British for voice transmission of "AA");[2] and "archie" (a World War I British term probably coined by Amyas Borton, and believed to derive via the Royal Flying Corps, from the music-hall comedian George Robey's line "Archibald, certainly not!"[3]).

NATO defines anti-aircraft warfare (AAW) as "measures taken to defend a maritime force against attacks by airborne weapons launched from aircraft, ships, submarines and land-based sites".[1] In some armies the term All-Arms Air Defence (AAAD) is used for air defence by nonspecialist troops. Other terms from the late 20th century include "ground based air defence" (GBAD) with related terms "short range air defense" (SHORAD) and man-portable air-defense system (MANPADS). Anti-aircraft missiles are variously called surface-to-air missile, abbreviated and pronounced "SAM" and surface-to-air guided weapon (SAGW). Examples are the RIM-66 Standard, Raytheon Standard Missile 6, or the MBDA Aster missile.

Non-English terms for air defence include the German Flak or FlaK (Fliegerabwehrkanone, "aircraft defence cannon",[4] also cited as Flugabwehrkanone), whence English 'flak', and the Russian term Protivovozdushnaya oborona (Cyrillic: Противовозду́шная оборо́на), a literal translation of "anti-air defence", abbreviated as PVO.[5] In Russian, the AA systems are called zenitnye (i.e., 'pointing to zenith') systems (guns, missiles etc.). In French, air defence is called DCA (Défense contre les aéronefs, aéronef being the generic term for all kinds of airborne threats (aeroplane, airship, balloon, missile, rocket).[6]

The maximum distance at which a gun or missile can engage an aircraft is an important figure. However, many different definitions are used but unless the same definition is used, performance of different guns or missiles cannot be compared. For AA guns only the ascending part of the trajectory can be usefully used. One term is "ceiling", the maximum ceiling being the height a projectile would reach if fired vertically, not practically useful in itself as few AA guns are able to fire vertically, and the maximum fuse duration may be too short, but potentially useful as a standard to compare different weapons.

The British adopted "effective ceiling", meaning the altitude at which a gun could deliver a series of shells against a moving target; this could be constrained by maximum fuse running time as well as the gun's capability. By the late 1930s the British definition was "that height at which a directly approaching target at 400 mph [640 km/h] can be engaged for 20 seconds before the gun reaches 70 degrees elevation".[7] However, effective ceiling for heavy AA guns was affected by non-ballistic factors:

  • The maximum running time of the fuse, this set the maximum usable time of flight.
  • The capability of fire control instruments to determine target height at long range.
  • The precision of the cyclic rate of fire, the fuse length had to be calculated and set for where the target would be at the time of flight after firing, to do this meant knowing exactly when the round would fire.

Discover more about Terminology related topics

Air Defence of Great Britain

Air Defence of Great Britain

The Air Defence of Great Britain (ADGB) was a RAF command comprising substantial army and RAF elements responsible for the air defence of the British Isles. It lasted from 1925, following recommendations that the RAF take control of homeland air defence, until 1936 when it became RAF Fighter Command.

Royal Air Force

Royal Air Force

The Royal Air Force (RAF) is the United Kingdom's aerial warfare and space force. It was formed towards the end of the First World War on 1 April 1918, becoming the first independent air force in the world, by regrouping the Royal Flying Corps (RFC) and the Royal Naval Air Service (RNAS). Following the Allied victory over the Central Powers in 1918, the RAF emerged as the largest air force in the world at the time. Since its formation, the RAF has taken a significant role in British military history. In particular, it played a large part in the Second World War where it fought its most famous campaign, the Battle of Britain.

Abbreviation

Abbreviation

An abbreviation is a shortened form of a word or phrase, by any method. It may consist of a group of letters or words taken from the full version of the word or phrase; for example, the word abbreviation can itself be represented by the abbreviation abbr., abbrv., or abbrev.; NPO, for nil per (by) os (mouth) is an abbreviated medical instruction. It may also consist of initials only, a mixture of initials and words, or words or letters representing words in another language. Some types of abbreviations are acronyms or grammatical contractions or crasis.

Spelling alphabet

Spelling alphabet

A spelling alphabet is a set of words used to represent the letters of an alphabet in oral communication, especially over a two-way radio or telephone. The words chosen to represent the letters sound sufficiently different from each other to clearly differentiate them. This avoids any confusion that could easily otherwise result from the names of letters that sound similar, except for some small difference easily missed or easily degraded by the imperfect sound quality of the apparatus. For example, in the Latin alphabet, the letters B, P, and D sound similar and could easily be confused, but the words "bravo", "papa" and "delta" sound completely different, making confusion unlikely.

Amyas Borton

Amyas Borton

Air Vice Marshal Amyas Eden Borton, was a pilot and commander in the Royal Flying Corps during the First World War and a senior commander in the Royal Air Force during the 1920s. He saw active service on the Western Front, in Palestine and in Iraq. In the latter part of his career, Borton was the second Commandant of the RAF College at Cranwell before becoming the Air Officer Commanding RAF Inland Area.

Royal Flying Corps

Royal Flying Corps

The Royal Flying Corps (RFC) was the air arm of the British Army before and during the First World War until it merged with the Royal Naval Air Service on 1 April 1918 to form the Royal Air Force. During the early part of the war, the RFC supported the British Army by artillery co-operation and photographic reconnaissance. This work gradually led RFC pilots into aerial battles with German pilots and later in the war included the strafing of enemy infantry and emplacements, the bombing of German military airfields and later the strategic bombing of German industrial and transport facilities.

George Robey

George Robey

Sir George Edward Wade, CBE, known professionally as George Robey, was an English comedian, singer and actor in musical theatre, who became known as one of the greatest music hall performers of the late 19th and early 20th centuries. As a comedian, he mixed everyday situations and observations with comic absurdity. Apart from his music hall acts, he was a popular Christmas pantomime performer in the English provinces, where he excelled in the dame roles. He scored notable successes in musical revues during and after the First World War, particularly with the song "If You Were the Only Girl ", which he performed with Violet Loraine in the revue The Bing Boys Are Here (1916). One of his best-known original characters in his six-decade long career was the Prime Minister of Mirth.

Short range air defense

Short range air defense

Short range air defense (SHORAD) is a group of anti-aircraft weapons and tactics that have to do with defense against low-altitude air threats, primarily helicopters and low-flying aircraft such as the A-10 or Sukhoi Su-25. SHORAD and its complements, HIMAD and THAAD divide air defense of the battlespace into domes of responsibility based on altitude and defensive weapon ranges.

Man-portable air-defense system

Man-portable air-defense system

Man-portable air-defense systems are portable surface-to-air missiles. They are guided weapons and are a threat to low-flying aircraft, especially helicopters.

RIM-66 Standard

RIM-66 Standard

The RIM-66 Standard MR (SM-1MR/SM-2MR) is a medium-range surface-to-air missile (SAM), with a secondary role as an anti-ship missile, originally developed for the United States Navy (USN). A member of the Standard Missile family of weapons, the SM-1 was developed as a replacement for the RIM-2 Terrier and RIM-24 Tartar that were deployed in the 1950s on a variety of USN ships. The RIM-67 Standard (SM-1ER/SM-2ER) is an extended range version of this missile with a solid rocket booster stage.

RIM-174 Standard ERAM

RIM-174 Standard ERAM

The RIM-174 Standard Extended Range Active Missile (ERAM), or Standard Missile 6 (SM-6), is a missile in current production for the United States Navy. It was designed for extended-range anti-air warfare (ER-AAW) purposes, providing capability against fixed and rotary-wing aircraft, unmanned aerial vehicles, anti-ship cruise missiles in flight, both over sea and land, and terminal ballistic missile defense. It can also be used as a high-speed anti-ship missile. The missile uses the airframe of the earlier SM-2ER Block IV (RIM-156A) missile, adding the active radar homing seeker from the AIM-120C AMRAAM in place of the semi-active seeker of the previous design. This will improve the capability of the Standard missile against highly agile targets and targets beyond the effective range of the launching vessels' target illumination radars. Initial operating capability was planned for 2013 and was achieved on 27 November 2013. The SM-6 is not meant to replace the SM-2 series of missiles but will serve alongside and provide extended range and increased firepower. It was approved for export in January 2017.

Aster (missile family)

Aster (missile family)

The Aster 15 and Aster 30 are a Franco-Italian family of all-weather, vertical launch surface-to-air missiles. The name "Aster" stands for "Aérospatiale Terminale". It also takes inspiration from the word "aster", meaning "star" in Ancient Greek. The missiles as well as the related weapon systems are manufactured by Eurosam, a consortium consisting of MBDA France, MBDA Italy and Thales.

General description

The essence of air defence is to detect hostile aircraft and destroy them. The critical issue is to hit a target moving in three-dimensional space; an attack must not only match these three coordinates, but must do so at the time the target is at that position. This means that projectiles either have to be guided to hit the target, or aimed at the predicted position of the target at the time the projectile reaches it, taking into account the speed and direction of both the target and the projectile.

Throughout the 20th century, air defence was one of the fastest-evolving areas of military technology, responding to the evolution of aircraft and exploiting technology such as radar, guided missiles and computing (initially electromechanical analogue computing from the 1930s on, as with equipment described below). Improvements were made to sensors, technical fire control, weapons, and command and control. At the start of the 20th century these were either very primitive or non-existent.

Initially sensors were optical and acoustic devices developed during World War I and continued into the 1930s,[8] but were quickly superseded by radar, which in turn was supplemented by optronics in the 1980s. Command and control remained primitive until the late 1930s, when Britain created an integrated system[9] for ADGB that linked the ground-based air defence of the British Army's Anti-Aircraft Command, although field-deployed air defence relied on less sophisticated arrangements. NATO later called these arrangements an "air defence ground environment", defined as "the network of ground radar sites and command and control centres within a specific theatre of operations which are used for the tactical control of air defence operations".[1]

Rules of Engagement are critical to prevent air defences engaging friendly or neutral aircraft. Their use is assisted but not governed by identification friend or foe (IFF) electronic devices originally introduced during the Second World War. While these rules originate at the highest authority, different rules can apply to different types of air defence covering the same area at the same time. AAAD usually operates under the tightest rules.

NATO calls these rules Weapon Control Orders (WCO), they are:

  • weapons free: weapons may be fired at any target not positively recognised as friendly.
  • weapons tight: weapons may be fired only at targets recognised as hostile.
  • weapons hold: weapons may only be fired in self-defence or in response to a formal order.[1]

Until the 1950s, guns firing ballistic munitions were the standard weapon; guided missiles then became dominant, except at the very shortest ranges. However, the type of shell or warhead and its fuzing and, with missiles the guidance arrangement, were and are varied. Targets are not always easy to destroy; nonetheless, damaged aircraft may be forced to abort their mission and, even if they manage to return and land in friendly territory, may be out of action for days or permanently. Ignoring small arms and smaller machine-guns, ground-based air defence guns have varied in calibre from 20 mm to at least 152 mm.[10]

Ground-based air defence is deployed in several ways:

  • Self-defence by ground forces using their organic weapons, AAAD.
  • Accompanying defence, specialist aid defence elements accompanying armoured or infantry units.
  • Point defence around a key target, such as a bridge, critical government building or ship.
  • Area air defence, typically 'belts' of air defence to provide a barrier, but sometimes an umbrella covering an area. Areas can vary widely in size. They may extend along a nation's border, e.g. the Cold War MIM-23 Hawk and Nike belts that ran north–south across Germany, across a military formation's manoeuvre area, or above a city or port. In ground operations air defence areas may be used offensively by rapid redeployment across current aircraft transit routes.

Air defence has included other elements, although after the Second World War most fell into disuse:

  • Tethered barrage balloons to deter and threaten aircraft flying below the height of the balloons, where they are susceptible to damaging collisions with steel tethers.
  • Cables strung across valleys, sometimes forming a 'curtain' with vertical cables hanging from them.[11]
  • Searchlights to illuminate aircraft at night for both gun-layers and optical instrument operators. During World War II searchlights became radar controlled.
  • Large smoke screens created by large smoke canisters on the ground to screen targets and prevent accurate weapon aiming by aircraft.

Passive air defence is defined by NATO as "Passive measures taken for the physical defence and protection of personnel, essential installations and equipment in order to minimise the effectiveness of air and/or missile attack".[1] It remains a vital activity by ground forces and includes camouflage and concealment to avoid detection by reconnaissance and attacking aircraft. Measures such as camouflaging important buildings were common in the Second World War. During the Cold War the runways and taxiways of some airfields were painted green.

Discover more about General description related topics

Anti-Aircraft Command

Anti-Aircraft Command

Anti-Aircraft Command was a British Army command of the Second World War that controlled the Territorial Army anti-aircraft artillery and searchlight formations and units defending the United Kingdom.

Identification friend or foe

Identification friend or foe

Identification, friend or foe (IFF) is an identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response that identifies the broadcaster. IFF systems usually use radar frequencies, but other electromagnetic frequencies, radio or infrared, may be used. It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly, as opposed to neutral or hostile, and to determine their bearing and range from the interrogator. IFF is used by both military and civilian aircraft. IFF was first developed during World War II, with the arrival of radar, and several friendly fire incidents.

Cold War

Cold War

The Cold War was a period of geopolitical tension between the United States and the Soviet Union and their respective allies, the Western Bloc and the Eastern Bloc. The term cold war is used because there was no large-scale fighting directly between the two superpowers, but they each supported opposing sides in major regional conflicts known as proxy wars. The conflict was based on the ideological and geopolitical struggle for global influence by these two superpowers, following their temporary alliance and victory against Nazi Germany and Imperial Japan in 1945. Aside from the nuclear arsenal development and conventional military deployment, the struggle for dominance was expressed via indirect means such as psychological warfare, propaganda campaigns, espionage, far-reaching embargoes, rivalry at sports events, and technological competitions such as the Space Race.

MIM-23 Hawk

MIM-23 Hawk

The Raytheon MIM-23 HAWK is an American medium-range surface-to-air missile. It was designed to be a much more mobile counterpart to the MIM-14 Nike Hercules, trading off range and altitude capability for a much smaller size and weight. Its low-level performance was greatly improved over Nike through the adoption of new radars and a continuous wave semi-active radar homing guidance system. It entered service with the US Army in 1959.

Searchlight

Searchlight

A searchlight is an apparatus that combines an extremely bright source with a mirrored parabolic reflector to project a powerful beam of light of approximately parallel rays in a particular direction. It is usually constructed so that it can be swiveled about.

Smoke screen

Smoke screen

A smoke screen is smoke released to mask the movement or location of military units such as infantry, tanks, aircraft, or ships.

Organization

While navies are usually responsible for their own air defence—at least for ships at sea—organisational arrangements for land-based air defence vary between nations and over time.

The most extreme case was the Soviet Union and this model may still be followed in some countries: it was a separate service, on a par with the army, navy, or air force. In the Soviet Union, this was called Voyska PVO, and had both fighter aircraft, separate from the air force, and ground-based systems. This was divided into two arms, PVO Strany, the Strategic Air defence Service responsible for Air Defence of the Homeland, created in 1941 and becoming an independent service in 1954, and PVO SV, Air Defence of the Ground Forces. Subsequently, these became part of the air force and ground forces respectively.[12][13]

At the other extreme, the United States Army has an Air Defense Artillery Branch that provides ground-based air defence for both homeland and the army in the field; however, it is operationally under the Joint Force Air Component Commander. Many other nations also deploy an air-defence branch in the army. Some, such as Japan or Israel, choose to integrate their ground based air defence systems into their air force.

In Britain and some other armies, the single artillery branch has been responsible for both home and overseas ground-based air defence, although there was divided responsibility with the Royal Navy for air defence of the British Isles in World War I. However, during the Second World War, the RAF Regiment was formed to protect airfields everywhere, and this included light air defences. In the later decades of the Cold War this included the United States Air Force's operating bases in the UK. All ground-based air defence was removed from Royal Air Force (RAF) jurisdiction in 2004. The British Army's Anti-Aircraft Command was disbanded in March 1955,[14] but during the 1960s and 1970s the RAF's Fighter Command operated long-range air-defence missiles to protect key areas in the UK. During World War II, the Royal Marines also provided air defence units; formally part of the mobile naval base defence organisation, they were handled as an integral part of the army-commanded ground based air defences.

The basic air defence unit is typically a battery with 2 to 12 guns or missile launchers and fire control elements. These batteries, particularly with guns, usually deploy in a small area, although batteries may be split; this is usual for some missile systems. SHORAD missile batteries often deploy across an area with individual launchers several kilometres apart. When MANPADS is operated by specialists, batteries may have several dozen teams deploying separately in small sections; self-propelled air defence guns may deploy in pairs.

Batteries are usually grouped into battalions or equivalent. In the field army, a light gun or SHORAD battalion is often assigned to a manoeuvre division. Heavier guns and long-range missiles may be in air-defence brigades and come under corps or higher command. Homeland air defence may have a full military structure. For example, the UK's Anti-Aircraft Command, commanded by a full British Army general was part of ADGB. At its peak in 1941–42 it comprised three AA corps with 12 AA divisions between them.[15]

Discover more about Organization related topics

Air Defense Artillery Branch

Air Defense Artillery Branch

The Air Defense Artillery Branch is the branch of the United States Army that specializes in anti-aircraft weapons. In the U.S. Army, these groups are composed of mainly air defense systems such as the Patriot Missile System, Terminal High Altitude Area Defense (THAAD), and the Avenger Air Defense system which fires the FIM-92 Stinger missile.

Joint Force Air Component Commander

Joint Force Air Component Commander

Joint force air component commander (JFACC) is a United States Department of Defense doctrinal term. It is pronounced "Jay-Fack".

Japan

Japan

Japan is an island country in East Asia. It is situated in the northwest Pacific Ocean and is bordered on the west by the Sea of Japan, extending from the Sea of Okhotsk in the north toward the East China Sea, Philippine Sea, and Taiwan in the south. Japan is a part of the Ring of Fire, and spans an archipelago of 14,125 islands covering 377,975 square kilometers (145,937 sq mi); the five main islands are Hokkaido, Honshu, Shikoku, Kyushu, and Okinawa. Tokyo is the nation's capital and largest city, followed by Yokohama, Osaka, Nagoya, Sapporo, Fukuoka, Kobe, and Kyoto.

Israel

Israel

Israel, officially the State of Israel, is a country in Western Asia. Situated in the Southern Levant, it is bordered by Lebanon to the north, by Syria to the northeast, by Jordan to the east, by the Red Sea to the south, by Egypt to the southwest, by the Mediterranean Sea to the west, and by the Palestinian territories — the West Bank along the east and the Gaza Strip along the southwest. Tel Aviv is the economic and technological center of the country, while its seat of government is in its proclaimed capital of Jerusalem, although Israeli sovereignty over East Jerusalem is unrecognized internationally.

Royal Navy

Royal Navy

The Royal Navy (RN) is the United Kingdom's naval warfare force. Although warships were used by English and Scottish kings from the early medieval period, the first major maritime engagements were fought in the Hundred Years' War against France. The modern Royal Navy traces its origins to the early 16th century; the oldest of the UK's armed services, it is consequently known as the Senior Service.

RAF Regiment

RAF Regiment

The Royal Air Force Regiment is part of the Royal Air Force and functions as a specialist corps. Founded by Royal Warrant in 1942, the Corps carries out soldiering tasks relating to the delivery of air power. Examples of such tasks are non-combatant evacuation operation (NEO), recovery of downed aircrew, and in-depth defence of airfields by way of aggressively patrolling and actively seeking out infiltrators in a large area surrounding airfields. In addition the RAF Regiment provides Joint Terminal Attack Controllers (JTACs) to the British Army in the Tactical Air Control Party (TACP) role, and provides flight size commitment to the Special Forces Support Group.

Cold War

Cold War

The Cold War was a period of geopolitical tension between the United States and the Soviet Union and their respective allies, the Western Bloc and the Eastern Bloc. The term cold war is used because there was no large-scale fighting directly between the two superpowers, but they each supported opposing sides in major regional conflicts known as proxy wars. The conflict was based on the ideological and geopolitical struggle for global influence by these two superpowers, following their temporary alliance and victory against Nazi Germany and Imperial Japan in 1945. Aside from the nuclear arsenal development and conventional military deployment, the struggle for dominance was expressed via indirect means such as psychological warfare, propaganda campaigns, espionage, far-reaching embargoes, rivalry at sports events, and technological competitions such as the Space Race.

Anti-Aircraft Command

Anti-Aircraft Command

Anti-Aircraft Command was a British Army command of the Second World War that controlled the Territorial Army anti-aircraft artillery and searchlight formations and units defending the United Kingdom.

1960s

1960s

The 1960s was a decade that began on 1 January 1960, and ended on 31 December 1969.

1970s

1970s

The 1970s was a decade that began on January 1, 1970, and ended on December 31, 1979.

Royal Marines

Royal Marines

The Corps of Royal Marines (RM), also known as the Royal Marines Commandos, are the UK's special operations capable commando force, amphibious light infantry and also one of the five fighting arms of the Royal Navy. The Corps of Royal Marines can trace their origins back to the formation of the "Duke of York and Albany's maritime regiment of Foot" on 28 October 1664, and can trace their commando origins to the formation of the 3rd Special Service Brigade, now known as 3 Commando Brigade on 14 February 1942, during the Second World War.

Frederick Alfred Pile

Frederick Alfred Pile

General Sir Frederick Alfred Pile, 2nd Baronet, was a senior British Army officer who served in both World Wars. In the Second World War he was General Officer Commanding Anti-Aircraft Command, one of the elements that protected Britain from aerial attack.

History

Earliest use

The use of balloons by the U.S. Army during the American Civil War compelled the Confederates to develop methods of combating them. These included the use of artillery, small arms, and saboteurs. They were unsuccessful, and internal politics led the United States Army's Balloon Corps to be disbanded mid-war. The Confederates experimented with balloons as well.[16]

Turks carried out the first ever anti-airplane operation in history during the Italo-Turkish war. Although lacking anti-aircraft weapons, they were the first to shoot down an aeroplane by rifle fire. The first aircraft to crash in a war was the one of Lieutenant Piero Manzini, shot down on August 25, 1912.[17][18]

The earliest known use of weapons specifically made for the anti-aircraft role occurred during the Franco-Prussian War of 1870. After the disaster at Sedan, Paris was besieged and French troops outside the city started an attempt at communication via balloon. Gustav Krupp mounted a modified 1-pounder (37mm) gun – the Ballonabwehrkanone (Balloon defence cannon) or BaK — on top of a horse-drawn carriage for the purpose of shooting down these balloons.[19]

By the early 20th century balloon, or airship, guns, for land and naval use were attracting attention. Various types of ammunition were proposed, high explosive, incendiary, bullet-chains, rod bullets and shrapnel. The need for some form of tracer or smoke trail was articulated. Fuzing options were also examined, both impact and time types. Mountings were generally pedestal type but could be on field platforms. Trials were underway in most countries in Europe but only Krupp, Erhardt, Vickers Maxim, and Schneider had published any information by 1910. Krupp's designs included adaptations of their 65 mm 9-pounder, a 75 mm 12-pounder, and even a 105 mm gun. Erhardt also had a 12-pounder, while Vickers Maxim offered a 3-pounder and Schneider a 47 mm. The French balloon gun appeared in 1910, it was an 11-pounder but mounted on a vehicle, with a total uncrewed weight of 2 tons. However, since balloons were slow moving, sights were simple. But the challenges of faster moving aeroplanes were recognised.[20]

By 1913 only France and Germany had developed field guns suitable for engaging balloons and aircraft and addressed issues of military organisation. Britain's Royal Navy would soon introduce the QF 3-inch and QF 4-inch AA guns and also had Vickers 1-pounder quick firing "pom-pom"s that could be used in various mountings.[21][22]

The first US anti-aircraft cannon was a 1-pounder concept design by Admiral Twining in 1911 to meet the perceived threat of airships, that eventually was used as the basis for the US Navy's first operational anti-aircraft cannon: the 3"/23 caliber gun.[23]

First World War

1909 vintage Krupp 9-pounder anti-aircraft gun
1909 vintage Krupp 9-pounder anti-aircraft gun
A Canadian anti-aircraft unit of 1918 "taking post"
A Canadian anti-aircraft unit of 1918 "taking post"
A French anti-aircraft motor battery (motorized AAA battery) that brought down a Zeppelin near Paris. From the journal Horseless Age, 1916.
A French anti-aircraft motor battery (motorized AAA battery) that brought down a Zeppelin near Paris. From the journal Horseless Age, 1916.

On the 30th of September, 1915, troops of the Serbian Army observed three enemy aircraft approaching Kragujevac. Soldiers fired at them with shotguns and machine-guns but failed to prevent them from dropping 45 bombs over the city, hitting military installations, the railway station and many other, mostly civilian, targets in the city. During the bombing raid, private Radoje Ljutovac fired his cannon at the enemy aircraft and successfully shot one down. It crashed in the city and both pilots died from their injuries. The cannon Ljutovac used was not designed as an anti-aircraft gun; it was a slightly modified Turkish cannon captured during the First Balkan War in 1912. This was the first occasion in military history that a military aircraft was shot down with ground-to-air fire.[24][25][26]

The British recognised the need for anti-aircraft capability a few weeks before World War I broke out; on 8 July 1914, the New York Times reported that the British government had decided to 'dot the coasts of the British Isles with a series of towers, each armed with two quick-firing guns of special design,' while 'a complete circle of towers' was to be built around 'naval installations' and 'at other especially vulnerable points.' By December 1914 the Royal Naval Volunteer Reserve (RNVR) was manning AA guns and searchlights assembled from various sources at some nine ports. The Royal Garrison Artillery (RGA) was given responsibility for AA defence in the field, using motorised two-gun sections. The first were formally formed in November 1914. Initially they used QF 1-pounder "pom-pom" (a 37 mm version of the Maxim Gun).[22][27]

A Maxim anti-aircraft machine gun in the anti-aircraft museum in Finland, 2006
A Maxim anti-aircraft machine gun in the anti-aircraft museum in Finland, 2006

All armies soon deployed AA guns often based on their smaller field pieces, notably the French 75 mm and Russian 76.2 mm, typically simply propped up on some sort of embankment to get the muzzle pointed skyward. The British Army adopted the 13-pounder quickly producing new mountings suitable for AA use, the 13-pdr QF 6 cwt Mk III was issued in 1915. It remained in service throughout the war but 18-pdr guns were lined down to take the 13-pdr shell with a larger cartridge producing the 13-pr QF 9 cwt and these proved much more satisfactory.[28] However, in general, these ad hoc solutions proved largely useless. With little experience in the role, no means of measuring target, range, height or speed the difficulty of observing their shell bursts relative to the target gunners proved unable to get their fuse setting correct and most rounds burst well below their targets. The exception to this rule was the guns protecting spotting balloons, in which case the altitude could be accurately measured from the length of the cable holding the balloon.

The first issue was ammunition. Before the war it was recognised that ammunition needed to explode in the air. Both high explosive (HE) and shrapnel were used, mostly the former. Airburst fuses were either igniferious (based on a burning fuse) or mechanical (clockwork). Igniferious fuses were not well suited for anti-aircraft use. The fuse length was determined by time of flight, but the burning rate of the gunpowder was affected by altitude. The British pom-poms had only contact-fused ammunition. Zeppelins, being hydrogen-filled balloons, were targets for incendiary shells and the British introduced these with airburst fuses, both shrapnel type-forward projection of incendiary 'pot' and base ejection of an incendiary stream. The British also fitted tracers to their shells for use at night. Smoke shells were also available for some AA guns, these bursts were used as targets during training.[29]

German air attacks on the British Isles increased in 1915 and the AA efforts were deemed somewhat ineffective, so a Royal Navy gunnery expert, Admiral Sir Percy Scott, was appointed to make improvements, particularly an integrated AA defence for London. The air defences were expanded with more RNVR AA guns, 75 mm and 3-inch, the pom-poms being ineffective. The naval 3-inch was also adopted by the army, the QF 3-inch 20 cwt (76 mm), a new field mounting was introduced in 1916. Since most attacks were at night, searchlights were soon used, and acoustic methods of detection and locating were developed. By December 1916 there were 183 AA Sections defending Britain (most with the 3-inch), 74 with the BEF in France and 10 in the Middle East.[30]

AA gunnery was a difficult business. The problem was of successfully aiming a shell to burst close to its target's future position, with various factors affecting the shells' predicted trajectory. This was called deflection gun-laying, where 'off-set' angles for range and elevation were set on the gunsight and updated as their target moved. In this method, when the sights were on the target, the barrel was pointed at the target's future position. Range and height of the target determined fuse length. The difficulties increased as aircraft performance improved.

The British dealt with range measurement first, when it was realised that range was the key to producing a better fuse setting. This led to the Height/Range Finder (HRF), the first model being the Barr & Stroud UB2, a 2-metre optical coincident rangefinder mounted on a tripod. It measured the distance to the target and the elevation angle, which together gave the height of the aircraft. These were complex instruments and various other methods were also used. The HRF was soon joined by the Height/Fuse Indicator (HFI), this was marked with elevation angles and height lines overlaid with fuse length curves, using the height reported by the HRF operator, the necessary fuse length could be read off.[31]

However, the problem of deflection settings — 'aim-off' — required knowing the rate of change in the target's position. Both France and the UK introduced tachymetric devices to track targets and produce vertical and horizontal deflection angles. The French Brocq system was electrical; the operator entered the target range and had displays at guns; it was used with their 75 mm. The British Wilson-Dalby gun director used a pair of trackers and mechanical tachymetry; the operator entered the fuse length, and deflection angles were read from the instruments.[32][33]

By the start of World War I, the 77 mm had become the standard German weapon, and came mounted on a large traverse that could be easily transported on a wagon. Krupp 75 mm guns were supplied with an optical sighting system that improved their capabilities. The German Army also adapted a revolving cannon that came to be known to Allied fliers as the "flaming onion" from the shells in flight. This gun had five barrels that quickly launched a series of 37 mm artillery shells.

As aircraft started to be used against ground targets on the battlefield, the AA guns could not be traversed quickly enough at close targets and, being relatively few, were not always in the right place (and were often unpopular with other troops), so changed positions frequently. Soon the forces were adding various machine-gun based weapons mounted on poles. These short-range weapons proved more deadly, and the "Red Baron" is believed to have been shot down by an anti-aircraft Vickers machine gun. When the war ended, it was clear that the increasing capabilities of aircraft would require better means of acquiring targets and aiming at them. Nevertheless, a pattern had been set: anti-aircraft warfare would employ heavy weapons to attack high-altitude targets and lighter weapons for use when aircraft came to lower altitudes.

A No.1 Mark III Predictor that was used with the QF 3.7-inch AA gun
A No.1 Mark III Predictor that was used with the QF 3.7-inch AA gun
Shooting with anti-aircraft gun in Sweden 1934
Shooting with anti-aircraft gun in Sweden 1934

Interwar years

World War I demonstrated that aircraft could be an important part of the battlefield, but in some nations it was the prospect of strategic air attack that was the main issue, presenting both a threat and an opportunity. The experience of four years of air attacks on London by Zeppelins and Gotha G.V bombers had particularly influenced the British and was one of if not the main driver for forming an independent air force. As the capabilities of aircraft and their engines improved it was clear that their role in future war would be even more critical as their range and weapon load grew. However, in the years immediately after World War I, the prospect of another major war seemed remote, particularly in Europe, where the most militarily capable nations were, and little financing was available.

Four years of war had seen the creation of a new and technically demanding branch of military activity. Air defence had made huge advances, albeit from a very low starting point. However, it was new and often lacked influential 'friends' in the competition for a share of limited defence budgets. Demobilisation meant that most AA guns were taken out of service, leaving only the most modern.

However, there were lessons to be learned. In particular the British, who had had AA guns in most theatres in action in daylight and used them against night attacks at home. Furthermore, they had also formed an Anti-Aircraft Experimental Section during the war and accumulated large amounts of data that was subjected to extensive analysis. As a result, they published, in 1924–1925, the two-volume Textbook of Anti-Aircraft Gunnery. It included five key recommendations for HAA equipment:

  • Shells of improved ballistic shape with HE fillings and mechanical time fuses.
  • Higher rates of fire assisted by automation.
  • Height finding by long-base optical instruments.
  • Centralised control of fire on each gun position, directed by tachymetric instruments incorporating the facility to apply corrections of the moment for meteorological and wear factors.
  • More accurate sound-location for the direction of searchlights and to provide plots for barrage fire.

Two assumptions underpinned the British approach to HAA fire; first, aimed fire was the primary method and this was enabled by predicting gun data from visually tracking the target and having its height. Second, that the target would maintain a steady course, speed and height. This HAA was to engage targets up to 24,000 feet. Mechanical, as opposed to igniferous, time fuses were required because the speed of powder burning varied with height, so fuse length was not a simple function of time of flight. Automated fire ensured a constant rate of fire that made it easier to predict where each shell should be individually aimed.[34][35]

In 1925 the British adopted a new instrument developed by Vickers. It was a mechanical analogue computer Predictor AA No 1. Given the target height, its operators tracked the target and the predictor produced bearing, quadrant elevation and fuse setting. These were passed electrically to the guns, where they were displayed on repeater dials to the layers who 'matched pointers' (target data and the gun's actual data) to lay the guns. This system of repeater electrical dials built on the arrangements introduced by British coast artillery in the 1880s, and coast artillery was the background of many AA officers. Similar systems were adopted in other countries and for example the later Sperry device, designated M3A3 in the US, was also used by Britain as the Predictor AA No 2. Height finders were also increasing in size, in Britain, the World War I Barr & Stroud UB 2 (7-foot optical base) was replaced by the UB 7 (9-foot optical base) and the UB 10 (18-foot optical base, only used on static AA sites). Goertz in Germany and Levallois in France produced 5-metre instruments. However, in most countries the main effort in HAA guns until the mid-1930s was improving existing ones, although various new designs were on drawing boards.[35][36]

From the early 1930s eight countries developed radar; these developments were sufficiently advanced by the late 1930s for development work on sound-locating acoustic devices to be generally halted, although equipment was retained. Furthermore, in Britain the volunteer Observer Corps formed in 1925 provided a network of observation posts to report hostile aircraft flying over Britain. Initially radar was used for airspace surveillance to detect approaching hostile aircraft. However, the German Würzburg radar was capable of providing data suitable for controlling AA guns, and the British AA No 1 Mk 1 GL radar was designed to be used on AA gun positions.[37]

The Treaty of Versailles prevented Germany having AA weapons, and for example, the Krupps designers joined Bofors in Sweden. Some World War I guns were retained and some covert AA training started in the late 1920s. Germany introduced the 8.8 cm FlaK 18 in 1933, 36 and 37 models followed with various improvements, but ballistic performance was unchanged. In the late 1930s the 10.5 cm FlaK 38 appeared, soon followed by the 39; this was designed primarily for static sites but had a mobile mounting, and the unit had 220 V 24 kW generators. In 1938 design started on the 12.8 cm FlaK.[38][39]

The USSR introduced a new 76 mm M1931 in the early 1930s and an 85 mm M1938 towards the end of the decade.[40]

Britain had successfully tested a new HAA gun, 3.6-inch, in 1918. In 1928 3.7-inch became the preferred solution, but it took 6 years to gain funding. Production of the QF 3.7-inch (94 mm) began in 1937; this gun was used on mobile carriages with the field army and transportable guns on fixed mountings for static positions. At the same time the Royal Navy adopted a new 4.5-inch (114 mm) gun in a twin turret, which the army adopted in simplified single-gun mountings for static positions, mostly around ports where naval ammunition was available. The performance of the new guns was limited by their standard fuse No 199, with a 30-second running time, although a new mechanical time fuse giving 43 seconds was nearing readiness. In 1939 a Machine Fuse Setter was introduced to eliminate manual fuse setting.[41]

The US ended World War I with two 3-inch AA guns and improvements were developed throughout the inter-war period. However, in 1924 work started on a new 105 mm static mounting AA gun, but only a few were produced by the mid-1930s because by this time work had started on the 90 mm AA gun, with mobile carriages and static mountings able to engage air, sea and ground targets. The M1 version was approved in 1940. During the 1920s there was some work on a 4.7-inch which lapsed, but revived in 1937, leading to a new gun in 1944.[42]

While HAA and its associated target acquisition and fire control was the primary focus of AA efforts, low-level close-range targets remained and by the mid-1930s were becoming an issue.

Until this time the British, at RAF insistence, continued their use of World War I machine guns, and introduced twin MG mountings for AAAD. The army was forbidden from considering anything larger than .50-inch. However, in 1935 their trials showed that the minimum effective round was an impact-fused 2 lb HE shell. The following year they decided to adopt the Bofors 40 mm and a twin barrel Vickers 2-pdr (40 mm) on a modified naval mount. The air-cooled Bofors was vastly superior for land use, being much lighter than the water-cooled pom-pom, and UK production of the Bofors 40 mm was licensed. The Predictor AA No 3, as the Kerrison Predictor was officially known, was introduced with it.[43]

The 40 mm Bofors had become available in 1931. In the late 1920s the Swedish Navy had ordered the development of a 40 mm naval anti-aircraft gun from the Bofors company. It was light, rapid-firing and reliable, and a mobile version on a four-wheel carriage was soon developed. Known simply as the 40 mm, it was adopted by some 17 different nations just before World War II and is still in use today in some applications such as on coastguard frigates.

Rheinmetall in Germany developed an automatic 20 mm in the 1920s and Oerlikon in Switzerland had acquired the patent to an automatic 20 mm gun designed in Germany during World War I. Germany introduced the rapid-fire 2 cm FlaK 30 and later in the decade it was redesigned by Mauser-Werke and became the 2 cm FlaK 38.[44] Nevertheless, while 20 mm was better than a machine gun and mounted on a very small trailer made it easy to move, its effectiveness was limited. Germany therefore added a 3.7 cm. The first, the 3.7 cm FlaK 18 developed by Rheinmetall in the early 1930s, was basically an enlarged 2 cm FlaK 30. It was introduced in 1935 and production stopped the following year. A redesigned gun 3.7 cm FlaK 36 entered service in 1938, it too had a two-wheel carriage.[45] However, by the mid-1930s the Luftwaffe realised that there was still a coverage gap between 3.7 cm and 8.8 cm guns. They started development of a 5 cm gun on a four-wheel carriage.[46]

After World War I the US Army started developing a dual-role (AA/ground) automatic 37 mm cannon, designed by John M. Browning. It was standardised in 1927 as the T9 AA cannon, but trials quickly revealed that it was worthless in the ground role. However, while the shell was a bit light (well under 2 lbs) it had a good effective ceiling and fired 125 rounds per minute; an AA carriage was developed and it entered service in 1939. The Browning 37 mm proved prone to jamming, and was eventually replaced in AA units by the Bofors 40 mm. The Bofors had attracted attention from the US Navy, but none were acquired before 1939.[47] Also, in 1931 the US Army worked on a mobile anti-aircraft machine mount on the back of a heavy truck having four .30 calibre water-cooled machine guns and an optical director. It proved unsuccessful and was abandoned.[48]

The Soviet Union also used a 37 mm, the 37 mm M1939, which appears to have been copied from the Bofors 40 mm. A Bofors 25 mm, essentially a scaled down 40 mm, was also copied as the 25 mm M1939.[49]

During the 1930s solid-fuel rockets were under development in the Soviet Union and Britain. In Britain the interest was for anti-aircraft fire, it quickly became clear that guidance would be required for precision. However, rockets, or 'unrotated projectiles' as they were called, could be used for anti-aircraft barrages. A 2-inch rocket using HE or wire obstacle warheads was introduced first to deal with low-level or dive bombing attacks on smaller targets such as airfields. The 3-inch was in development at the end of the inter-war period.[50]

Naval aspects

WW1 had been a war in which air warfare blossomed, but had not matured to the point of being a real threat to naval forces. The prevailing assumption was that a few relatively small caliber naval guns could manage to keep enemy aircraft beyond a range where harm might be expected. In 1939 radio controlled drones became available to the US Navy in quantity allowing a more realistic testing of existing anti-aircraft suites against actual flying and manoeuvring targets.[51] The results were sobering to an unexpected degree. The United States was still emerging from the effects of the Great Depression and funds for the military had been sparse to the degree that 50% of shells used were still powder fused.[51] The US Navy found that a significant portion of its shells were duds or low order detonations (incomplete detonation of the explosive contained by the shell). Virtually every major country involved in combat in World War 2 invested in aircraft development. The cost of aircraft research and development was small and the results could be large.[52] So rapid was the performance leaps of evolving aircraft that the British HAC's fire control system was obsolete and designing a successor very difficult for the British establishment.[53] Electronics would prove to be an enabler for effective anti-aircraft systems and both the US and Great Britain had a growing electronics industry.[53] In 1939 radio controlled drones became available to actually test existing systems in British and American service. The results were disappointing by any measure. High-level manoeuvring drones were virtually immune to shipboard AA systems. The US drones could simulate dive bombing which showed the dire need for autocannons. Japan introduced powered gliders in 1940 as drones but apparently was unable to dive bomb.[54] There is no evidence of other powers using drones in this application at all. It may have caused a major underestimation of the threat and an inflated view of their AA systems.[55]

Second World War

Poland's AA defences were no match for the German attack, and the situation was similar in other European countries.[56] Significant AAW (Anti-Air Warfare) started with the Battle of Britain in the summer of 1940. QF 3.7-inch AA guns provided the backbone of the ground-based AA defences, although initially significant numbers of QF 3-inch 20 cwt were also used. The Army's Anti-aircraft command, which was under command of the Air Defence UK organisation, grew to 12 AA divisions in 3 AA corps. Bofors 40 mm guns entered service in increasing numbers. In addition, the RAF regiment was formed in 1941 with responsibility for airfield air defence, eventually with Bofors 40 mm as their main armament. Fixed AA defences, using HAA and LAA, were established by the Army in key overseas places, notably Malta, Suez Canal and Singapore.

While the 3.7-inch was the main HAA gun in fixed defences and the only mobile HAA gun with the field army, the QF 4.5-inch gun, manned by artillery, was used in the vicinity of naval ports and made use of the naval ammunition supply. The 4.5-inch at Singapore had the first success in shooting down Japanese bombers. Mid war QF 5.25-inch naval guns started being emplaced in some permanent sites around London. This gun was also deployed in dual-role coast defence/AA positions.

German 88 mm flak gun in action against Allied bombers.
German 88 mm flak gun in action against Allied bombers.

Germany's high-altitude needs were originally going to be filled by a 75 mm gun from Krupp, designed in collaboration with their Swedish counterpart Bofors, but the specifications were later amended to require much higher performance. In response Krupp's engineers presented a new 88 mm design, the FlaK 36. First used in Spain during the Spanish Civil War, the gun proved to be one of the best anti-aircraft guns in the world, as well as particularly deadly against light, medium, and even early heavy tanks.

After the Dambusters raid in 1943 an entirely new system was developed that was required to knock down any low-flying aircraft with a single hit. The first attempt to produce such a system used a 50 mm gun, but this proved inaccurate and a new 55 mm gun replaced it. The system used a centralised control system including both search and targeting radar, which calculated the aim point for the guns after considering windage and ballistics, and then sent electrical commands to the guns, which used hydraulics to point themselves at high speeds. Operators simply fed the guns and selected the targets. This system, modern even by today's standards, was in late development when the war ended.

German soldier manning a MG34 anti-aircraft gun in WW2
German soldier manning a MG34 anti-aircraft gun in WW2

The British had already arranged licence building of the Bofors 40 mm, and introduced these into service. These had the power to knock down aircraft of any size, yet were light enough to be mobile and easily swung. The gun became so important to the British war effort that they even produced a movie, The Gun, that encouraged workers on the assembly line to work harder. The Imperial measurement production drawings the British had developed were supplied to the Americans who produced their own (unlicensed) copy of the 40 mm at the start of the war, moving to licensed production in mid-1941.

A USAAF B-24 hit by flak over Italy, 10 April 1945.
A USAAF B-24 hit by flak over Italy, 10 April 1945.

Service trials demonstrated another problem however: that ranging and tracking the new high-speed targets was almost impossible. At short range, the apparent target area is relatively large, the trajectory is flat and the time of flight is short, allowing to correct lead by watching the tracers. At long range, the aircraft remains in firing range for a long time, so the necessary calculations can, in theory, be done by slide rules—though, because small errors in distance cause large errors in shell fall height and detonation time, exact ranging is crucial. For the ranges and speeds that the Bofors worked at, neither answer was good enough.

British QF 3.7-inch gun in London in 1939.
British QF 3.7-inch gun in London in 1939.

The solution was automation, in the form of a mechanical computer, the Kerrison Predictor. Operators kept it pointed at the target, and the Predictor then calculated the proper aim point automatically and displayed it as a pointer mounted on the gun. The gun operators simply followed the pointer and loaded the shells. The Kerrison was fairly simple, but it pointed the way to future generations that incorporated radar, first for ranging and later for tracking. Similar predictor systems were introduced by Germany during the war, also adding radar ranging as the war progressed.

US Coast Guardsmen in the South Pacific man a 20 mm anti-aircraft cannon.
US Coast Guardsmen in the South Pacific man a 20 mm anti-aircraft cannon.

A plethora of anti-aircraft gun systems of smaller calibre was available to the German Wehrmacht combined forces, and among them the 1940-origin Flakvierling quadruple-20 mm-autocannon-based anti-aircraft weapon system was one of the most often-seen weapons, seeing service on both land and sea. The similar Allied smaller-calibre air-defence weapons of the American forces were also quite capable, although they receive little attention. Their needs could cogently be met with smaller-calibre ordnance beyond using the usual singly-mounted M2 .50 caliber machine gun atop a tank's turret, as four of the ground-used "heavy barrel" (M2HB) guns were mounted together on the American Maxson firm's M45 Quadmount weapon (as a direct answer to the Flakvierling), which were often mounted on the back of a half-track to form the Half Track, M16 GMC, Anti-Aircraft. Although of less power than Germany's 20 mm systems, the typical four or five combat batteries of an Army AAA battalion were often spread many kilometres apart from each other, rapidly attaching and detaching to larger ground combat units to provide welcome defence from enemy aircraft.

Indian troops manning a Bren light machine gun in an anti-aircraft mount in 1941.
Indian troops manning a Bren light machine gun in an anti-aircraft mount in 1941.

AAA battalions were also used to help suppress ground targets. Their larger 90 mm M3 gun would prove, as did the eighty-eight, to make an excellent anti-tank gun as well, and was widely used late in the war in this role. Also available to the Americans at the start of the war was the 120 mm M1 gun stratosphere gun, which was the most powerful AA gun with an impressive 60,000 ft (18 km) altitude capability, however no 120 M1 was ever fired at an enemy aircraft. The 90 mm and 120 mm guns would continue to be used into the 1950s.

The United States Navy had also put some thought into the problem, When the US Navy began to rearm in 1939 in many ships the primary short ranged gun was the M2 .50 caliber machine gun. While effective in fighters at 300 to 400 yards this is point blank range in naval anti-aircraft ranges. Production of the Swiss Oerlikon 20mm had already started to provide protection for the British and this was adopted in exchange for the M2 machine guns.[57] In the December 1941 to January 1942 time frame production had risen to not only cover all British requirements but also allowed 812 units to be actually delivered to the US Navy.[58] By the end of 1942 the 20mm had accounted for 42% of all aircraft destroyed by the US Navy's shipboard AA. However, the King Board had noted that the balance was shifting towards the larger guns used by the fleet. The US Navy had intended to use the British Pom-Pom, however, the weapon required the use of cordite which BuOrd had found objectionable for US service.[59] Further investigation revealed that US powders would not work in the Pom-Pom.[60] Bureau of Ordnance was well aware of the Bofors 40mm gun. The firm York Safe and Lock was negotiating with Bofors to attain the rights to the air-cooled version of the weapon. At the same time Henry Howard, an engineer, and businessman became aware of it and contacted RAMD W. R. Furlong Chief of the Bureau of Ordnance. He ordered the Bofors weapon system to be investigated. York Safe and Lock would be used as the contracting agent. The system had to be redesigned for both the English measurement system and mass production, as the original documents recommended hand filing and drilling to shape.[61] As early as 1928 the US Navy saw the need to replace the .50 caliber machine gun with something heavier. The 1.1"/75 (28 mm) Mark 1 was designed. Placed in quadruple mounts with a 500 rpm rate of fire it would have fit the requirements. However, the gun was suffering teething issues being prone to jamming. While this could have been solved the weight of the system was equal to that of the quad mount Bofors 40mm while lacking the range and power that the Bofors provided. The gun was relegated to smaller less vital ships by the end of the war.[62] The 5"/38 naval gun rounded out the US Navy's AA suite. A dual purpose mount, it was used in both the surface and AA roles with great success.

Mated with the Mark 37 director and the proximity fuse it could routinely knock drones out of the sky at ranges as far as 13,000 yards.[63]

5-inch,  40mm and 20mm fire directed from USS New Mexico at Kamikaze, Battle of Okinawa, 1945.
5-inch, 40mm and 20mm fire directed from USS New Mexico at Kamikaze, Battle of Okinawa, 1945.

A 3"/50 MK 22 semiautomatic dual gun was produced but not employed before the end of the war and therefore beyond the scope of this article. However early marks of the 3"/50 were employed in destroyer escorts and on merchant ships. 3″/50 caliber guns (Marks 10, 17, 18, and 20) first entered service in 1915 as a refit to USS Texas (BB-35), and were subsequently mounted on many types of ships as the need for anti-aircraft protection was recognized. During World War II, they were the primary gun armament on destroyer escorts, patrol frigates, submarine chasers, minesweepers, some fleet submarines, and other auxiliary vessels, and were used as a secondary dual-purpose battery on some other types of ships, including some older battleships. They also replaced the original low-angle 4"/50 caliber guns (Mark 9) on "flush-deck" Wickes and Clemson-class destroyers to provide better anti-aircraft protection. The gun was also used on specialist destroyer conversions; the "AVD" seaplane tender conversions received two guns; the "APD" high-speed transports, "DM" minelayers, and "DMS" minesweeper conversions received three guns, and those retaining destroyer classification received six.[64]

One of six flak towers built during World War II in Vienna.
One of six flak towers built during World War II in Vienna.
A British North Sea World War II Maunsell Fort.
A British North Sea World War II Maunsell Fort.

The Germans developed massive reinforced-concrete blockhouses, some more than six stories high, which were known as Hochbunker "High Bunkers" or "Flaktürme" flak towers, on which they placed anti-aircraft artillery. Those in cities attacked by the Allied land forces became fortresses. Several in Berlin were some of the last buildings to fall to the Soviets during the Battle of Berlin in 1945. The British built structures such as the Maunsell Forts in the North Sea, the Thames Estuary and other tidal areas upon which they based guns. After the war most were left to rot. Some were outside territorial waters, and had a second life in the 1960s as platforms for pirate radio stations, while another became the base of a micronation, the Principality of Sealand.

A USAAF B-24 bomber emerges from a cloud of flak with its no. 2 engine smoking.
A USAAF B-24 bomber emerges from a cloud of flak with its no. 2 engine smoking.

Some nations started rocket research before World War II, including for anti-aircraft use. Further research started during the war. The first step was unguided missile systems like the British 2-inch RP and 3-inch, which was fired in large numbers from Z batteries, and were also fitted to warships. The firing of one of these devices during an air raid is suspected to have caused the Bethnal Green disaster in 1943. Facing the threat of Japanese Kamikaze attacks the British and US developed surface-to-air rockets like British Stooge or the American Lark as counter measures, but none of them were ready at the end of the war. The Germans missile research was the most advanced of the war as the Germans put considerable effort in the research and development of rocket systems for all purposes. Among them were several guided and unguided systems. Unguided systems involved the Fliegerfaust (literally "aircraft fist") as the first MANPADS. Guided systems were several sophisticated radio, wire, or radar guided missiles like the Wasserfall ("waterfall") rocket. Owing to the severe war situation for Germany all of those systems were only produced in small numbers and most of them were only used by training or trial units.

Flak in the Balkans, 1942 (drawing by Helmuth Ellgaard).
Flak in the Balkans, 1942 (drawing by Helmuth Ellgaard).

Another aspect of anti-aircraft defence was the use of barrage balloons to act as physical obstacle initially to bomber aircraft over cities and later for ground attack aircraft over the Normandy invasion fleets. The balloon, a simple blimp tethered to the ground, worked in two ways. Firstly, it and the steel cable were a danger to any aircraft that tried to fly among them. Secondly, to avoid the balloons, bombers had to fly at a higher altitude, which was more favourable for the guns. Barrage balloons were limited in application, and had minimal success at bringing down aircraft, being largely immobile and passive defences.

The allies' most advanced technologies were showcased by the anti-aircraft defence against the German V-1 cruise missiles (V stands for Vergeltungswaffe, "retaliation weapon"). The 419th and 601st Anti-aircraft Gun Battalions of the US Army were first allocated to the Folkestone-Dover coast to defend London, and then moved to Belgium to become part of the "Antwerp X" project coordinated from the Le Grand Veneur [nl][65] in Keerbergen. With the liberation of Antwerp, the port city immediately became the highest priority target, and received the largest number of V-1 and V-2 missiles of any city. The smallest tactical unit of the operation was a gun battery consisting of four 90 mm guns firing shells equipped with a radio proximity fuse. Incoming targets were acquired and automatically tracked by SCR-584 radar, developed at the MIT Rad Lab. Output from the gun-laying radar was fed to the M9 Gun Director, an electronic analogue computer developed at Bell Laboratories to calculate the lead and elevation corrections for the guns. With the help of these three technologies, close to 90% of the V-1 missiles, on track to the defence zone around the port, were destroyed.[66][67]

Post-war

A 1970s-era Talos anti-aircraft missile, fired from a cruiser
A 1970s-era Talos anti-aircraft missile, fired from a cruiser

Post-war analysis demonstrated that even with newest anti-aircraft systems employed by both sides, the vast majority of bombers reached their targets successfully, on the order of 90%. While these figures were undesirable during the war, the advent of the nuclear bomb considerably altered the acceptability of even a single bomber reaching its target.

The developments during World War II continued for a short time into the post-war period as well. In particular the U.S. Army set up a huge air defence network around its larger cities based on radar-guided 90 mm and 120 mm guns. US efforts continued into the 1950s with the 75 mm Skysweeper system, an almost fully automated system including the radar, computers, power, and auto-loading gun on a single powered platform. The Skysweeper replaced all smaller guns then in use in the Army, notably the 40 mm Bofors. By 1955, the US Military deemed the 40mm Bofors obsolete due to its reduced capability to shoot down jet powered aircraft, and turned to SAM development, with the Nike Ajax and the RSD-58. In Europe NATO's Allied Command Europe developed an integrated air defence system, NATO Air Defence Ground Environment (NADGE), that later became the NATO Integrated Air Defence System.

The introduction of the guided missile resulted in a significant shift in anti-aircraft strategy. Although Germany had been desperate to introduce anti-aircraft missile systems, none became operational during World War II. Following several years of post-war development, however, these systems began to mature into viable weapons. The US started an upgrade of their defences using the Nike Ajax missile, and soon the larger anti-aircraft guns disappeared. The same thing occurred in the USSR after the introduction of their SA-2 Guideline systems.

A three-person JASDF fireteam practices using a rocket target with a training variant of a Type 91 Kai MANPADS during an exercise at Eielson Air Force Base, Alaska as part of Red Flag – Alaska.
A three-person JASDF fireteam practices using a rocket target with a training variant of a Type 91 Kai MANPADS during an exercise at Eielson Air Force Base, Alaska as part of Red Flag – Alaska.

As this process continued, the missile found itself being used for more and more of the roles formerly filled by guns. First to go were the large weapons, replaced by equally large missile systems of much higher performance. Smaller missiles soon followed, eventually becoming small enough to be mounted on armoured cars and tank chassis. These started replacing, or at least supplanting, similar gun-based SPAAG systems in the 1960s, and by the 1990s had replaced almost all such systems in modern armies. Man-portable missiles, MANPADS as they are known today, were introduced in the 1960s and have supplanted or replaced even the smallest guns in most advanced armies.

In the 1982 Falklands War, the Argentine armed forces deployed the newest west European weapons including the Oerlikon GDF-002 35 mm twin cannon and SAM Roland. The Rapier missile system was the primary GBAD system, used by both British artillery and RAF regiment, a few brand-new FIM-92 Stinger were used by British special forces. Both sides also used the Blowpipe missile. British naval missiles used included Sea Dart and the older Sea Slug longer range systems, Sea Cat and the new Sea Wolf short range systems. Machine guns in AA mountings were used both ashore and afloat.

During the 2008 South Ossetia war air power faced off against powerful SAM systems, like the 1980s Buk-M1.

In February 2018, an Israeli F-16 fighter was downed in the occupied Golan Heights province, after it had attacked an Iranian target in Syria.[68][69][70][71] In 2006, Israel also lost a helicopter over Lebanon, shot down by a Hezbollah rocket.[72]

Discover more about History related topics

Franco-Prussian War

Franco-Prussian War

The Franco-Prussian War or Franco-German War, often referred to in France as the War of 1870, was a conflict between the Second French Empire and the North German Confederation led by the Kingdom of Prussia. Lasting from 19 July 1870 to 28 January 1871, the conflict was caused primarily by France's determination to reassert its dominant position in continental Europe, which appeared in question following the decisive Prussian victory over Austria in 1866. According to some historians, Prussian chancellor Otto von Bismarck deliberately provoked the French into declaring war on Prussia in order to induce four independent southern German states—Baden, Württemberg, Bavaria and Hesse-Darmstadt—to join the North German Confederation; other historians contend that Bismarck exploited the circumstances as they unfolded. All agree that Bismarck recognized the potential for new German alliances, given the situation as a whole.

Battle of Sedan

Battle of Sedan

The Battle of Sedan was fought during the Franco-Prussian War from 1 to 2 September 1870. Resulting in the capture of Emperor Napoleon III and over a hundred thousand troops, it effectively decided the war in favour of Prussia and its allies, though fighting continued under a new French government.

Krupp

Krupp

The Krupp family was a prominent 400-year-old German dynasty from Essen, noted for its production of steel, artillery, ammunition and other armaments. The family business, known as Friedrich Krupp AG, was the largest company in Europe at the beginning of the 20th century, and was the premier weapons manufacturer for Germany in both world wars. Starting from the Thirty Years' War until the end of the Second World War, it produced battleships, U-boats, tanks, howitzers, guns, utilities, and hundreds of other commodities.

SMS Nymphe (1863)

SMS Nymphe (1863)

SMS Nymphe was the lead ship of the Nymphe class of steam corvettes, the first ship of that type to be built for the Prussian Navy. She had one sister ship, Medusa, and the vessels were wooden-hulled ships armed with a battery of sixteen guns. She was ordered as part of a naval expansion program to counter the Danish Navy over the disputed ownership of Schleswig and Holstein. Nymphe was laid down in January 1862, was launched in April 1863, and was completed in October that year.

Schneider-Creusot

Schneider-Creusot

Schneider et Cie, also known as Schneider-Creusot for its birthplace in the French town of Le Creusot, was a historic French iron and steel-mill company which became a major arms manufacturer. In the 1960s, it was taken over by the Belgian Empain group and merged with it in 1969 to form Empain-Schneider, which in 1980 was renamed Schneider SA and in 1999, after much restructuring, Schneider Electric.

QF 3-inch 20 cwt

QF 3-inch 20 cwt

The QF 3-inch 20 cwt anti-aircraft gun became the standard anti-aircraft gun used in the home defence of the United Kingdom against German Zeppelins airships and bombers and on the Western Front in World War I. It was also common on British warships in World War I and submarines in World War II. 20 cwt referred to the weight of the barrel and breech, to differentiate it from other 3-inch guns. While other AA guns also had a bore of 3 inches (76 mm), the term 3-inch was only ever used to identify this gun in the World War I era, and hence this is what writers are usually referring to by 3-inch AA gun.

QF 1-pounder pom-pom

QF 1-pounder pom-pom

The QF 1 pounder, universally known as the pom-pom due to the sound of its discharge, was a 37 mm British autocannon, the first of its type in the world. It was used by several countries initially as an infantry gun and later as a light anti-aircraft gun.

Nathan Crook Twining

Nathan Crook Twining

Nathan Crook Twining was a rear admiral of the United States Navy.

Serbian Army

Serbian Army

The Serbian Army is the land-based and the largest component of the Serbian Armed Forces.

Kragujevac

Kragujevac

Kragujevac is the fourth largest city in Serbia and the administrative centre of the Šumadija District. It is the historical centre of the geographical region of Šumadija in central Serbia, and is situated on the banks of the Lepenica River. According to the 2022 census, City of Kragujevac has 171,628 inhabitants.

Private (rank)

Private (rank)

A private is a soldier, usually with the lowest rank in many armies. Soldiers with the rank of Private may be conscripts or they may be professional (career) soldiers.

Radoje Ljutovac

Radoje Ljutovac

Radoje Ljutovac was a Serbian soldier from the village of Poljna, Serbia. Private Radoje Ljutovac fought in the First World War in the Serbian Army, and is officially credited with the first shooting down of a military aircraft with Ground-to-Air artillery fire.

AA warfare systems

A Gepard in motion at the 2015 Military Day in Uffenheim. The Gepard is an autonomous all-weather-capable German self-propelled anti-aircraft gun.
A Gepard in motion at the 2015 Military Day in Uffenheim. The Gepard is an autonomous all-weather-capable German self-propelled anti-aircraft gun.

Although the firearms used by the infantry, particularly machine guns, can be used to engage low altitude air targets, on occasion with notable success, their effectiveness is generally limited and the muzzle flashes reveal infantry positions. Speed and altitude of modern jet aircraft limit target opportunities, and critical systems may be armoured in aircraft designed for the ground attack role. Adaptations of the standard autocannon, originally intended for air-to-ground use, and heavier artillery systems were commonly used for most anti-aircraft gunnery, starting with standard pieces on new mountings, and evolving to specially designed guns with much higher performance prior to World War II.

The shells fired by these weapons are usually fitted with different types of fuses (barometric, time-delay, or proximity) to explode close to the airborne target, releasing a shower of fast metal fragments. For shorter-range work, a lighter weapon with a higher rate of fire is required, to increase a hit probability on a fast airborne target. Weapons between 20 mm and 40 mm calibre have been widely used in this role. Smaller weapons, typically .50 calibre or even 8 mm rifle calibre guns have been used in the smallest mounts.

Unlike the heavier guns, these smaller weapons are in widespread use due to their low cost and ability to quickly follow the target. Classic examples of autocannons and large calibre guns are the 40 mm autocannon designed by Bofors and the 8.8 cm FlaK 18, 36 gun designed by Krupp. Artillery weapons of this sort have for the most part been superseded by the effective surface-to-air missile systems that were introduced in the 1950s, although they were still retained by many nations. The development of surface-to-air missiles began in Nazi Germany during the late World War II with missiles such as the Wasserfall, though no working system was deployed before the war's end, and represented new attempts to increase effectiveness of the anti-aircraft systems faced with growing threat from bombers. Land-based SAMs can be deployed from fixed installations or mobile launchers, either wheeled or tracked. The tracked vehicles are usually armoured vehicles specifically designed to carry SAMs.

Larger SAMs may be deployed in fixed launchers, but can be towed/re-deployed at will. The SAMs launched by individuals are known in the United States as the Man-Portable Air Defence Systems (MANPADS). MANPADS of the former Soviet Union have been exported around the World, and can be found in use by many armed forces. Targets for non-ManPAD SAMs will usually be acquired by air-search radar, then tracked before/while a SAM is "locked-on" and then fired. Potential targets, if they are military aircraft, will be identified as friend or foe before being engaged. The developments in the latest and relatively cheap short-range missiles have begun to replace autocannons in this role.

Soviet 85mm anti-aircraft guns deployed in the neighborhood of St Isaac's Cathedral during the Siege of Leningrad (formerly Petrograd, now called St. Petersburg, ) in 1941.
Soviet 85mm anti-aircraft guns deployed in the neighborhood of St Isaac's Cathedral during the Siege of Leningrad (formerly Petrograd, now called St. Petersburg, ) in 1941.

The interceptor aircraft (or simply interceptor) is a type of fighter aircraft designed specifically to intercept and destroy enemy aircraft, particularly bombers, usually relying on high speed and altitude capabilities. A number of jet interceptors such as the F-102 Delta Dagger, the F-106 Delta Dart, and the MiG-25 were built in the period starting after the end of World War II and ending in the late 1960s, when they became less important due to the shifting of the strategic bombing role to ICBMs. Invariably the type is differentiated from other fighter aircraft designs by higher speeds and shorter operating ranges, as well as much reduced ordnance payloads.

The radar systems use electromagnetic waves to identify the range, altitude, direction, or speed of aircraft and weather formations to provide tactical and operational warning and direction, primarily during defensive operations. In their functional roles they provide target search, threat detection, guidance, reconnaissance, navigation, instrumentation, and weather reporting support to combat operations.

Anti-UAV defences

An Anti-UAV Defence System (AUDS) is a system for defence against military unmanned aerial vehicles. A variety of designs have been developed, using lasers,[73] net-guns and air-to-air netting, signal jamming, and hi-jacking by means of in-flight hacking.[74] Anti-UAV defence systems have been deployed against ISIL drones during the Battle of Mosul (2016–2017).[75][76]

Alternative approaches for dealing with UAVs have included using a shotgun at close range, and for smaller drones, training eagles to snatch them from the air.[74] It is important to keep in mind that this only works on relatively small UAVs and loitering munitions (also called "suicide drones"). Larger UCAVs such as the MQ-1 Predator can be (and frequently are) shot down like manned aircraft of similar sizes and flight profiles.[77][78]

The Royal Navy's Type 45 destroyers are advanced air defence ships
The Royal Navy's Type 45 destroyers are advanced air defence ships

Future developments

Guns are being increasingly pushed into specialist roles, such as the Dutch Goalkeeper CIWS, which uses the GAU-8 Avenger 30 mm seven-barrel Gatling gun for last ditch anti-missile and anti-aircraft defence. Even this formerly front-line weapon is currently being replaced by new missile systems, such as the RIM-116 Rolling Airframe Missile, which is smaller, faster, and allows for mid-flight course correction (guidance) to ensure a hit. To bridge the gap between guns and missiles, Russia in particular produces the Kashtan CIWS, which uses both guns and missiles for final defense with two six-barrelled 30 mm Gsh-6-30 Gatling guns and eight 9M311 surface-to-air missiles provide for its defensive capabilities.

Upsetting this development to all-missile systems is the current move to stealth aircraft. Long range missiles depend on long-range detection to provide significant lead. Stealth designs cut detection ranges so much that the aircraft is often never even seen, and when it is, it is often too late for an intercept. Systems for detection and tracking of stealthy aircraft are a major problem for anti-aircraft development.

However, as stealth technology grows, so does anti-stealth technology. Multiple transmitter radars such as those from bistatic radars and low-frequency radars are said to have the capabilities to detect stealth aircraft. Advanced forms of thermographic cameras such as those that incorporate QWIPs would be able to optically see a Stealth aircraft regardless of the aircraft's Radar Cross-Section (RCS). In addition, Side looking radars, High-powered optical satellites, and sky-scanning, high-aperture, high sensitivity radars such as radio telescopes, would all be able to narrow down the location of a stealth aircraft under certain parameters.[79] The newest SAMs have a claimed ability to be able to detect and engage stealth targets, with the most notable being the Russian S-400, which is claimed to be able to detect a target with a 0.05-metre squared RCS from 90 km away.[80]

Another potential weapon system for anti-aircraft use is the laser. Although air planners have imagined lasers in combat since the late 1960s, only the most modern laser systems are currently reaching what could be considered "experimental usefulness". In particular the Tactical High Energy Laser can be used in the anti-aircraft and anti-missile role. ALKA is directed-energy weapon (DEW) system is a Turkish dual electromagnetic/laser weapon developed by Roketsan allegedly used to destroy one of GNC's Wing Loong II UAVs; if true, this would represent the first known time a vehicle mounted combat laser was used to destroy another combat vehicle during genuine wartime conditions.[81]

The future of projectile based weapons may be found in the railgun. Currently tests are underway on developing systems that could create as much damage as a Tomahawk (missile), but at a fraction of the cost. In February 2008 the US Navy tested a railgun; it fired a shell at 5,600 miles (9,000 km) per hour using 10 megajoules of energy. Its expected performance is over 13,000 miles (21,000 km) per hour muzzle velocity, accurate enough to hit a 5-metre target from 200 nautical miles (370 km) away while shooting at 10 shots per minute. It is expected to be ready in 2020 to 2025.[82] These systems, while currently designed for static targets, would only need the ability to be retargeted to become the next generation of AA system.

Discover more about AA warfare systems related topics

Flakpanzer Gepard

Flakpanzer Gepard

The Flugabwehrkanonenpanzer Gepard is an all-weather-capable German self-propelled anti-aircraft gun (SPAAG). It was developed in the 1960s, fielded in the 1970s, and has been upgraded several times with the latest electronics. It has been a cornerstone of the air defence of the German Army (Bundeswehr) and a number of other NATO countries.

Uffenheim

Uffenheim

Uffenheim is a city in the Middle Franconian district of Neustadt (Aisch)-Bad Windsheim, in Bavaria, Germany. It is situated 14 km west of Bad Windsheim, and 36 km southeast of Würzburg.

Autocannon

Autocannon

An autocannon, automatic cannon or machine cannon is a fully automatic gun that is capable of rapid-firing large-caliber armour-piercing, explosive or incendiary shells, as opposed to the smaller-caliber kinetic projectiles (bullets) fired by a machine gun. Autocannons have a longer effective range and greater terminal performance than machine guns, due to the use of larger/heavier munitions, but are usually smaller than tank guns, howitzers, field guns or other artillery. When used on its own, the word "autocannon" typically indicates a non-rotary weapon with a single barrel. When multiple rotating barrels are involved, such a weapon is referred to as a "rotary autocannon" or occasionally "rotary cannon", for short.

Artillery

Artillery

Artillery is a class of heavy military ranged weapons that launch munitions far beyond the range and power of infantry firearms. Early artillery development focused on the ability to breach defensive walls and fortifications during sieges, and led to heavy, fairly immobile siege engines. As technology improved, lighter, more mobile field artillery cannons developed for battlefield use. This development continues today; modern self-propelled artillery vehicles are highly mobile weapons of great versatility generally providing the largest share of an army's total firepower.

Shell (projectile)

Shell (projectile)

A shell, in a military context, is a projectile whose payload contains an explosive, incendiary, or other chemical filling. Originally it was called a bombshell, but "shell" has come to be unambiguous in a military context. Modern usage sometimes includes large solid kinetic projectiles, which are more properly termed shot. Solid shot may contain a pyrotechnic compound if a tracer or spotting charge is used.

Fuse (explosives)

Fuse (explosives)

In an explosive, pyrotechnic device, or military munition, a fuse is the part of the device that initiates function. In common usage, the word fuse is used indiscriminately. However, when being specific, the term fuse describes a simple pyrotechnic initiating device, like the cord on a firecracker whereas the term fuze is used when referring to a more sophisticated ignition device incorporating mechanical and/or electronic components, such as a proximity fuze for an M107 artillery shell, magnetic or acoustic fuze on a sea mine, spring-loaded grenade fuze, pencil detonator, or anti-handling device.

Rate of fire

Rate of fire

Rate of fire is the frequency at which a specific weapon can fire or launch its projectiles. This can be influenced by several factors, including operator training level, mechanical limitations, ammunition availability, and weapon condition. In modern weaponry, it is usually measured in rounds per minute or rounds per second.

20 mm caliber

20 mm caliber

20 mm caliber is a specific size of popular autocannon ammunition. It is typically used to distinguish smaller-caliber weapons, commonly called "guns", from larger-caliber "cannons". All 20 mm cartridges have an outside projectile (bullet) diameter and barrel bore diameter of 0.787 inches (20.0 mm). These projectiles are typically 75 to 127 mm (3–5 in) long, cartridge cases are typically 75 to 152 mm (3–6 in) long, and most are shells, with an explosive payload and detonating fuze.

Nazi Germany

Nazi Germany

Nazi Germany was the German state between 1933 and 1945, when Adolf Hitler and the Nazi Party controlled the country, transforming it into a dictatorship. Under Hitler's rule, Germany quickly became a totalitarian state where nearly all aspects of life were controlled by the government. The Third Reich, meaning "Third Realm" or "Third Empire", alluded to the Nazi claim that Nazi Germany was the successor to the earlier Holy Roman Empire (800–1806) and German Empire (1871–1918). The Third Reich, which Hitler and the Nazis referred to as the Thousand-Year Reich, ended in May 1945 after just 12 years when the Allies defeated Germany, ending World War II in Europe.

Wasserfall

Wasserfall

The Wasserfall Ferngelenkte FlaRakete was a German guided supersonic surface-to-air missile project of World War II. Development was not completed before the end of the war and it was not used operationally.

Bomber

Bomber

A bomber is a military combat aircraft designed to attack ground and naval targets by dropping air-to-ground weaponry, launching torpedoes, or deploying air-launched cruise missiles. The first use of bombs dropped from an aircraft occurred in the Italo-Turkish War, with the first major deployments coming in the First World War and Second World War by all major airforces causing devastating damage to cities, towns, and rural areas. The first purpose built bombers were the Italian Caproni Ca 30 and British Bristol T.B.8, both of 1913. Some bombers were decorated with nose art or victory markings.

Radar

Radar

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

Force structures

Most Western and Commonwealth militaries integrate air defence purely with the traditional services of the military (i.e. army, navy and air force), as a separate arm or as part of artillery. In the British Army for instance, air defence is part of the artillery arm, while in the Pakistan Army, it was split off from the artillery to form a separate arm of its own in 1990. This is in contrast to some (largely communist or ex-communist) countries where not only are there provisions for air defence in the army, navy and air force but there are specific branches that deal only with the air defence of territory, for example, the Soviet PVO Strany. The USSR also had a separate strategic rocket force in charge of nuclear intercontinental ballistic missiles.

Navy

Model of the multirole IDAS missile of the German Navy, which can be fired  from submerged anti-aircraft weapon systems
Model of the multirole IDAS missile of the German Navy, which can be fired from submerged anti-aircraft weapon systems

Smaller boats and ships typically have machine-guns or fast cannons, which can often be deadly to low-flying aircraft if linked to a radar-directed fire-control system radar-controlled cannon for point defence. Some vessels like Aegis-equipped destroyers and cruisers are as much a threat to aircraft as any land-based air defence system. In general, naval vessels should be treated with respect by aircraft, however the reverse is equally true. Carrier battle groups are especially well defended, as not only do they typically consist of many vessels with heavy air defence armament but they are also able to launch fighter jets for combat air patrol overhead to intercept incoming airborne threats.

Nations such as Japan use their SAM-equipped vessels to create an outer air defence perimeter and radar picket in the defence of its Home islands, and the United States also uses its Aegis-equipped ships as part of its Aegis Ballistic Missile Defense System in the defence of the Continental United States.

Some modern submarines, such as the Type 212 submarines of the German Navy, are equipped with surface-to-air missile systems, since helicopters and anti-submarine warfare aircraft are significant threats. The subsurface launched anti-air missile was first purposed by US Navy Rear Admiral Charles B. Momsen, in a 1953 article.[83]

Layered air defence

Layered air defence missile launchers and radars of Dutch Armed Forces in 2017.
Layered air defence missile launchers and radars of Dutch Armed Forces in 2017.
A RIM-67 surface to air missile intercepts a Firebee drone at White Sands, 1980.
A RIM-67 surface to air missile intercepts a Firebee drone at White Sands, 1980.

Air defence in naval tactics, especially within a carrier group, is often built around a system of concentric layers with the aircraft carrier at the centre. The outer layer will usually be provided by the carrier's aircraft, specifically its AEW&C aircraft combined with the CAP. If an attacker is able to penetrate this layer, then the next layers would come from the surface-to-air missiles carried by the carrier's escorts; the area-defence missiles, such as the RIM-67 Standard, with a range of up to 100 nmi, and the point-defence missiles, like the RIM-162 ESSM, with a range of up to 30 nmi. Finally, virtually every modern warship will be fitted with small-calibre guns, including a CIWS, which is usually a radar-controlled Gatling gun of between 20mm and 30mm calibre capable of firing several thousand rounds per minute.[84]

Army

Armies typically have air defence in depth, from integral man-portable air-defense systems (MANPADS) such as the RBS 70, Stinger and Igla at smaller force levels up to army-level missile defence systems such as Angara and Patriot. Often, the high-altitude long-range missile systems force aircraft to fly at low level, where anti-aircraft guns can bring them down. As well as the small and large systems, for effective air defence there must be intermediate systems. These may be deployed at regiment-level and consist of platoons of self-propelled anti-aircraft platforms, whether they are self-propelled anti-aircraft guns (SPAAGs), integrated air-defence systems like Tunguska or all-in-one surface-to-air missile platforms like Roland or SA-8 Gecko.

On a national level the United States Army was atypical in that it was primarily responsible for the missile air defences of the Continental United States with systems such as Project Nike.

Air force

A USAF F-22A Raptor firing an AIM-120 air to air missile.
A USAF F-22A Raptor firing an AIM-120 air to air missile.

Air defence by air forces is typically provided by fighter jets carrying air-to-air missiles. However, most air forces choose to augment airbase defence with surface-to-air missile systems as they are such valuable targets and subject to attack by enemy aircraft. In addition, some countries choose to put all air defence responsibilities under the air force.

Area air defence

Area air defence, the air defence of a specific area or location, (as opposed to point defence), have historically been operated by both armies (Anti-Aircraft Command in the British Army, for instance) and Air Forces (the United States Air Force's CIM-10 Bomarc). Area defence systems have medium to long range and can be made up of various other systems and networked into an area defence system (in which case it may be made up of several short range systems combined to effectively cover an area). An example of area defence is the defence of Saudi Arabia and Israel by MIM-104 Patriot missile batteries during the first Gulf War, where the objective was to cover populated areas.

Discover more about Force structures related topics

Army

Army

An army, ground force or land force is a fighting force that fights primarily on land. In the broadest sense, it is the land-based military branch, service branch or armed service of a nation or country. It may also include aviation assets by possessing an army aviation component. Within a national military force, the word army may also mean a field army.

Navy

Navy

A navy, naval force, or maritime force is the branch of a nation's armed forces principally designated for naval and amphibious warfare; namely, lake-borne, riverine, littoral, or ocean-borne combat operations and related functions. It includes anything conducted by surface ships, amphibious ships, submarines, and seaborne aviation, as well as ancillary support, communications, training, and other fields. The strategic offensive role of a navy is projection of force into areas beyond a country's shores. The strategic defensive purpose of a navy is to frustrate seaborne projection-of-force by enemies. The strategic task of the navy also may incorporate nuclear deterrence by use of submarine-launched ballistic missiles. Naval operations can be broadly divided between riverine and littoral applications, open-ocean applications, and something in between, although these distinctions are more about strategic scope than tactical or operational division.

Air force

Air force

An air force – in the broadest sense – is the national military branch that primarily conducts aerial warfare. More specifically, it is the branch of a nation's armed services that is responsible for aerial warfare as distinct from an army or navy. Typically, air forces are responsible for gaining control of the air, carrying out strategic and tactical bombing missions, and providing support to land and naval forces often in the form of aerial reconnaissance and close air support.

Military branch

Military branch

Military branch is according to common standard a subdivision of the national armed forces of a sovereign nation or state.

British Army

British Army

The British Army is the principal land warfare force of the United Kingdom, a part of the British Armed Forces along with the Royal Navy and the Royal Air Force. As of 2022, the British Army comprises 79,380 regular full-time personnel, 4,090 Gurkhas, and 28,330 volunteer reserve personnel.

Intercontinental ballistic missile

Intercontinental ballistic missile

An intercontinental ballistic missile (ICBM) is a ballistic missile with a range greater than 5,500 kilometres (3,400 mi), primarily designed for nuclear weapons delivery. Conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicle (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. Russia, the United States, China, France, India, the United Kingdom, Israel, and North Korea are the only countries known to have operational ICBMs.

AK-630

AK-630

The AK-630 is a Soviet and Russian fully automatic naval, rotary cannon, close-in weapon system. The "630" designation refers to the weapon's six gun barrels and their 30 mm caliber.

Close-in weapon system

Close-in weapon system

A close-in weapon system is a point-defense weapon system for detecting and destroying short-range incoming missiles and enemy aircraft which have penetrated the outer defenses, typically mounted on a naval ship. Nearly all classes of larger modern warships are equipped with some kind of CIWS device.

IDAS (missile)

IDAS (missile)

IDAS is a medium-range missile currently being developed for the Type 209 and Type 212A submarine class of the German Navy.

German Navy

German Navy

The German Navy is the navy of Germany and part of the unified Bundeswehr, the German Armed Forces. The German Navy was originally known as the Bundesmarine from 1956 to 1995, when Deutsche Marine became the official name with respect to the 1990 incorporation of the East German Volksmarine. It is deeply integrated into the NATO alliance. Its primary mission is protection of Germany's territorial waters and maritime infrastructure as well as sea lines of communication. Apart from this, the German Navy participates in peacekeeping operations, and renders humanitarian assistance and disaster relief. It also participates in anti-piracy operations.

Fire-control system

Fire-control system

A fire-control system (FCS) is a number of components working together, usually a gun data computer, a director, and radar, which is designed to assist a ranged weapon system to target, track, and hit a target. It performs the same task as a human gunner firing a weapon, but attempts to do so faster and more accurately.

Carrier battle group

Carrier battle group

A carrier battle group (CVBG) is a naval fleet consisting of an aircraft carrier capital ship and its large number of escorts, together defining the group. The CV in CVBG is the United States Navy hull classification code for an aircraft carrier.

Tactics

Mobility

The Russian Pantsir-S1 can engage targets while moving, thus achieving high survivability.
The Russian Pantsir-S1 can engage targets while moving, thus achieving high survivability.

Most modern air defence systems are fairly mobile. Even the larger systems tend to be mounted on trailers and are designed to be fairly quickly broken down or set up. In the past, this was not always the case. Early missile systems were cumbersome and required much infrastructure; many could not be moved at all. With the diversification of air defence there has been much more emphasis on mobility. Most modern systems are usually either self-propelled (i.e. guns or missiles are mounted on a truck or tracked chassis) or towed. Even systems that consist of many components (transporter/erector/launchers, radars, command posts etc.) benefit from being mounted on a fleet of vehicles. In general, a fixed system can be identified, attacked and destroyed whereas a mobile system can show up in places where it is not expected. Soviet systems especially concentrate on mobility, after the lessons learnt in the Vietnam war between the US and Vietnam. For more information on this part of the conflict, see SA-2 Guideline.

Air defence versus air defence suppression

Israel and the US Air Force, in conjunction with the members of NATO, have developed significant tactics for air defence suppression. Dedicated weapons such as anti-radiation missiles and advanced electronics intelligence and electronic countermeasures platforms seek to suppress or negate the effectiveness of an opposing air-defence system. It is an arms race; as better jamming, countermeasures and anti-radiation weapons are developed, so are better SAM systems with ECCM capabilities and the ability to shoot down anti-radiation missiles and other munitions aimed at them or the targets they are defending.

Insurgent tactics

Rocket-propelled grenades (RPGs) can be—and often are—used against hovering helicopters (e.g., by Somali militiamen during the Battle of Mogadishu (1993)). Firing an RPG at steep angles poses a danger to the user, because the backblast from firing reflects off the ground. In Somalia, militia members sometimes welded a steel plate onto the exhaust end of an RPG's tube to deflect pressure away from the shooter when shooting up at US helicopters. RPGs are used in this role only when more effective weapons are not available.

Another example of using RPGs against helicopters is Operation ANACONDA in March 2002 in Afghanistan. Taliban Insurgents defending Shah-i-Kot Valley used RPGs in the direct fire role against landing helicopters. Four rangers were killed[85] when their helicopter was shot down by an RPG and SEAL team member Neil C. Roberts fell out of his helicopter when it was hit by two RPG.[86] In other instances helicopters have been shot down in Afghanistan during a mission[87] in Wardak province. One feature that makes RPGs useful in air defence is that they are fused to automatically detonate at 920 m.[88] If aimed into the air this causes the warhead to airburst which can release a limited but potentially damaging amount of shrapnel hitting a helicopter landing or taking off.

For insurgents the most effective method of countering aircraft is to attempt to destroy them on the ground, either by penetrating an airbase perimeter and destroying aircraft individually, e.g. the September 2012 Camp Bastion raid, or finding a position where aircraft can be engaged with indirect fire, such as mortars. A recent trend emerging during the Syrian Civil War is the use of ATGM against landing helicopters.[89]

Discover more about Tactics related topics

Transporter erector launcher

Transporter erector launcher

A transporter erector launcher (TEL) is a missile vehicle with an integrated tractor unit that can carry, elevate to firing position and launch one or more missiles.

Radar

Radar

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, and motor vehicles, and map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

AGM-88 HARM

AGM-88 HARM

The AGM-88 HARM is a tactical, air-to-surface anti-radiation missile designed to home in on electronic transmissions coming from surface-to-air radar systems. It was originally developed by Texas Instruments as a replacement for the AGM-45 Shrike and AGM-78 Standard ARM system. Production was later taken over by Raytheon Corporation when it purchased the defense production business of Texas Instruments.

AIM-9 Sidewinder

AIM-9 Sidewinder

The AIM-9 Sidewinder is a short-range air-to-air missile which entered service with the United States Navy in 1956, and subsequently was adopted by the US Air Force in 1964. Since then, the Sidewinder has proved to be an enduring international success, and its latest variants remain standard equipment in most Western-aligned air forces. The Soviet K-13, a reverse-engineered copy of the AIM-9B, was also widely adopted by a number of nations.

German Air Force

German Air Force

The German Air Force is the aerial warfare branch of the Bundeswehr, the armed forces of Germany. The German Air Force was founded in 1956 during the era of the Cold War as the aerial warfare branch of the armed forces of then West Germany. After the reunification of West and East Germany in 1990, it integrated parts of the air force of the former German Democratic Republic, which itself had been founded in 1956 as part of the National People's Army. There is no organizational continuity between the current German Air Force and the former Luftwaffe of the Wehrmacht founded in 1935, which was completely disbanded in 1945/46 after World War II. The term Luftwaffe that is used for both the historic and the current German air force is the German-language generic designation of any air force.

Panavia Tornado

Panavia Tornado

The Panavia Tornado is a family of twin-engine, variable-sweep wing multirole combat aircraft, jointly developed and manufactured by Italy, the United Kingdom and West Germany. There are three primary Tornado variants: the Tornado IDS (interdictor/strike) fighter-bomber, the Tornado ECR SEAD aircraft and the Tornado ADV interceptor aircraft.

NATO

NATO

The North Atlantic Treaty Organization, also called the North Atlantic Alliance, is an intergovernmental military alliance between 30 member states – 28 European and two North American. Established in the aftermath of World War II, the organization implemented the North Atlantic Treaty, signed in Washington, D.C., on 4 April 1949. NATO is a collective security system: its independent member states agree to defend each other against attacks by third parties. During the Cold War, NATO operated as a check on the perceived threat posed by the Soviet Union. The alliance remained in place after the dissolution of the Soviet Union and has been involved in military operations in the Balkans, the Middle East, South Asia, and Africa. The organization's motto is animus in consulendo liber.

Anti-radiation missile

Anti-radiation missile

An anti-radiation missile (ARM) is a missile designed to detect and home in on an enemy radio emission source. Typically, these are designed for use against an enemy radar, although jammers and even radios used for communications can also be targeted in this manner.

Battle of Mogadishu (1993)

Battle of Mogadishu (1993)

The Battle of Mogadishu, also known as the Black Hawk Down incident, was part of Operation Gothic Serpent. It was fought on 3–4 October 1993, in Mogadishu, Somalia, between forces of the United States—supported by UNOSOM II—against the forces of the Somali National Alliance (SNA) and armed irregular citizens of south Mogadishu. The battle was part of the broader Somali Civil War that had begun in 1991. The United Nations had initially become involved to provide food aid to alleviate starvation in the south of the country, but in the months preceding the battle, had shifted the mission to establishing democracy and restoring a central government.

Operation Anaconda

Operation Anaconda

Operation Anaconda was a military operation that took place in early March 2002 as part of the War in Afghanistan. CIA paramilitary officers, working with their allies, attempted to destroy al-Qaeda and Taliban forces. The operation took place in the Shahi-Kot Valley and Arma Mountains southeast of Zormat. This operation was the first large-scale battle in the post-2001 War in Afghanistan since the Battle of Tora Bora in December 2001. This was the first operation in the Afghanistan theater to involve a large number of U.S. forces participating in direct combat activities.

Shah-i-Kot Valley

Shah-i-Kot Valley

The Shah-i-Kot Valley is a valley in the Paktia province of Afghanistan, southeast of the town of Zormat. The terrain in and around the valley is notoriously rugged, located at a mean altitude of 9,000 feet (2,700 m). Shah-i-Kot means "Place of the King" and it has historically been a redoubt for Afghan guerrillas hiding from foreign invaders.

Offensive counter air

Offensive counter air

Offensive counter-air (OCA) is a military term for the suppression of an enemy's military air power, primarily through ground attacks targeting enemy air bases: disabling or destroying parked aircraft, runways, fuel facilities, hangars, air traffic control facilities and other aviation infrastructure. Ground munitions like bombs are typically less expensive than more sophisticated air-to-air munitions, and a single ground munition can destroy or disable multiple aircraft in a very short time whereas aircraft already flying must typically be shot down one at a time. Enemy aircraft already flying also represent an imminent threat as they can usually fire back, and therefore destroying them before they can take off minimizes the risk to friendly aircraft.

Source: "Anti-aircraft warfare", Wikipedia, Wikimedia Foundation, (2023, February 13th), https://en.wikipedia.org/wiki/Anti-aircraft_warfare.

Enjoying Wikiz?

Enjoying Wikiz?

Get our FREE extension now!

References

Citations

  1. ^ a b c d e AAP-6
  2. ^ "ack-ack, adj. and n.". Archived 24 September 2015 at the Wayback Machine OED Online. September 2013. Oxford University Press. (accessed 14 September 2013).
  3. ^ "Air Vice-Marshal A E Borton". Air of Authority – A History of RAF Organisation. Rafweb.org. Archived from the original on 3 March 2009.
  4. ^ "flak". Merriam-Webster Online Dictionary. Archived from the original on 14 May 2008. Retrieved 30 June 2008.
  5. ^ Bellamy 1986, p. 219.
  6. ^ le petit Larousse 2013 p20–p306
  7. ^ Hogg WW2 pg 99–100
  8. ^ Hearst Magazines (December 1930). "Huge Ear Locates Planes and Tells Their Speed". Popular Mechanics. Hearst Magazines. p. 895.
  9. ^ Checkland and Holwell pg. 127
  10. ^ Routledge 1994, p. 456.
  11. ^ Dahl, Per F. (1999). Heavy water and the wartime race for nuclear energy. Bristol [England]: Institute of Physics. ISBN 0-585-25449-4. OCLC 45728821.
  12. ^ Bellamy 1986, p. 82.
  13. ^ Bellamy 1986, p. 213.
  14. ^ Beckett 2008, 178.
  15. ^ Routledge 1994, p. 396–397.
  16. ^ Spring 2007 issue of the American Association of Aviation Historians Journal
  17. ^ "Turco-Italian War".
  18. ^ James D. Crabtree: On air defense, ISBN 0275947920, Greenwood Publishing Group, page 9
  19. ^ Essential Militaria: Facts, Legends, and Curiosities About Warfare Through the Ages, Nicholas Hobbs, Atlantic Monthly Press 2004, ISBN 0-8021-1772-4
  20. ^ Bethel pg 56–80
  21. ^ Routledge 1994, p. 3.
  22. ^ a b Routledge 1994, p. 4.
  23. ^ Hearst Magazines (December 1911). "New American Aerial Weapons". Popular Mechanics. Hearst Magazines. p. 776.
  24. ^ "How was the first military airplane shot down". National Geographic. Archived from the original on 31 August 2015. Retrieved 5 August 2015.
  25. ^ "Ljutovac, Radoje". Amanet Society. Archived from the original on 6 October 2014. Retrieved 5 August 2015.
  26. ^ "Radoje Raka Ljutovac – first person in the world to shoot down an airplane with a cannon". Pečat. 30 September 2014. Archived from the original on 12 August 2015. Retrieved 5 August 2015.
  27. ^ Routledge 1994, p. 5.
  28. ^ Routledge 1994, p. 6.
  29. ^ The Ministry of Munitions pg 40–41
  30. ^ Routledge 1994, p. 8–17.
  31. ^ Routledge 1994, p. 14–15.
  32. ^ Routledge 1994, p. 14–20.
  33. ^ The Ministry of Munitions pg 11
  34. ^ Routledge 1994, p. 48.
  35. ^ a b Routledge 1994, p. 49.
  36. ^ Routledge 1994, p. 50.
  37. ^ Routledge 1994, p. 95-97.
  38. ^ Hogg 1997, p. 14.
  39. ^ Hogg 1997, p. 162–177.
  40. ^ Hogg Allied WW2 pg 127–130
  41. ^ Hogg Allied WW2 pg 97–107
  42. ^ Hogg Allied WW2 pg 114–119
  43. ^ Hogg Allied WW2 pg 108–110
  44. ^ Hogg 1997, p. 144–147.
  45. ^ Hogg 1997, p. 150–152.
  46. ^ Hogg 1997, p. 155–156.
  47. ^ Hogg Allied WW2 pg 115–117
  48. ^ Hearst Magazines (December 1931). "Uncle Sam's Latest Weapons For War in the Air". Popular Mechanics. Hearst Magazines. p. 944.
  49. ^ Hogg Allied WW2 pg 131
  50. ^ Routledge 1994, p. 56.
  51. ^ a b Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 242
  52. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 266
  53. ^ a b Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 271
  54. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 1617
  55. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 1642
  56. ^ "THE BATTLE OF BRITAIN". raf100schools.org.uk. Archived from the original on 17 September 2018.
  57. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 8687
  58. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 8713
  59. ^ Bulletin of Ordnance Information, No.245, pp. 54–60.
  60. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 8620
  61. ^ Friedman, Norman Naval Anti-Aircraft Guns and Gunnery Location 8956-8620
  62. ^ "USA 1.1"/75 (28 mm) Mark 1 and Mark 2 - NavWeaps". Archived from the original on 30 September 2018. Retrieved 2 March 2019.
  63. ^ "USA 5"/38 (12.7 cm) Mark 12 - NavWeaps". Archived from the original on 28 September 2017. Retrieved 2 March 2019.
  64. ^ Silverstone 1968 pp. 112, 212, 215, 276, 303
  65. ^ "Le Grand Veneur Keerbergen operation Antwerp X". YouTube. Archived from the original on 15 November 2016. Retrieved 16 March 2016.
  66. ^ Cruise Missile Defence: Defending Antwerp against the V-1, Lt. Col. John A. Hamilton
  67. ^ The Defense of Antwerp Against the V-1 Missile, R.J. Backus, LTC, Fort Leavenworth, KS, 1971
  68. ^ "Israeli F-16 jet shot down by Syria fire, says military". aljazeera.com. Aljazeera. 10 February 2018. Archived from the original on 21 May 2019. Retrieved 14 March 2019.
  69. ^ Lubell, Maayan; Barrington, Lisa (10 February 2018). "Israeli jet shot down after bombing Iranian site in Syria". Reuters. reuters.com. Archived from the original on 3 March 2019. Retrieved 14 March 2019.
  70. ^ "Israeli jet crashes after attacking Iranian targets in Syria". france24.com. France24. 10 February 2018. Archived from the original on 18 December 2018. Retrieved 14 March 2019.
  71. ^ Staff, Toi (11 February 2018). "Pilot of downed F-16 jet regains consciousness, taken off respirator". timesofisrael.com. The times of Israel. Archived from the original on 13 February 2018. Retrieved 14 March 2019.
  72. ^ "Syria shoots down Israeli warplane as conflict escalates". bbc.com. BBC News. 10 February 2018. Archived from the original on 6 April 2019. Retrieved 15 March 2019.
  73. ^ Sweetman, Bill (2 April 2015). "Lasers Technology Targets Mini-UAVs". Aviation Week. Archived from the original on 14 December 2016. Retrieved 11 March 2017.
  74. ^ a b Schechter, Erik (5 April 2016). "What's Really the Best the Way to Take Down a Drone?". Popular Mechanics. Archived from the original on 13 March 2017. Retrieved 11 March 2017.
  75. ^ "AUDS Counter UAV System by Blighter spoted [sic] in Mosul Iraq". Twitter. Archived from the original on 15 March 2017. Retrieved 11 March 2017.
  76. ^ "Blighter® AUDS Anti-UAV Defence System". www.blighter.com. 2016. Archived from the original on 12 March 2017. Retrieved 11 March 2017.
  77. ^ Everstine, Brian (29 June 2015). "Air Force: Lost Predator was shot down in Syria". Air Force Times. Retrieved 18 November 2021.
  78. ^ Smith, Saphora; Kube, Courtney; Gubash, Charlene; Gains, Mosheh (21 August 2019). "U.S. military drone shot down over Yemen, officials say". NBC News. Retrieved 18 November 2021.
  79. ^ "Archived copy" (PDF). Archived from the original (PDF) on 4 November 2011. Retrieved 15 August 2010.{{cite web}}: CS1 maint: archived copy as title (link)
  80. ^ Carlo Kopp (November 2003). "Asia's new SAMs" (PDF). Australian Aviation: 30. Archived from the original (PDF) on 23 July 2006. Retrieved 9 July 2006.
  81. ^ Peck, Michael (1 September 2019). "Did A Turkish Combat Laser Shoot Down A Chinese Drone?". The National Interest. Retrieved 17 March 2022.
  82. ^ Col. Y Udaya Chandar (Retd.) (2017). The Modern Weaponry of the World's Armed Forces. Notion Press. ISBN 9781946983794.
  83. ^ Hearst Magazines (August 1953). "Will the New Submarines Rule the Seas?". Popular Mechanics. Hearst Magazines. pp. 74–78.
  84. ^ Naval Strike Forum. "What it takes to successfully attack an American Aircraft carrier". Lexington Institute. p. 15
  85. ^ "Stacked Up Over Anaconda". Air Force Magazine. Retrieved 2 October 2020.
  86. ^ "Archived copy" (PDF). Archived from the original (PDF) on 10 October 2015. Retrieved 27 January 2020.{{cite web}}: CS1 maint: archived copy as title (link)
  87. ^ "Investigation Confirms RPG Downed Chinook". Air Force Magazine. 14 October 2011. Retrieved 2 October 2020.
  88. ^ "ODIN - OE Data Integration Network".
  89. ^ Kaaman, Hugo [@HKaaman] (18 May 2018). "Anti-Tank Guided Missile (ATGM) strikes on helicopters during the Syrian Civil War - I made a short compilation detailing the 8 recorded ATGM strikes on helicopters in Syria. 3 strikes on parked helis, 2 on landing helis, 2 on helis after emergency landings & 1 on heli in-flight t.co/Za6azGABVV" (Tweet). Retrieved 31 December 2020 – via Twitter.

Sources

  • AAP-6 NATO Glossary of Terms. 2009.
  • Bellamy, Chris (1986). The Red God of War – Soviet Artillery and Rocket Forces. London: Brassey's.
  • Bethel, Colonel HA. 1911. "Modern Artillery in the Field". London: Macmillan and Co Ltd
  • Checkland, Peter and Holwell, Sue. 1998. "Information, Systems and Information Systems – making sense of the field". Chichester: Wiley
  • Gander, T 2014. "The Bofors gun", 3rd edn. Barnsley, South Yorkshire: Pen & Sword Military.
  • Hogg, Ian V. 1998. "Allied Artillery of World War Two". Malborough: The Crowood Press ISBN 1-86126-165-9
  • Hogg, Ian V. 1998. "Allied Artillery of World War One" Malborough: The Crowood Press ISBN 1-86126-104-7
  • Hogg, Ian V. (1997). German Artillery of World War Two. London: Greenhill Books. ISBN 1-85367-261-0.
  • Routledge, Brigadier NW. (1994). History of the Royal regiment of Artillery – Anti-Aircraft Artillery 1914–55. London: Brassey's. ISBN 1-85753-099-3.
  • Handbook for the Ordnance, Q.F. 3.7-inch Mark II on Mounting, 3.7-inch A.A. Mark II – Land Service. 1940. London: War Office 26|Manuals|2494
  • History of the Ministry of Munitions. 1922. Volume X The Supply of Munitions, Part VI Anti-Aircraft Supplies. Reprinted by Naval & Military Press Ltd and Imperial War Museum.
  • Flavia Foradini: I bunker di Vienna", Abitare 2/2006, Milano
  • Flavia Foradini, Edoardo Conte: I templi incompiuti di Hitler", catalogo della mostra omonima, Milano, Spazio Guicciardini, 17.2-13.3.2009
External links

The content of this page is based on the Wikipedia article written by contributors..
The text is available under the Creative Commons Attribution-ShareAlike Licence & the media files are available under their respective licenses; additional terms may apply.
By using this site, you agree to the Terms of Use & Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization & is not affiliated to WikiZ.com.